Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6sf2 Structured version   Visualization version   GIF version

Theorem ac6sf2 30373
 Description: Alternate version of ac6 9905 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008.) (Revised by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
ac6sf2.y 𝑦𝐵
ac6sf2.1 𝑦𝜓
ac6sf2.2 𝐴 ∈ V
ac6sf2.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6sf2 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝐵,𝑓   𝜑,𝑓   𝑥,𝑦,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem ac6sf2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ac6sf2.y . . . 4 𝑦𝐵
2 nfcv 2980 . . . 4 𝑧𝐵
3 nfv 1914 . . . 4 𝑧𝜑
4 nfs1v 2159 . . . 4 𝑦[𝑧 / 𝑦]𝜑
5 sbequ12 2252 . . . 4 (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
61, 2, 3, 4, 5cbvrexfw 3441 . . 3 (∃𝑦𝐵 𝜑 ↔ ∃𝑧𝐵 [𝑧 / 𝑦]𝜑)
76ralbii 3168 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑)
8 ac6sf2.2 . . 3 𝐴 ∈ V
9 ac6sf2.1 . . . 4 𝑦𝜓
10 ac6sf2.3 . . . 4 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
119, 10sbhypf 3555 . . 3 (𝑧 = (𝑓𝑥) → ([𝑧 / 𝑦]𝜑𝜓))
128, 11ac6s 9909 . 2 (∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
137, 12sylbi 219 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1536  ∃wex 1779  Ⅎwnf 1783  [wsb 2068   ∈ wcel 2113  Ⅎwnfc 2964  ∀wral 3141  ∃wrex 3142  Vcvv 3497  ⟶wf 6354  ‘cfv 6358 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-reg 9059  ax-inf2 9107  ax-ac2 9888 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-en 8513  df-r1 9196  df-rank 9197  df-card 9371  df-ac 9545 This theorem is referenced by:  acunirnmpt2f  30409
 Copyright terms: Public domain W3C validator