| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ac6sf2 | Structured version Visualization version GIF version | ||
| Description: Alternate version of ac6 10451 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008.) (Revised by Thierry Arnoux, 17-May-2020.) |
| Ref | Expression |
|---|---|
| ac6sf2.y | ⊢ Ⅎ𝑦𝐵 |
| ac6sf2.1 | ⊢ Ⅎ𝑦𝜓 |
| ac6sf2.2 | ⊢ 𝐴 ∈ V |
| ac6sf2.3 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ac6sf2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6sf2.y | . . . 4 ⊢ Ⅎ𝑦𝐵 | |
| 2 | nfcv 2893 | . . . 4 ⊢ Ⅎ𝑧𝐵 | |
| 3 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 4 | nfs1v 2157 | . . . 4 ⊢ Ⅎ𝑦[𝑧 / 𝑦]𝜑 | |
| 5 | sbequ12 2252 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑)) | |
| 6 | 1, 2, 3, 4, 5 | cbvrexfw 3282 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐵 [𝑧 / 𝑦]𝜑) |
| 7 | 6 | ralbii 3077 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐵 [𝑧 / 𝑦]𝜑) |
| 8 | ac6sf2.2 | . . 3 ⊢ 𝐴 ∈ V | |
| 9 | ac6sf2.1 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 10 | ac6sf2.3 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
| 11 | 9, 10 | sbhypf 3519 | . . 3 ⊢ (𝑧 = (𝑓‘𝑥) → ([𝑧 / 𝑦]𝜑 ↔ 𝜓)) |
| 12 | 8, 11 | ac6s 10455 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐵 [𝑧 / 𝑦]𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 13 | 7, 12 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 [wsb 2065 ∈ wcel 2109 Ⅎwnfc 2878 ∀wral 3046 ∃wrex 3055 Vcvv 3455 ⟶wf 6515 ‘cfv 6519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-reg 9563 ax-inf2 9612 ax-ac2 10434 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-en 8923 df-r1 9735 df-rank 9736 df-card 9910 df-ac 10087 |
| This theorem is referenced by: acunirnmpt2f 32593 |
| Copyright terms: Public domain | W3C validator |