Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6sf2 Structured version   Visualization version   GIF version

Theorem ac6sf2 32635
Description: Alternate version of ac6 10545 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008.) (Revised by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
ac6sf2.y 𝑦𝐵
ac6sf2.1 𝑦𝜓
ac6sf2.2 𝐴 ∈ V
ac6sf2.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6sf2 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝐵,𝑓   𝜑,𝑓   𝑥,𝑦,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem ac6sf2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ac6sf2.y . . . 4 𝑦𝐵
2 nfcv 2904 . . . 4 𝑧𝐵
3 nfv 1913 . . . 4 𝑧𝜑
4 nfs1v 2152 . . . 4 𝑦[𝑧 / 𝑦]𝜑
5 sbequ12 2247 . . . 4 (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
61, 2, 3, 4, 5cbvrexfw 3306 . . 3 (∃𝑦𝐵 𝜑 ↔ ∃𝑧𝐵 [𝑧 / 𝑦]𝜑)
76ralbii 3095 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑)
8 ac6sf2.2 . . 3 𝐴 ∈ V
9 ac6sf2.1 . . . 4 𝑦𝜓
10 ac6sf2.3 . . . 4 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
119, 10sbhypf 3551 . . 3 (𝑧 = (𝑓𝑥) → ([𝑧 / 𝑦]𝜑𝜓))
128, 11ac6s 10549 . 2 (∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
137, 12sylbi 217 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wnf 1781  [wsb 2064  wcel 2103  wnfc 2888  wral 3063  wrex 3072  Vcvv 3482  wf 6568  cfv 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-reg 9657  ax-inf2 9706  ax-ac2 10528
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-iin 5022  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-om 7900  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-en 9000  df-r1 9829  df-rank 9830  df-card 10004  df-ac 10181
This theorem is referenced by:  acunirnmpt2f  32671
  Copyright terms: Public domain W3C validator