Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod0rng Structured version   Visualization version   GIF version

Theorem lmod0rng 46286
Description: If the scalar ring of a module is the zero ring, the module is the zero module, i.e. the base set of the module is the singleton consisting of the identity element only. (Contributed by AV, 17-Apr-2019.)
Assertion
Ref Expression
lmod0rng ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing) → (Base‘𝑀) = {(0g𝑀)})

Proof of Theorem lmod0rng
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
21lmodring 20386 . . 3 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Ring)
3 0ringnnzr 20212 . . . . 5 ((Scalar‘𝑀) ∈ Ring → ((♯‘(Base‘(Scalar‘𝑀))) = 1 ↔ ¬ (Scalar‘𝑀) ∈ NzRing))
4 eqid 2731 . . . . . . . 8 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
5 eqid 2731 . . . . . . . 8 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
6 eqid 2731 . . . . . . . 8 (1r‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))
74, 5, 60ring01eq 20214 . . . . . . 7 (((Scalar‘𝑀) ∈ Ring ∧ (♯‘(Base‘(Scalar‘𝑀))) = 1) → (0g‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀)))
8 eqid 2731 . . . . . . . . . . . . . 14 (Base‘𝑀) = (Base‘𝑀)
9 eqid 2731 . . . . . . . . . . . . . 14 ( ·𝑠𝑀) = ( ·𝑠𝑀)
108, 1, 9, 6lmodvs1 20407 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣) = 𝑣)
11 eqcom 2738 . . . . . . . . . . . . . . . 16 (((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣) = 𝑣𝑣 = ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣))
1211biimpi 215 . . . . . . . . . . . . . . 15 (((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣) = 𝑣𝑣 = ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣))
13 oveq1 7369 . . . . . . . . . . . . . . . . 17 ((1r‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀)) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣) = ((0g‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣))
1413eqcoms 2739 . . . . . . . . . . . . . . . 16 ((0g‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀)) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣) = ((0g‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣))
15 eqid 2731 . . . . . . . . . . . . . . . . 17 (0g𝑀) = (0g𝑀)
168, 1, 9, 5, 15lmod0vs 20412 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) → ((0g‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣) = (0g𝑀))
1714, 16sylan9eqr 2793 . . . . . . . . . . . . . . 15 (((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) ∧ (0g‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣) = (0g𝑀))
1812, 17sylan9eq 2791 . . . . . . . . . . . . . 14 ((((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣) = 𝑣 ∧ ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) ∧ (0g‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀)))) → 𝑣 = (0g𝑀))
1918exp32 421 . . . . . . . . . . . . 13 (((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑣) = 𝑣 → ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) → ((0g‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀)) → 𝑣 = (0g𝑀))))
2010, 19mpcom 38 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) → ((0g‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀)) → 𝑣 = (0g𝑀)))
2120com12 32 . . . . . . . . . . 11 ((0g‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀)) → ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑣 = (0g𝑀)))
2221impl 456 . . . . . . . . . 10 ((((0g‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀)) ∧ 𝑀 ∈ LMod) ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑣 = (0g𝑀))
2322ralrimiva 3139 . . . . . . . . 9 (((0g‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀)) ∧ 𝑀 ∈ LMod) → ∀𝑣 ∈ (Base‘𝑀)𝑣 = (0g𝑀))
248lmodbn0 20389 . . . . . . . . . . 11 (𝑀 ∈ LMod → (Base‘𝑀) ≠ ∅)
25 eqsn 4794 . . . . . . . . . . 11 ((Base‘𝑀) ≠ ∅ → ((Base‘𝑀) = {(0g𝑀)} ↔ ∀𝑣 ∈ (Base‘𝑀)𝑣 = (0g𝑀)))
2624, 25syl 17 . . . . . . . . . 10 (𝑀 ∈ LMod → ((Base‘𝑀) = {(0g𝑀)} ↔ ∀𝑣 ∈ (Base‘𝑀)𝑣 = (0g𝑀)))
2726adantl 482 . . . . . . . . 9 (((0g‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀)) ∧ 𝑀 ∈ LMod) → ((Base‘𝑀) = {(0g𝑀)} ↔ ∀𝑣 ∈ (Base‘𝑀)𝑣 = (0g𝑀)))
2823, 27mpbird 256 . . . . . . . 8 (((0g‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀)) ∧ 𝑀 ∈ LMod) → (Base‘𝑀) = {(0g𝑀)})
2928ex 413 . . . . . . 7 ((0g‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀)) → (𝑀 ∈ LMod → (Base‘𝑀) = {(0g𝑀)}))
307, 29syl 17 . . . . . 6 (((Scalar‘𝑀) ∈ Ring ∧ (♯‘(Base‘(Scalar‘𝑀))) = 1) → (𝑀 ∈ LMod → (Base‘𝑀) = {(0g𝑀)}))
3130ex 413 . . . . 5 ((Scalar‘𝑀) ∈ Ring → ((♯‘(Base‘(Scalar‘𝑀))) = 1 → (𝑀 ∈ LMod → (Base‘𝑀) = {(0g𝑀)})))
323, 31sylbird 259 . . . 4 ((Scalar‘𝑀) ∈ Ring → (¬ (Scalar‘𝑀) ∈ NzRing → (𝑀 ∈ LMod → (Base‘𝑀) = {(0g𝑀)})))
3332com23 86 . . 3 ((Scalar‘𝑀) ∈ Ring → (𝑀 ∈ LMod → (¬ (Scalar‘𝑀) ∈ NzRing → (Base‘𝑀) = {(0g𝑀)})))
342, 33mpcom 38 . 2 (𝑀 ∈ LMod → (¬ (Scalar‘𝑀) ∈ NzRing → (Base‘𝑀) = {(0g𝑀)}))
3534imp 407 1 ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing) → (Base‘𝑀) = {(0g𝑀)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  wral 3060  c0 4287  {csn 4591  cfv 6501  (class class class)co 7362  1c1 11061  chash 14240  Basecbs 17094  Scalarcsca 17150   ·𝑠 cvsca 17151  0gc0g 17335  1rcur 19927  Ringcrg 19978  NzRingcnzr 20201  LModclmod 20378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9846  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-n0 12423  df-xnn0 12495  df-z 12509  df-uz 12773  df-fz 13435  df-hash 14241  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-plusg 17160  df-0g 17337  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-grp 18765  df-minusg 18766  df-mgp 19911  df-ur 19928  df-ring 19980  df-nzr 20202  df-lmod 20380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator