Step | Hyp | Ref
| Expression |
1 | | eqid 2737 |
. . . 4
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
2 | 1 | lmodring 19907 |
. . 3
⊢ (𝑀 ∈ LMod →
(Scalar‘𝑀) ∈
Ring) |
3 | | 0ringnnzr 20307 |
. . . . 5
⊢
((Scalar‘𝑀)
∈ Ring → ((♯‘(Base‘(Scalar‘𝑀))) = 1 ↔ ¬ (Scalar‘𝑀) ∈
NzRing)) |
4 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) |
5 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘(Scalar‘𝑀)) =
(0g‘(Scalar‘𝑀)) |
6 | | eqid 2737 |
. . . . . . . 8
⊢
(1r‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) |
7 | 4, 5, 6 | 0ring01eq 20309 |
. . . . . . 7
⊢
(((Scalar‘𝑀)
∈ Ring ∧ (♯‘(Base‘(Scalar‘𝑀))) = 1) →
(0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀))) |
8 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑀) =
(Base‘𝑀) |
9 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
10 | 8, 1, 9, 6 | lmodvs1 19927 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) →
((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = 𝑣) |
11 | | eqcom 2744 |
. . . . . . . . . . . . . . . 16
⊢
(((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = 𝑣 ↔ 𝑣 = ((1r‘(Scalar‘𝑀))(
·𝑠 ‘𝑀)𝑣)) |
12 | 11 | biimpi 219 |
. . . . . . . . . . . . . . 15
⊢
(((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = 𝑣 → 𝑣 = ((1r‘(Scalar‘𝑀))(
·𝑠 ‘𝑀)𝑣)) |
13 | | oveq1 7220 |
. . . . . . . . . . . . . . . . 17
⊢
((1r‘(Scalar‘𝑀)) =
(0g‘(Scalar‘𝑀)) →
((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = ((0g‘(Scalar‘𝑀))(
·𝑠 ‘𝑀)𝑣)) |
14 | 13 | eqcoms 2745 |
. . . . . . . . . . . . . . . 16
⊢
((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) →
((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = ((0g‘(Scalar‘𝑀))(
·𝑠 ‘𝑀)𝑣)) |
15 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘𝑀) = (0g‘𝑀) |
16 | 8, 1, 9, 5, 15 | lmod0vs 19932 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) →
((0g‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = (0g‘𝑀)) |
17 | 14, 16 | sylan9eqr 2800 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) ∧
(0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀))) →
((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = (0g‘𝑀)) |
18 | 12, 17 | sylan9eq 2798 |
. . . . . . . . . . . . . 14
⊢
((((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = 𝑣 ∧ ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) ∧
(0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)))) → 𝑣 = (0g‘𝑀)) |
19 | 18 | exp32 424 |
. . . . . . . . . . . . 13
⊢
(((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = 𝑣 → ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) →
((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) → 𝑣 = (0g‘𝑀)))) |
20 | 10, 19 | mpcom 38 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) →
((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) → 𝑣 = (0g‘𝑀))) |
21 | 20 | com12 32 |
. . . . . . . . . . 11
⊢
((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) → ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑣 = (0g‘𝑀))) |
22 | 21 | impl 459 |
. . . . . . . . . 10
⊢
((((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) ∧ 𝑀 ∈ LMod) ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑣 = (0g‘𝑀)) |
23 | 22 | ralrimiva 3105 |
. . . . . . . . 9
⊢
(((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) ∧ 𝑀 ∈ LMod) → ∀𝑣 ∈ (Base‘𝑀)𝑣 = (0g‘𝑀)) |
24 | 8 | lmodbn0 19909 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ LMod →
(Base‘𝑀) ≠
∅) |
25 | | eqsn 4742 |
. . . . . . . . . . 11
⊢
((Base‘𝑀) ≠
∅ → ((Base‘𝑀) = {(0g‘𝑀)} ↔ ∀𝑣 ∈ (Base‘𝑀)𝑣 = (0g‘𝑀))) |
26 | 24, 25 | syl 17 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod →
((Base‘𝑀) =
{(0g‘𝑀)}
↔ ∀𝑣 ∈
(Base‘𝑀)𝑣 = (0g‘𝑀))) |
27 | 26 | adantl 485 |
. . . . . . . . 9
⊢
(((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) ∧ 𝑀 ∈ LMod) → ((Base‘𝑀) = {(0g‘𝑀)} ↔ ∀𝑣 ∈ (Base‘𝑀)𝑣 = (0g‘𝑀))) |
28 | 23, 27 | mpbird 260 |
. . . . . . . 8
⊢
(((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) ∧ 𝑀 ∈ LMod) → (Base‘𝑀) = {(0g‘𝑀)}) |
29 | 28 | ex 416 |
. . . . . . 7
⊢
((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) → (𝑀 ∈ LMod → (Base‘𝑀) = {(0g‘𝑀)})) |
30 | 7, 29 | syl 17 |
. . . . . 6
⊢
(((Scalar‘𝑀)
∈ Ring ∧ (♯‘(Base‘(Scalar‘𝑀))) = 1) → (𝑀 ∈ LMod → (Base‘𝑀) = {(0g‘𝑀)})) |
31 | 30 | ex 416 |
. . . . 5
⊢
((Scalar‘𝑀)
∈ Ring → ((♯‘(Base‘(Scalar‘𝑀))) = 1 → (𝑀 ∈ LMod → (Base‘𝑀) = {(0g‘𝑀)}))) |
32 | 3, 31 | sylbird 263 |
. . . 4
⊢
((Scalar‘𝑀)
∈ Ring → (¬ (Scalar‘𝑀) ∈ NzRing → (𝑀 ∈ LMod → (Base‘𝑀) = {(0g‘𝑀)}))) |
33 | 32 | com23 86 |
. . 3
⊢
((Scalar‘𝑀)
∈ Ring → (𝑀
∈ LMod → (¬ (Scalar‘𝑀) ∈ NzRing → (Base‘𝑀) = {(0g‘𝑀)}))) |
34 | 2, 33 | mpcom 38 |
. 2
⊢ (𝑀 ∈ LMod → (¬
(Scalar‘𝑀) ∈
NzRing → (Base‘𝑀) = {(0g‘𝑀)})) |
35 | 34 | imp 410 |
1
⊢ ((𝑀 ∈ LMod ∧ ¬
(Scalar‘𝑀) ∈
NzRing) → (Base‘𝑀) = {(0g‘𝑀)}) |