| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2737 | . . . 4
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) | 
| 2 | 1 | lmodring 20866 | . . 3
⊢ (𝑀 ∈ LMod →
(Scalar‘𝑀) ∈
Ring) | 
| 3 |  | 0ringnnzr 20525 | . . . . 5
⊢
((Scalar‘𝑀)
∈ Ring → ((♯‘(Base‘(Scalar‘𝑀))) = 1 ↔ ¬ (Scalar‘𝑀) ∈
NzRing)) | 
| 4 |  | eqid 2737 | . . . . . . . 8
⊢
(Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | 
| 5 |  | eqid 2737 | . . . . . . . 8
⊢
(0g‘(Scalar‘𝑀)) =
(0g‘(Scalar‘𝑀)) | 
| 6 |  | eqid 2737 | . . . . . . . 8
⊢
(1r‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) | 
| 7 | 4, 5, 6 | 0ring01eq 20529 | . . . . . . 7
⊢
(((Scalar‘𝑀)
∈ Ring ∧ (♯‘(Base‘(Scalar‘𝑀))) = 1) →
(0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀))) | 
| 8 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢
(Base‘𝑀) =
(Base‘𝑀) | 
| 9 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) | 
| 10 | 8, 1, 9, 6 | lmodvs1 20888 | . . . . . . . . . . . . 13
⊢ ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) →
((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = 𝑣) | 
| 11 |  | eqcom 2744 | . . . . . . . . . . . . . . . 16
⊢
(((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = 𝑣 ↔ 𝑣 = ((1r‘(Scalar‘𝑀))(
·𝑠 ‘𝑀)𝑣)) | 
| 12 | 11 | biimpi 216 | . . . . . . . . . . . . . . 15
⊢
(((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = 𝑣 → 𝑣 = ((1r‘(Scalar‘𝑀))(
·𝑠 ‘𝑀)𝑣)) | 
| 13 |  | oveq1 7438 | . . . . . . . . . . . . . . . . 17
⊢
((1r‘(Scalar‘𝑀)) =
(0g‘(Scalar‘𝑀)) →
((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = ((0g‘(Scalar‘𝑀))(
·𝑠 ‘𝑀)𝑣)) | 
| 14 | 13 | eqcoms 2745 | . . . . . . . . . . . . . . . 16
⊢
((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) →
((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = ((0g‘(Scalar‘𝑀))(
·𝑠 ‘𝑀)𝑣)) | 
| 15 |  | eqid 2737 | . . . . . . . . . . . . . . . . 17
⊢
(0g‘𝑀) = (0g‘𝑀) | 
| 16 | 8, 1, 9, 5, 15 | lmod0vs 20893 | . . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) →
((0g‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = (0g‘𝑀)) | 
| 17 | 14, 16 | sylan9eqr 2799 | . . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) ∧
(0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀))) →
((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = (0g‘𝑀)) | 
| 18 | 12, 17 | sylan9eq 2797 | . . . . . . . . . . . . . 14
⊢
((((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = 𝑣 ∧ ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) ∧
(0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)))) → 𝑣 = (0g‘𝑀)) | 
| 19 | 18 | exp32 420 | . . . . . . . . . . . . 13
⊢
(((1r‘(Scalar‘𝑀))( ·𝑠
‘𝑀)𝑣) = 𝑣 → ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) →
((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) → 𝑣 = (0g‘𝑀)))) | 
| 20 | 10, 19 | mpcom 38 | . . . . . . . . . . . 12
⊢ ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) →
((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) → 𝑣 = (0g‘𝑀))) | 
| 21 | 20 | com12 32 | . . . . . . . . . . 11
⊢
((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) → ((𝑀 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑣 = (0g‘𝑀))) | 
| 22 | 21 | impl 455 | . . . . . . . . . 10
⊢
((((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) ∧ 𝑀 ∈ LMod) ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑣 = (0g‘𝑀)) | 
| 23 | 22 | ralrimiva 3146 | . . . . . . . . 9
⊢
(((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) ∧ 𝑀 ∈ LMod) → ∀𝑣 ∈ (Base‘𝑀)𝑣 = (0g‘𝑀)) | 
| 24 | 8 | lmodbn0 20869 | . . . . . . . . . . 11
⊢ (𝑀 ∈ LMod →
(Base‘𝑀) ≠
∅) | 
| 25 |  | eqsn 4829 | . . . . . . . . . . 11
⊢
((Base‘𝑀) ≠
∅ → ((Base‘𝑀) = {(0g‘𝑀)} ↔ ∀𝑣 ∈ (Base‘𝑀)𝑣 = (0g‘𝑀))) | 
| 26 | 24, 25 | syl 17 | . . . . . . . . . 10
⊢ (𝑀 ∈ LMod →
((Base‘𝑀) =
{(0g‘𝑀)}
↔ ∀𝑣 ∈
(Base‘𝑀)𝑣 = (0g‘𝑀))) | 
| 27 | 26 | adantl 481 | . . . . . . . . 9
⊢
(((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) ∧ 𝑀 ∈ LMod) → ((Base‘𝑀) = {(0g‘𝑀)} ↔ ∀𝑣 ∈ (Base‘𝑀)𝑣 = (0g‘𝑀))) | 
| 28 | 23, 27 | mpbird 257 | . . . . . . . 8
⊢
(((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) ∧ 𝑀 ∈ LMod) → (Base‘𝑀) = {(0g‘𝑀)}) | 
| 29 | 28 | ex 412 | . . . . . . 7
⊢
((0g‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) → (𝑀 ∈ LMod → (Base‘𝑀) = {(0g‘𝑀)})) | 
| 30 | 7, 29 | syl 17 | . . . . . 6
⊢
(((Scalar‘𝑀)
∈ Ring ∧ (♯‘(Base‘(Scalar‘𝑀))) = 1) → (𝑀 ∈ LMod → (Base‘𝑀) = {(0g‘𝑀)})) | 
| 31 | 30 | ex 412 | . . . . 5
⊢
((Scalar‘𝑀)
∈ Ring → ((♯‘(Base‘(Scalar‘𝑀))) = 1 → (𝑀 ∈ LMod → (Base‘𝑀) = {(0g‘𝑀)}))) | 
| 32 | 3, 31 | sylbird 260 | . . . 4
⊢
((Scalar‘𝑀)
∈ Ring → (¬ (Scalar‘𝑀) ∈ NzRing → (𝑀 ∈ LMod → (Base‘𝑀) = {(0g‘𝑀)}))) | 
| 33 | 32 | com23 86 | . . 3
⊢
((Scalar‘𝑀)
∈ Ring → (𝑀
∈ LMod → (¬ (Scalar‘𝑀) ∈ NzRing → (Base‘𝑀) = {(0g‘𝑀)}))) | 
| 34 | 2, 33 | mpcom 38 | . 2
⊢ (𝑀 ∈ LMod → (¬
(Scalar‘𝑀) ∈
NzRing → (Base‘𝑀) = {(0g‘𝑀)})) | 
| 35 | 34 | imp 406 | 1
⊢ ((𝑀 ∈ LMod ∧ ¬
(Scalar‘𝑀) ∈
NzRing) → (Base‘𝑀) = {(0g‘𝑀)}) |