| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp1i | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: find 7835 hartogslem2 9454 harwdom 9502 divalglem6 16327 structfn 17085 strleun 17086 oppcbas 17642 rescbas 17754 rescabs 17758 rmodislmod 20851 sratset 21105 srads 21107 tngsca 24549 birthday 26880 divsqrsumf 26907 emcl 26929 lgslem4 27227 lgscllem 27231 lgsdir2lem2 27253 mulog2sumlem1 27461 siilem2 30814 h2hva 30936 h2hsm 30937 elunop2 31975 zlmds 33928 zlmtset 33929 wallispilem3 46049 wallispilem4 46050 prstcbas 49540 cnelsubclem 49589 |
| Copyright terms: Public domain | W3C validator |