| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp1i | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: find 7874 hartogslem2 9503 harwdom 9551 divalglem6 16375 structfn 17133 strleun 17134 oppcbas 17686 rescbas 17798 rescabs 17802 rmodislmod 20843 sratset 21097 srads 21099 tngsca 24540 birthday 26871 divsqrsumf 26898 emcl 26920 lgslem4 27218 lgscllem 27222 lgsdir2lem2 27244 mulog2sumlem1 27452 siilem2 30788 h2hva 30910 h2hsm 30911 elunop2 31949 zlmds 33959 zlmtset 33960 wallispilem3 46072 wallispilem4 46073 prstcbas 49547 cnelsubclem 49596 |
| Copyright terms: Public domain | W3C validator |