Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp1i | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp1 1134 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: find 7717 findOLD 7718 hartogslem2 9232 harwdom 9280 divalglem6 16035 structfn 16785 strleun 16786 oppcbas 17345 rescbas 17458 rmodislmod 20106 rmodislmodOLD 20107 sratset 20365 srads 20368 tngsca 23711 birthday 26009 divsqrsumf 26035 emcl 26057 lgslem4 26353 lgscllem 26357 lgsdir2lem2 26379 mulog2sumlem1 26587 siilem2 29115 h2hva 29237 h2hsm 29238 elunop2 30276 wallispilem3 43498 wallispilem4 43499 prstcbas 46236 |
Copyright terms: Public domain | W3C validator |