| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp1i | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: find 7891 hartogslem2 9557 harwdom 9605 divalglem6 16417 structfn 17175 strleun 17176 oppcbas 17730 rescbas 17842 rescabs 17846 rmodislmod 20887 sratset 21141 srads 21143 tngsca 24584 birthday 26916 divsqrsumf 26943 emcl 26965 lgslem4 27263 lgscllem 27267 lgsdir2lem2 27289 mulog2sumlem1 27497 siilem2 30833 h2hva 30955 h2hsm 30956 elunop2 31994 zlmds 33993 zlmtset 33994 wallispilem3 46096 wallispilem4 46097 prstcbas 49431 cnelsubclem 49480 |
| Copyright terms: Public domain | W3C validator |