| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp1i | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: find 7833 hartogslem2 9438 harwdom 9486 divalglem6 16313 structfn 17071 strleun 17072 oppcbas 17628 rescbas 17740 rescabs 17744 rmodislmod 20867 sratset 21121 srads 21123 tngsca 24563 birthday 26894 divsqrsumf 26921 emcl 26943 lgslem4 27241 lgscllem 27245 lgsdir2lem2 27267 mulog2sumlem1 27475 siilem2 30836 h2hva 30958 h2hsm 30959 elunop2 31997 zlmds 33998 zlmtset 33999 wallispilem3 46192 wallispilem4 46193 prstcbas 49682 cnelsubclem 49731 |
| Copyright terms: Public domain | W3C validator |