| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp1i | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: find 7825 hartogslem2 9429 harwdom 9477 divalglem6 16306 structfn 17064 strleun 17065 oppcbas 17621 rescbas 17733 rescabs 17737 rmodislmod 20861 sratset 21115 srads 21117 tngsca 24558 birthday 26889 divsqrsumf 26916 emcl 26938 lgslem4 27236 lgscllem 27240 lgsdir2lem2 27262 mulog2sumlem1 27470 siilem2 30827 h2hva 30949 h2hsm 30950 elunop2 31988 zlmds 33970 zlmtset 33971 wallispilem3 46104 wallispilem4 46105 prstcbas 49585 cnelsubclem 49634 |
| Copyright terms: Public domain | W3C validator |