| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1i | Structured version Visualization version GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| simp1i | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: find 7871 hartogslem2 9496 harwdom 9544 divalglem6 16368 structfn 17126 strleun 17127 oppcbas 17679 rescbas 17791 rescabs 17795 rmodislmod 20836 sratset 21090 srads 21092 tngsca 24533 birthday 26864 divsqrsumf 26891 emcl 26913 lgslem4 27211 lgscllem 27215 lgsdir2lem2 27237 mulog2sumlem1 27445 siilem2 30781 h2hva 30903 h2hsm 30904 elunop2 31942 zlmds 33952 zlmtset 33953 wallispilem3 46065 wallispilem4 46066 prstcbas 49543 cnelsubclem 49592 |
| Copyright terms: Public domain | W3C validator |