MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1i Structured version   Visualization version   GIF version

Theorem simp1i 1139
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp1i 𝜑

Proof of Theorem simp1i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp1 1136 . 2 ((𝜑𝜓𝜒) → 𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  find  7825  hartogslem2  9429  harwdom  9477  divalglem6  16306  structfn  17064  strleun  17065  oppcbas  17621  rescbas  17733  rescabs  17737  rmodislmod  20861  sratset  21115  srads  21117  tngsca  24558  birthday  26889  divsqrsumf  26916  emcl  26938  lgslem4  27236  lgscllem  27240  lgsdir2lem2  27262  mulog2sumlem1  27470  siilem2  30827  h2hva  30949  h2hsm  30950  elunop2  31988  zlmds  33970  zlmtset  33971  wallispilem3  46104  wallispilem4  46105  prstcbas  49585  cnelsubclem  49634
  Copyright terms: Public domain W3C validator