MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1i Structured version   Visualization version   GIF version

Theorem simp1i 1139
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp1i 𝜑

Proof of Theorem simp1i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp1 1136 . 2 ((𝜑𝜓𝜒) → 𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  find  7874  hartogslem2  9503  harwdom  9551  divalglem6  16375  structfn  17133  strleun  17134  oppcbas  17686  rescbas  17798  rescabs  17802  rmodislmod  20843  sratset  21097  srads  21099  tngsca  24540  birthday  26871  divsqrsumf  26898  emcl  26920  lgslem4  27218  lgscllem  27222  lgsdir2lem2  27244  mulog2sumlem1  27452  siilem2  30788  h2hva  30910  h2hsm  30911  elunop2  31949  zlmds  33959  zlmtset  33960  wallispilem3  46072  wallispilem4  46073  prstcbas  49547  cnelsubclem  49596
  Copyright terms: Public domain W3C validator