![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp1i | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: find 7935 hartogslem2 9612 harwdom 9660 divalglem6 16446 structfn 17203 strleun 17204 oppcbas 17777 rescbas 17890 rescabs 17896 rmodislmod 20950 rmodislmodOLD 20951 sratset 21211 srads 21214 tngsca 24683 birthday 27015 divsqrsumf 27042 emcl 27064 lgslem4 27362 lgscllem 27366 lgsdir2lem2 27388 mulog2sumlem1 27596 siilem2 30884 h2hva 31006 h2hsm 31007 elunop2 32045 zlmds 33908 zlmtset 33910 wallispilem3 45988 wallispilem4 45989 prstcbas 48734 |
Copyright terms: Public domain | W3C validator |