Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp1i | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp1 1135 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: find 7752 findOLD 7753 hartogslem2 9311 harwdom 9359 divalglem6 16116 structfn 16866 strleun 16867 oppcbas 17437 rescbas 17550 rescabs 17556 rmodislmod 20200 rmodislmodOLD 20201 sratset 20461 srads 20464 tngsca 23814 birthday 26113 divsqrsumf 26139 emcl 26161 lgslem4 26457 lgscllem 26461 lgsdir2lem2 26483 mulog2sumlem1 26691 siilem2 29223 h2hva 29345 h2hsm 29346 elunop2 30384 zlmds 31921 zlmtset 31923 wallispilem3 43615 wallispilem4 43616 prstcbas 46359 |
Copyright terms: Public domain | W3C validator |