MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1i Structured version   Visualization version   GIF version

Theorem simp1i 1140
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp1i 𝜑

Proof of Theorem simp1i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp1 1137 . 2 ((𝜑𝜓𝜒) → 𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  find  7887  findOLD  7888  hartogslem2  9538  harwdom  9586  divalglem6  16341  structfn  17089  strleun  17090  oppcbas  17663  rescbas  17776  rescabs  17782  rmodislmod  20540  rmodislmodOLD  20541  sratset  20803  srads  20806  tngsca  24158  birthday  26459  divsqrsumf  26485  emcl  26507  lgslem4  26803  lgscllem  26807  lgsdir2lem2  26829  mulog2sumlem1  27037  siilem2  30105  h2hva  30227  h2hsm  30228  elunop2  31266  zlmds  32942  zlmtset  32944  wallispilem3  44783  wallispilem4  44784  prstcbas  47687
  Copyright terms: Public domain W3C validator