![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp1i | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: find 7889 findOLD 7890 hartogslem2 9540 harwdom 9588 divalglem6 16345 structfn 17093 strleun 17094 oppcbas 17667 rescbas 17780 rescabs 17786 rmodislmod 20684 rmodislmodOLD 20685 sratset 20948 srads 20951 tngsca 24378 birthday 26683 divsqrsumf 26709 emcl 26731 lgslem4 27027 lgscllem 27031 lgsdir2lem2 27053 mulog2sumlem1 27261 siilem2 30360 h2hva 30482 h2hsm 30483 elunop2 31521 zlmds 33228 zlmtset 33230 wallispilem3 45082 wallispilem4 45083 prstcbas 47775 |
Copyright terms: Public domain | W3C validator |