![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmds | Structured version Visualization version GIF version |
Description: Distance in a ℤ-module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof shortened by AV, 11-Nov-2024.) |
Ref | Expression |
---|---|
zlmlem2.1 | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmds.1 | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
zlmds | ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmds.1 | . 2 ⊢ 𝐷 = (dist‘𝐺) | |
2 | zlmlem2.1 | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
3 | eqid 2730 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
4 | 2, 3 | zlmval 21286 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
5 | 4 | fveq2d 6896 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (dist‘𝑊) = (dist‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩))) |
6 | dsid 17337 | . . . . 5 ⊢ dist = Slot (dist‘ndx) | |
7 | slotsdnscsi 17343 | . . . . . 6 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | |
8 | 7 | simp1i 1137 | . . . . 5 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
9 | 6, 8 | setsnid 17148 | . . . 4 ⊢ (dist‘𝐺) = (dist‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) |
10 | 7 | simp2i 1138 | . . . . 5 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
11 | 6, 10 | setsnid 17148 | . . . 4 ⊢ (dist‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) = (dist‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
12 | 9, 11 | eqtri 2758 | . . 3 ⊢ (dist‘𝐺) = (dist‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
13 | 5, 12 | eqtr4di 2788 | . 2 ⊢ (𝐺 ∈ 𝑉 → (dist‘𝑊) = (dist‘𝐺)) |
14 | 1, 13 | eqtr4id 2789 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ⟨cop 4635 ‘cfv 6544 (class class class)co 7413 sSet csts 17102 ndxcnx 17132 Scalarcsca 17206 ·𝑠 cvsca 17207 ·𝑖cip 17208 distcds 17212 .gcmg 18988 ℤringczring 21219 ℤModczlm 21271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-sets 17103 df-slot 17121 df-ndx 17133 df-sca 17219 df-vsca 17220 df-ip 17221 df-ds 17225 df-zlm 21275 |
This theorem is referenced by: zlmnm 33242 zhmnrg 33243 |
Copyright terms: Public domain | W3C validator |