![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmds | Structured version Visualization version GIF version |
Description: Distance in a ℤ-module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) |
Ref | Expression |
---|---|
zlmlem2.1 | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmds.1 | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
zlmds | ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmlem2.1 | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
2 | eqid 2795 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | 1, 2 | zlmval 20350 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
4 | 3 | fveq2d 6547 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (dist‘𝑊) = (dist‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
5 | dsid 16510 | . . . . 5 ⊢ dist = Slot (dist‘ndx) | |
6 | 5re 11577 | . . . . . . 7 ⊢ 5 ∈ ℝ | |
7 | 1nn 11502 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
8 | 2nn0 11767 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
9 | 5nn0 11770 | . . . . . . . 8 ⊢ 5 ∈ ℕ0 | |
10 | 5lt10 12088 | . . . . . . . 8 ⊢ 5 < ;10 | |
11 | 7, 8, 9, 10 | declti 11990 | . . . . . . 7 ⊢ 5 < ;12 |
12 | 6, 11 | gtneii 10604 | . . . . . 6 ⊢ ;12 ≠ 5 |
13 | dsndx 16509 | . . . . . . 7 ⊢ (dist‘ndx) = ;12 | |
14 | scandx 16466 | . . . . . . 7 ⊢ (Scalar‘ndx) = 5 | |
15 | 13, 14 | neeq12i 3050 | . . . . . 6 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ↔ ;12 ≠ 5) |
16 | 12, 15 | mpbir 232 | . . . . 5 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
17 | 5, 16 | setsnid 16373 | . . . 4 ⊢ (dist‘𝐺) = (dist‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) |
18 | 6re 11580 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
19 | 6nn0 11771 | . . . . . . . 8 ⊢ 6 ∈ ℕ0 | |
20 | 6lt10 12087 | . . . . . . . 8 ⊢ 6 < ;10 | |
21 | 7, 8, 19, 20 | declti 11990 | . . . . . . 7 ⊢ 6 < ;12 |
22 | 18, 21 | gtneii 10604 | . . . . . 6 ⊢ ;12 ≠ 6 |
23 | vscandx 16468 | . . . . . . 7 ⊢ ( ·𝑠 ‘ndx) = 6 | |
24 | 13, 23 | neeq12i 3050 | . . . . . 6 ⊢ ((dist‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ ;12 ≠ 6) |
25 | 22, 24 | mpbir 232 | . . . . 5 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
26 | 5, 25 | setsnid 16373 | . . . 4 ⊢ (dist‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (dist‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
27 | 17, 26 | eqtri 2819 | . . 3 ⊢ (dist‘𝐺) = (dist‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
28 | 4, 27 | syl6eqr 2849 | . 2 ⊢ (𝐺 ∈ 𝑉 → (dist‘𝑊) = (dist‘𝐺)) |
29 | zlmds.1 | . 2 ⊢ 𝐷 = (dist‘𝐺) | |
30 | 28, 29 | syl6reqr 2850 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 〈cop 4482 ‘cfv 6230 (class class class)co 7021 1c1 10389 2c2 11545 5c5 11548 6c6 11549 ;cdc 11952 ndxcnx 16314 sSet csts 16315 Scalarcsca 16402 ·𝑠 cvsca 16403 distcds 16408 .gcmg 17986 ℤringzring 20304 ℤModczlm 20335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-nn 11492 df-2 11553 df-3 11554 df-4 11555 df-5 11556 df-6 11557 df-7 11558 df-8 11559 df-9 11560 df-n0 11751 df-z 11835 df-dec 11953 df-ndx 16320 df-slot 16321 df-sets 16324 df-sca 16415 df-vsca 16416 df-ds 16421 df-zlm 20339 |
This theorem is referenced by: zlmnm 30829 zhmnrg 30830 |
Copyright terms: Public domain | W3C validator |