| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppcbas | Structured version Visualization version GIF version | ||
| Description: Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
| Ref | Expression |
|---|---|
| oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| oppcbas | ⊢ 𝐵 = (Base‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | baseid 17189 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
| 3 | slotsbhcdif 17385 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 4 | 3 | simp1i 1139 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
| 5 | 2, 4 | setsnid 17185 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) |
| 6 | 3 | simp2i 1140 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
| 7 | 2, 6 | setsnid 17185 | . . . . 5 ⊢ (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 8 | 5, 7 | eqtri 2753 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 9 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 10 | eqid 2730 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 11 | eqid 2730 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 13 | 9, 10, 11, 12 | oppcval 17681 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 14 | 13 | fveq2d 6865 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
| 15 | 8, 14 | eqtr4id 2784 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
| 16 | base0 17191 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 17 | 16 | eqcomi 2739 | . . . 4 ⊢ (Base‘∅) = ∅ |
| 18 | 17, 12 | fveqprc 17168 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
| 19 | 15, 18 | pm2.61i 182 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 20 | 1, 19 | eqtri 2753 | 1 ⊢ 𝐵 = (Base‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 〈cop 4598 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 1st c1st 7969 2nd c2nd 7970 tpos ctpos 8207 sSet csts 17140 ndxcnx 17170 Basecbs 17186 Hom chom 17238 compcco 17239 oppCatcoppc 17679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-hom 17251 df-cco 17252 df-oppc 17680 |
| This theorem is referenced by: oppccatid 17687 oppchomf 17688 2oppcbas 17691 2oppccomf 17693 oppccomfpropd 17695 isepi 17709 epii 17712 oppcsect 17747 oppcsect2 17748 oppcinv 17749 oppciso 17750 sectepi 17753 episect 17754 funcoppc 17844 fulloppc 17893 fthoppc 17894 fthepi 17899 dfinito2 17972 dftermo2 17973 hofcl 18227 yon11 18232 yon12 18233 yon2 18234 oyon1cl 18239 yonedalem21 18241 yonedalem3a 18242 yonedalem4c 18245 yonedalem22 18246 yonedalem3b 18247 yonedalem3 18248 yonedainv 18249 yonffthlem 18250 oppccic 49037 cofuoppf 49143 oppcuprcl4 49192 oppcuprcl3 49193 oppcup 49200 natoppf 49222 oppcinito 49228 oppctermo 49229 oppczeroo 49230 oppc1stf 49281 oppc2ndf 49282 fucoppcco 49402 fucoppc 49403 oppfdiag1 49407 oppfdiag 49409 oppcthin 49431 oppcthinendcALT 49434 oduoppcbas 49558 oduoppcciso 49559 oppgoppchom 49583 oppgoppcco 49584 oppgoppcid 49585 ranval2 49623 ranval3 49624 lmdfval2 49648 lmddu 49660 termolmd 49663 lmdran 49664 |
| Copyright terms: Public domain | W3C validator |