| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppcbas | Structured version Visualization version GIF version | ||
| Description: Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
| Ref | Expression |
|---|---|
| oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| oppcbas | ⊢ 𝐵 = (Base‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | baseid 17158 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
| 3 | slotsbhcdif 17354 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 4 | 3 | simp1i 1139 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
| 5 | 2, 4 | setsnid 17154 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) |
| 6 | 3 | simp2i 1140 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
| 7 | 2, 6 | setsnid 17154 | . . . . 5 ⊢ (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 8 | 5, 7 | eqtri 2752 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 9 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 13 | 9, 10, 11, 12 | oppcval 17650 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 14 | 13 | fveq2d 6844 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
| 15 | 8, 14 | eqtr4id 2783 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
| 16 | base0 17160 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 17 | 16 | eqcomi 2738 | . . . 4 ⊢ (Base‘∅) = ∅ |
| 18 | 17, 12 | fveqprc 17137 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
| 19 | 15, 18 | pm2.61i 182 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 20 | 1, 19 | eqtri 2752 | 1 ⊢ 𝐵 = (Base‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∅c0 4292 〈cop 4591 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 tpos ctpos 8181 sSet csts 17109 ndxcnx 17139 Basecbs 17155 Hom chom 17207 compcco 17208 oppCatcoppc 17648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-oppc 17649 |
| This theorem is referenced by: oppccatid 17656 oppchomf 17657 2oppcbas 17660 2oppccomf 17662 oppccomfpropd 17664 isepi 17678 epii 17681 oppcsect 17716 oppcsect2 17717 oppcinv 17718 oppciso 17719 sectepi 17722 episect 17723 funcoppc 17813 fulloppc 17862 fthoppc 17863 fthepi 17868 dfinito2 17941 dftermo2 17942 hofcl 18196 yon11 18201 yon12 18202 yon2 18203 oyon1cl 18208 yonedalem21 18210 yonedalem3a 18211 yonedalem4c 18214 yonedalem22 18215 yonedalem3b 18216 yonedalem3 18217 yonedainv 18218 yonffthlem 18219 oppccic 49006 cofuoppf 49112 oppcuprcl4 49161 oppcuprcl3 49162 oppcup 49169 natoppf 49191 oppcinito 49197 oppctermo 49198 oppczeroo 49199 oppc1stf 49250 oppc2ndf 49251 fucoppcco 49371 fucoppc 49372 oppfdiag1 49376 oppfdiag 49378 oppcthin 49400 oppcthinendcALT 49403 oduoppcbas 49527 oduoppcciso 49528 oppgoppchom 49552 oppgoppcco 49553 oppgoppcid 49554 ranval2 49592 ranval3 49593 lmdfval2 49617 lmddu 49629 termolmd 49632 lmdran 49633 |
| Copyright terms: Public domain | W3C validator |