| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppcbas | Structured version Visualization version GIF version | ||
| Description: Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
| Ref | Expression |
|---|---|
| oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| oppcbas | ⊢ 𝐵 = (Base‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | baseid 17118 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
| 3 | slotsbhcdif 17314 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 4 | 3 | simp1i 1139 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
| 5 | 2, 4 | setsnid 17114 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) |
| 6 | 3 | simp2i 1140 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
| 7 | 2, 6 | setsnid 17114 | . . . . 5 ⊢ (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 8 | 5, 7 | eqtri 2754 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 9 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 10 | eqid 2731 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 11 | eqid 2731 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 13 | 9, 10, 11, 12 | oppcval 17614 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 14 | 13 | fveq2d 6821 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
| 15 | 8, 14 | eqtr4id 2785 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
| 16 | base0 17120 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 17 | 16 | eqcomi 2740 | . . . 4 ⊢ (Base‘∅) = ∅ |
| 18 | 17, 12 | fveqprc 17097 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
| 19 | 15, 18 | pm2.61i 182 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 20 | 1, 19 | eqtri 2754 | 1 ⊢ 𝐵 = (Base‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4278 〈cop 4577 × cxp 5609 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 1st c1st 7914 2nd c2nd 7915 tpos ctpos 8150 sSet csts 17069 ndxcnx 17099 Basecbs 17115 Hom chom 17167 compcco 17168 oppCatcoppc 17612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-oppc 17613 |
| This theorem is referenced by: oppccatid 17620 oppchomf 17621 2oppcbas 17624 2oppccomf 17626 oppccomfpropd 17628 isepi 17642 epii 17645 oppcsect 17680 oppcsect2 17681 oppcinv 17682 oppciso 17683 sectepi 17686 episect 17687 funcoppc 17777 fulloppc 17826 fthoppc 17827 fthepi 17832 dfinito2 17905 dftermo2 17906 hofcl 18160 yon11 18165 yon12 18166 yon2 18167 oyon1cl 18172 yonedalem21 18174 yonedalem3a 18175 yonedalem4c 18178 yonedalem22 18179 yonedalem3b 18180 yonedalem3 18181 yonedainv 18182 yonffthlem 18183 oppccic 49076 cofuoppf 49182 oppcuprcl4 49231 oppcuprcl3 49232 oppcup 49239 natoppf 49261 oppcinito 49267 oppctermo 49268 oppczeroo 49269 oppc1stf 49320 oppc2ndf 49321 fucoppcco 49441 fucoppc 49442 oppfdiag1 49446 oppfdiag 49448 oppcthin 49470 oppcthinendcALT 49473 oduoppcbas 49597 oduoppcciso 49598 oppgoppchom 49622 oppgoppcco 49623 oppgoppcid 49624 ranval2 49662 ranval3 49663 lmdfval2 49687 lmddu 49699 termolmd 49702 lmdran 49703 |
| Copyright terms: Public domain | W3C validator |