![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcbas | Structured version Visualization version GIF version |
Description: Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
Ref | Expression |
---|---|
oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
oppcbas | ⊢ 𝐵 = (Base‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | baseid 17151 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
3 | slotsbhcdif 17364 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
4 | 3 | simp1i 1137 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
5 | 2, 4 | setsnid 17146 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩)) |
6 | 3 | simp2i 1138 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
7 | 2, 6 | setsnid 17146 | . . . . 5 ⊢ (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩)) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
8 | 5, 7 | eqtri 2758 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
9 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
10 | eqid 2730 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
11 | eqid 2730 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
12 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
13 | 9, 10, 11, 12 | oppcval 17661 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
14 | 13 | fveq2d 6894 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩))) |
15 | 8, 14 | eqtr4id 2789 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
16 | base0 17153 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
17 | 16 | eqcomi 2739 | . . . 4 ⊢ (Base‘∅) = ∅ |
18 | 17, 12 | fveqprc 17128 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
19 | 15, 18 | pm2.61i 182 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) |
20 | 1, 19 | eqtri 2758 | 1 ⊢ 𝐵 = (Base‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ≠ wne 2938 Vcvv 3472 ∅c0 4321 ⟨cop 4633 × cxp 5673 ‘cfv 6542 (class class class)co 7411 ∈ cmpo 7413 1st c1st 7975 2nd c2nd 7976 tpos ctpos 8212 sSet csts 17100 ndxcnx 17130 Basecbs 17148 Hom chom 17212 compcco 17213 oppCatcoppc 17659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-hom 17225 df-cco 17226 df-oppc 17660 |
This theorem is referenced by: oppccatid 17669 oppchomf 17670 2oppcbas 17673 2oppccomf 17675 oppccomfpropd 17677 isepi 17691 epii 17694 oppcsect 17729 oppcsect2 17730 oppcinv 17731 oppciso 17732 sectepi 17735 episect 17736 funcoppc 17829 fulloppc 17877 fthoppc 17878 fthepi 17883 dfinito2 17957 dftermo2 17958 hofcl 18216 yon11 18221 yon12 18222 yon2 18223 oyon1cl 18228 yonedalem21 18230 yonedalem3a 18231 yonedalem4c 18234 yonedalem22 18235 yonedalem3b 18236 yonedalem3 18237 yonedainv 18238 yonffthlem 18239 oppcthin 47746 |
Copyright terms: Public domain | W3C validator |