|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > oppcbas | Structured version Visualization version GIF version | ||
| Description: Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) | 
| oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) | 
| Ref | Expression | 
|---|---|
| oppcbas | ⊢ 𝐵 = (Base‘𝑂) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | baseid 17251 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
| 3 | slotsbhcdif 17460 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 4 | 3 | simp1i 1139 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) | 
| 5 | 2, 4 | setsnid 17246 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) | 
| 6 | 3 | simp2i 1140 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) | 
| 7 | 2, 6 | setsnid 17246 | . . . . 5 ⊢ (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) | 
| 8 | 5, 7 | eqtri 2764 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) | 
| 9 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 10 | eqid 2736 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 11 | eqid 2736 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 13 | 9, 10, 11, 12 | oppcval 17757 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) | 
| 14 | 13 | fveq2d 6909 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) | 
| 15 | 8, 14 | eqtr4id 2795 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) | 
| 16 | base0 17253 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 17 | 16 | eqcomi 2745 | . . . 4 ⊢ (Base‘∅) = ∅ | 
| 18 | 17, 12 | fveqprc 17229 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) | 
| 19 | 15, 18 | pm2.61i 182 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) | 
| 20 | 1, 19 | eqtri 2764 | 1 ⊢ 𝐵 = (Base‘𝑂) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 ∈ wcel 2107 ≠ wne 2939 Vcvv 3479 ∅c0 4332 〈cop 4631 × cxp 5682 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 1st c1st 8013 2nd c2nd 8014 tpos ctpos 8251 sSet csts 17201 ndxcnx 17231 Basecbs 17248 Hom chom 17309 compcco 17310 oppCatcoppc 17755 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-hom 17322 df-cco 17323 df-oppc 17756 | 
| This theorem is referenced by: oppccatid 17763 oppchomf 17764 2oppcbas 17767 2oppccomf 17769 oppccomfpropd 17771 isepi 17785 epii 17788 oppcsect 17823 oppcsect2 17824 oppcinv 17825 oppciso 17826 sectepi 17829 episect 17830 funcoppc 17921 fulloppc 17970 fthoppc 17971 fthepi 17976 dfinito2 18049 dftermo2 18050 hofcl 18305 yon11 18310 yon12 18311 yon2 18312 oyon1cl 18317 yonedalem21 18319 yonedalem3a 18320 yonedalem4c 18323 yonedalem22 18324 yonedalem3b 18325 yonedalem3 18326 yonedainv 18327 yonffthlem 18328 oppcup 48966 oppcthin 49112 oppcthinendcALT 49115 oduoppcbas 49217 oduoppcciso 49218 oppgoppchom 49242 oppgoppcco 49243 oppgoppcid 49244 | 
| Copyright terms: Public domain | W3C validator |