![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcbas | Structured version Visualization version GIF version |
Description: Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
oppcbas | ⊢ 𝐵 = (Base‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2778 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | eqid 2778 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | eqid 2778 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
5 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
6 | 2, 3, 4, 5 | oppcval 16758 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
7 | 6 | fveq2d 6450 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
8 | baseid 16315 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
9 | 1re 10376 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
10 | 1nn 11387 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
11 | 4nn0 11663 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
12 | 1nn0 11660 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
13 | 1lt10 11986 | . . . . . . . . 9 ⊢ 1 < ;10 | |
14 | 10, 11, 12, 13 | declti 11884 | . . . . . . . 8 ⊢ 1 < ;14 |
15 | 9, 14 | ltneii 10489 | . . . . . . 7 ⊢ 1 ≠ ;14 |
16 | basendx 16319 | . . . . . . . 8 ⊢ (Base‘ndx) = 1 | |
17 | homndx 16460 | . . . . . . . 8 ⊢ (Hom ‘ndx) = ;14 | |
18 | 16, 17 | neeq12i 3035 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ ;14) |
19 | 15, 18 | mpbir 223 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
20 | 8, 19 | setsnid 16311 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) |
21 | 5nn 11463 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ | |
22 | 4lt5 11559 | . . . . . . . . . 10 ⊢ 4 < 5 | |
23 | 12, 11, 21, 22 | declt 11874 | . . . . . . . . 9 ⊢ ;14 < ;15 |
24 | 4nn 11459 | . . . . . . . . . . . 12 ⊢ 4 ∈ ℕ | |
25 | 12, 24 | decnncl 11866 | . . . . . . . . . . 11 ⊢ ;14 ∈ ℕ |
26 | 25 | nnrei 11384 | . . . . . . . . . 10 ⊢ ;14 ∈ ℝ |
27 | 12, 21 | decnncl 11866 | . . . . . . . . . . 11 ⊢ ;15 ∈ ℕ |
28 | 27 | nnrei 11384 | . . . . . . . . . 10 ⊢ ;15 ∈ ℝ |
29 | 9, 26, 28 | lttri 10502 | . . . . . . . . 9 ⊢ ((1 < ;14 ∧ ;14 < ;15) → 1 < ;15) |
30 | 14, 23, 29 | mp2an 682 | . . . . . . . 8 ⊢ 1 < ;15 |
31 | 9, 30 | ltneii 10489 | . . . . . . 7 ⊢ 1 ≠ ;15 |
32 | ccondx 16462 | . . . . . . . 8 ⊢ (comp‘ndx) = ;15 | |
33 | 16, 32 | neeq12i 3035 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (comp‘ndx) ↔ 1 ≠ ;15) |
34 | 31, 33 | mpbir 223 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
35 | 8, 34 | setsnid 16311 | . . . . 5 ⊢ (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
36 | 20, 35 | eqtri 2802 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
37 | 7, 36 | syl6reqr 2833 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
38 | base0 16308 | . . . 4 ⊢ ∅ = (Base‘∅) | |
39 | fvprc 6439 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
40 | fvprc 6439 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
41 | 5, 40 | syl5eq 2826 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
42 | 41 | fveq2d 6450 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Base‘𝑂) = (Base‘∅)) |
43 | 38, 39, 42 | 3eqtr4a 2840 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
44 | 37, 43 | pm2.61i 177 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) |
45 | 1, 44 | eqtri 2802 | 1 ⊢ 𝐵 = (Base‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 Vcvv 3398 ∅c0 4141 〈cop 4404 class class class wbr 4886 × cxp 5353 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 1st c1st 7443 2nd c2nd 7444 tpos ctpos 7633 1c1 10273 < clt 10411 4c4 11432 5c5 11433 ;cdc 11845 ndxcnx 16252 sSet csts 16253 Basecbs 16255 Hom chom 16349 compcco 16350 oppCatcoppc 16756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-tpos 7634 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-hom 16362 df-cco 16363 df-oppc 16757 |
This theorem is referenced by: oppccatid 16764 oppchomf 16765 2oppcbas 16768 2oppccomf 16770 oppccomfpropd 16772 isepi 16785 epii 16788 oppcsect 16823 oppcsect2 16824 oppcinv 16825 oppciso 16826 sectepi 16829 episect 16830 funcoppc 16920 fulloppc 16967 fthoppc 16968 fthepi 16973 hofcl 17285 yon11 17290 yon12 17291 yon2 17292 oyon1cl 17297 yonedalem21 17299 yonedalem3a 17300 yonedalem4c 17303 yonedalem22 17304 yonedalem3b 17305 yonedalem3 17306 yonedainv 17307 yonffthlem 17308 |
Copyright terms: Public domain | W3C validator |