Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppcbas | Structured version Visualization version GIF version |
Description: Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
oppcbas | ⊢ 𝐵 = (Base‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | baseid 16787 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
3 | 1re 10857 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
4 | 1nn 11865 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
5 | 4nn0 12133 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
6 | 1nn0 12130 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
7 | 1lt10 12456 | . . . . . . . . 9 ⊢ 1 < ;10 | |
8 | 4, 5, 6, 7 | declti 12355 | . . . . . . . 8 ⊢ 1 < ;14 |
9 | 3, 8 | ltneii 10969 | . . . . . . 7 ⊢ 1 ≠ ;14 |
10 | basendx 16793 | . . . . . . . 8 ⊢ (Base‘ndx) = 1 | |
11 | homndx 16942 | . . . . . . . 8 ⊢ (Hom ‘ndx) = ;14 | |
12 | 10, 11 | neeq12i 3008 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ ;14) |
13 | 9, 12 | mpbir 234 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
14 | 2, 13 | setsnid 16783 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) |
15 | 5nn 11940 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ | |
16 | 4lt5 12031 | . . . . . . . . . 10 ⊢ 4 < 5 | |
17 | 6, 5, 15, 16 | declt 12345 | . . . . . . . . 9 ⊢ ;14 < ;15 |
18 | 4nn 11937 | . . . . . . . . . . . 12 ⊢ 4 ∈ ℕ | |
19 | 6, 18 | decnncl 12337 | . . . . . . . . . . 11 ⊢ ;14 ∈ ℕ |
20 | 19 | nnrei 11863 | . . . . . . . . . 10 ⊢ ;14 ∈ ℝ |
21 | 6, 15 | decnncl 12337 | . . . . . . . . . . 11 ⊢ ;15 ∈ ℕ |
22 | 21 | nnrei 11863 | . . . . . . . . . 10 ⊢ ;15 ∈ ℝ |
23 | 3, 20, 22 | lttri 10982 | . . . . . . . . 9 ⊢ ((1 < ;14 ∧ ;14 < ;15) → 1 < ;15) |
24 | 8, 17, 23 | mp2an 692 | . . . . . . . 8 ⊢ 1 < ;15 |
25 | 3, 24 | ltneii 10969 | . . . . . . 7 ⊢ 1 ≠ ;15 |
26 | ccondx 16944 | . . . . . . . 8 ⊢ (comp‘ndx) = ;15 | |
27 | 10, 26 | neeq12i 3008 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (comp‘ndx) ↔ 1 ≠ ;15) |
28 | 25, 27 | mpbir 234 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
29 | 2, 28 | setsnid 16783 | . . . . 5 ⊢ (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
30 | 14, 29 | eqtri 2766 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
31 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
32 | eqid 2738 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
33 | eqid 2738 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
34 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
35 | 31, 32, 33, 34 | oppcval 17240 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
36 | 35 | fveq2d 6739 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
37 | 30, 36 | eqtr4id 2798 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
38 | base0 16789 | . . . 4 ⊢ ∅ = (Base‘∅) | |
39 | fvprc 6727 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
40 | fvprc 6727 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
41 | 34, 40 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
42 | 41 | fveq2d 6739 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Base‘𝑂) = (Base‘∅)) |
43 | 38, 39, 42 | 3eqtr4a 2805 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
44 | 37, 43 | pm2.61i 185 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) |
45 | 1, 44 | eqtri 2766 | 1 ⊢ 𝐵 = (Base‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 Vcvv 3420 ∅c0 4251 〈cop 4561 class class class wbr 5067 × cxp 5563 ‘cfv 6397 (class class class)co 7231 ∈ cmpo 7233 1st c1st 7777 2nd c2nd 7778 tpos ctpos 7987 1c1 10754 < clt 10891 4c4 11911 5c5 11912 ;cdc 12317 sSet csts 16740 ndxcnx 16768 Basecbs 16784 Hom chom 16837 compcco 16838 oppCatcoppc 17238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-tpos 7988 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-er 8411 df-en 8647 df-dom 8648 df-sdom 8649 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-7 11922 df-8 11923 df-9 11924 df-n0 12115 df-z 12201 df-dec 12318 df-sets 16741 df-slot 16759 df-ndx 16769 df-base 16785 df-hom 16850 df-cco 16851 df-oppc 17239 |
This theorem is referenced by: oppccatid 17247 oppchomf 17248 2oppcbas 17251 2oppccomf 17253 oppccomfpropd 17255 isepi 17269 epii 17272 oppcsect 17307 oppcsect2 17308 oppcinv 17309 oppciso 17310 sectepi 17313 episect 17314 funcoppc 17405 fulloppc 17453 fthoppc 17454 fthepi 17459 dfinito2 17533 dftermo2 17534 hofcl 17791 yon11 17796 yon12 17797 yon2 17798 oyon1cl 17803 yonedalem21 17805 yonedalem3a 17806 yonedalem4c 17809 yonedalem22 17810 yonedalem3b 17811 yonedalem3 17812 yonedainv 17813 yonffthlem 17814 oppcthin 46021 |
Copyright terms: Public domain | W3C validator |