MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcbas Structured version   Visualization version   GIF version

Theorem oppcbas 17735
Description: Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
oppcbas.1 𝑂 = (oppCat‘𝐶)
oppcbas.2 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
oppcbas 𝐵 = (Base‘𝑂)

Proof of Theorem oppcbas
Dummy variables 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.2 . 2 𝐵 = (Base‘𝐶)
2 baseid 17236 . . . . . 6 Base = Slot (Base‘ndx)
3 slotsbhcdif 17434 . . . . . . 7 ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))
43simp1i 1139 . . . . . 6 (Base‘ndx) ≠ (Hom ‘ndx)
52, 4setsnid 17232 . . . . 5 (Base‘𝐶) = (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩))
63simp2i 1140 . . . . . 6 (Base‘ndx) ≠ (comp‘ndx)
72, 6setsnid 17232 . . . . 5 (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩)) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩))
85, 7eqtri 2759 . . . 4 (Base‘𝐶) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩))
9 eqid 2736 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
10 eqid 2736 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
11 eqid 2736 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
12 oppcbas.1 . . . . . 6 𝑂 = (oppCat‘𝐶)
139, 10, 11, 12oppcval 17730 . . . . 5 (𝐶 ∈ V → 𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩))
1413fveq2d 6885 . . . 4 (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩)))
158, 14eqtr4id 2790 . . 3 (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂))
16 base0 17238 . . . . 5 ∅ = (Base‘∅)
1716eqcomi 2745 . . . 4 (Base‘∅) = ∅
1817, 12fveqprc 17215 . . 3 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂))
1915, 18pm2.61i 182 . 2 (Base‘𝐶) = (Base‘𝑂)
201, 19eqtri 2759 1 𝐵 = (Base‘𝑂)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  c0 4313  cop 4612   × cxp 5657  cfv 6536  (class class class)co 7410  cmpo 7412  1st c1st 7991  2nd c2nd 7992  tpos ctpos 8229   sSet csts 17187  ndxcnx 17217  Basecbs 17233  Hom chom 17287  compcco 17288  oppCatcoppc 17728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-hom 17300  df-cco 17301  df-oppc 17729
This theorem is referenced by:  oppccatid  17736  oppchomf  17737  2oppcbas  17740  2oppccomf  17742  oppccomfpropd  17744  isepi  17758  epii  17761  oppcsect  17796  oppcsect2  17797  oppcinv  17798  oppciso  17799  sectepi  17802  episect  17803  funcoppc  17893  fulloppc  17942  fthoppc  17943  fthepi  17948  dfinito2  18021  dftermo2  18022  hofcl  18276  yon11  18281  yon12  18282  yon2  18283  oyon1cl  18288  yonedalem21  18290  yonedalem3a  18291  yonedalem4c  18294  yonedalem22  18295  yonedalem3b  18296  yonedalem3  18297  yonedainv  18298  yonffthlem  18299  oppccic  48978  oppcuprcl4  49099  oppcuprcl3  49100  oppcup  49107  oppcinito  49119  oppctermo  49120  oppczeroo  49121  oppcthin  49291  oppcthinendcALT  49294  oduoppcbas  49409  oduoppcciso  49410  oppgoppchom  49434  oppgoppcco  49435  oppgoppcid  49436  ranval2  49472  lmdfval2  49494
  Copyright terms: Public domain W3C validator