| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppcbas | Structured version Visualization version GIF version | ||
| Description: Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
| Ref | Expression |
|---|---|
| oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| oppcbas | ⊢ 𝐵 = (Base‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | baseid 17130 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
| 3 | slotsbhcdif 17326 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 4 | 3 | simp1i 1139 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
| 5 | 2, 4 | setsnid 17126 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) |
| 6 | 3 | simp2i 1140 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
| 7 | 2, 6 | setsnid 17126 | . . . . 5 ⊢ (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 8 | 5, 7 | eqtri 2756 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 9 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 10 | eqid 2733 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 11 | eqid 2733 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 12 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 13 | 9, 10, 11, 12 | oppcval 17627 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
| 14 | 13 | fveq2d 6835 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
| 15 | 8, 14 | eqtr4id 2787 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
| 16 | base0 17132 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 17 | 16 | eqcomi 2742 | . . . 4 ⊢ (Base‘∅) = ∅ |
| 18 | 17, 12 | fveqprc 17109 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
| 19 | 15, 18 | pm2.61i 182 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 20 | 1, 19 | eqtri 2756 | 1 ⊢ 𝐵 = (Base‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∅c0 4282 〈cop 4583 × cxp 5619 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 1st c1st 7928 2nd c2nd 7929 tpos ctpos 8164 sSet csts 17081 ndxcnx 17111 Basecbs 17127 Hom chom 17179 compcco 17180 oppCatcoppc 17625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-hom 17192 df-cco 17193 df-oppc 17626 |
| This theorem is referenced by: oppccatid 17633 oppchomf 17634 2oppcbas 17637 2oppccomf 17639 oppccomfpropd 17641 isepi 17655 epii 17658 oppcsect 17693 oppcsect2 17694 oppcinv 17695 oppciso 17696 sectepi 17699 episect 17700 funcoppc 17790 fulloppc 17839 fthoppc 17840 fthepi 17845 dfinito2 17918 dftermo2 17919 hofcl 18173 yon11 18178 yon12 18179 yon2 18180 oyon1cl 18185 yonedalem21 18187 yonedalem3a 18188 yonedalem4c 18191 yonedalem22 18192 yonedalem3b 18193 yonedalem3 18194 yonedainv 18195 yonffthlem 18196 oppccic 49205 cofuoppf 49311 oppcuprcl4 49360 oppcuprcl3 49361 oppcup 49368 natoppf 49390 oppcinito 49396 oppctermo 49397 oppczeroo 49398 oppc1stf 49449 oppc2ndf 49450 fucoppcco 49570 fucoppc 49571 oppfdiag1 49575 oppfdiag 49577 oppcthin 49599 oppcthinendcALT 49602 oduoppcbas 49726 oduoppcciso 49727 oppgoppchom 49751 oppgoppcco 49752 oppgoppcid 49753 ranval2 49791 ranval3 49792 lmdfval2 49816 lmddu 49828 termolmd 49831 lmdran 49832 |
| Copyright terms: Public domain | W3C validator |