MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescabs Structured version   Visualization version   GIF version

Theorem rescabs 17795
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by AV, 9-Nov-2024.)
Hypotheses
Ref Expression
rescabs.c (𝜑𝐶𝑉)
rescabs.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescabs.j (𝜑𝐽 Fn (𝑇 × 𝑇))
rescabs.s (𝜑𝑆𝑊)
rescabs.t (𝜑𝑇𝑆)
Assertion
Ref Expression
rescabs (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))

Proof of Theorem rescabs
StepHypRef Expression
1 eqid 2729 . . . 4 (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽)
2 ovexd 7422 . . . 4 (𝜑 → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
3 rescabs.s . . . . 5 (𝜑𝑆𝑊)
4 rescabs.t . . . . 5 (𝜑𝑇𝑆)
53, 4ssexd 5279 . . . 4 (𝜑𝑇 ∈ V)
6 rescabs.j . . . 4 (𝜑𝐽 Fn (𝑇 × 𝑇))
71, 2, 5, 6rescval2 17790 . . 3 (𝜑 → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
8 simpr 484 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (Base‘(𝐶s 𝑆)) ⊆ 𝑇)
9 ovexd 7422 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
105adantr 480 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇 ∈ V)
11 eqid 2729 . . . . . . . 8 (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇)
12 baseid 17182 . . . . . . . . 9 Base = Slot (Base‘ndx)
13 slotsbhcdif 17378 . . . . . . . . . 10 ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))
1413simp1i 1139 . . . . . . . . 9 (Base‘ndx) ≠ (Hom ‘ndx)
1512, 14setsnid 17178 . . . . . . . 8 (Base‘(𝐶s 𝑆)) = (Base‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
1611, 15ressid2 17204 . . . . . . 7 (((Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V ∧ 𝑇 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
178, 9, 10, 16syl3anc 1373 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
1817oveq1d 7402 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩))
19 ovex 7420 . . . . . 6 (𝐶s 𝑆) ∈ V
205, 5xpexd 7727 . . . . . . . 8 (𝜑 → (𝑇 × 𝑇) ∈ V)
216, 20fnexd 7192 . . . . . . 7 (𝜑𝐽 ∈ V)
2221adantr 480 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐽 ∈ V)
23 setsabs 17149 . . . . . 6 (((𝐶s 𝑆) ∈ V ∧ 𝐽 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩))
2419, 22, 23sylancr 587 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩))
25 eqid 2729 . . . . . . . . . . . . . 14 (𝐶s 𝑆) = (𝐶s 𝑆)
26 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘𝐶)
2725, 26ressbas 17206 . . . . . . . . . . . . 13 (𝑆𝑊 → (𝑆 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑆)))
283, 27syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑆)))
2928sseq1d 3978 . . . . . . . . . . 11 (𝜑 → ((𝑆 ∩ (Base‘𝐶)) ⊆ 𝑇 ↔ (Base‘(𝐶s 𝑆)) ⊆ 𝑇))
3029biimpar 477 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ 𝑇)
31 inss2 4201 . . . . . . . . . . 11 (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)
3231a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶))
3330, 32ssind 4204 . . . . . . . . 9 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ (𝑇 ∩ (Base‘𝐶)))
344adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇𝑆)
3534ssrind 4207 . . . . . . . . 9 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑇 ∩ (Base‘𝐶)) ⊆ (𝑆 ∩ (Base‘𝐶)))
3633, 35eqssd 3964 . . . . . . . 8 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) = (𝑇 ∩ (Base‘𝐶)))
3736oveq2d 7403 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s (𝑆 ∩ (Base‘𝐶))) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
383adantr 480 . . . . . . . 8 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑆𝑊)
3926ressinbas 17215 . . . . . . . 8 (𝑆𝑊 → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
4038, 39syl 17 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
4126ressinbas 17215 . . . . . . . 8 (𝑇 ∈ V → (𝐶s 𝑇) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
4210, 41syl 17 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑇) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
4337, 40, 423eqtr4d 2774 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) = (𝐶s 𝑇))
4443oveq1d 7402 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
4518, 24, 443eqtrd 2768 . . . 4 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
46 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇)
47 ovexd 7422 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
485adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇 ∈ V)
4911, 15ressval2 17205 . . . . . . . 8 ((¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V ∧ 𝑇 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
5046, 47, 48, 49syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
51 ovexd 7422 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) ∈ V)
5214necomi 2979 . . . . . . . . 9 (Hom ‘ndx) ≠ (Base‘ndx)
5352a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (Hom ‘ndx) ≠ (Base‘ndx))
54 rescabs.h . . . . . . . . . 10 (𝜑𝐻 Fn (𝑆 × 𝑆))
553, 3xpexd 7727 . . . . . . . . . 10 (𝜑 → (𝑆 × 𝑆) ∈ V)
5654, 55fnexd 7192 . . . . . . . . 9 (𝜑𝐻 ∈ V)
5756adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐻 ∈ V)
58 fvex 6871 . . . . . . . . . 10 (Base‘(𝐶s 𝑆)) ∈ V
5958inex2 5273 . . . . . . . . 9 (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V
6059a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V)
61 fvex 6871 . . . . . . . . 9 (Hom ‘ndx) ∈ V
62 fvex 6871 . . . . . . . . 9 (Base‘ndx) ∈ V
6361, 62setscom 17150 . . . . . . . 8 ((((𝐶s 𝑆) ∈ V ∧ (Hom ‘ndx) ≠ (Base‘ndx)) ∧ (𝐻 ∈ V ∧ (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V)) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩))
6451, 53, 57, 60, 63syl22anc 838 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩))
65 eqid 2729 . . . . . . . . . . 11 ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) ↾s 𝑇)
66 eqid 2729 . . . . . . . . . . 11 (Base‘(𝐶s 𝑆)) = (Base‘(𝐶s 𝑆))
6765, 66ressval2 17205 . . . . . . . . . 10 ((¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ (𝐶s 𝑆) ∈ V ∧ 𝑇 ∈ V) → ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
6846, 51, 48, 67syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
694adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇𝑆)
70 ressabs 17218 . . . . . . . . . 10 ((𝑆𝑊𝑇𝑆) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
713, 69, 70syl2an2r 685 . . . . . . . . 9 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
7268, 71eqtr3d 2766 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (𝐶s 𝑇))
7372oveq1d 7402 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩))
7450, 64, 733eqtrd 2768 . . . . . 6 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩))
7574oveq1d 7402 . . . . 5 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩))
76 ovex 7420 . . . . . 6 (𝐶s 𝑇) ∈ V
7721adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐽 ∈ V)
78 setsabs 17149 . . . . . 6 (((𝐶s 𝑇) ∈ V ∧ 𝐽 ∈ V) → (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
7976, 77, 78sylancr 587 . . . . 5 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
8075, 79eqtrd 2764 . . . 4 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
8145, 80pm2.61dan 812 . . 3 (𝜑 → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
827, 81eqtrd 2764 . 2 (𝜑 → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
83 eqid 2729 . . . 4 (𝐶cat 𝐻) = (𝐶cat 𝐻)
84 rescabs.c . . . 4 (𝜑𝐶𝑉)
8583, 84, 3, 54rescval2 17790 . . 3 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
8685oveq1d 7402 . 2 (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽))
87 eqid 2729 . . 3 (𝐶cat 𝐽) = (𝐶cat 𝐽)
8887, 84, 5, 6rescval2 17790 . 2 (𝜑 → (𝐶cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
8982, 86, 883eqtr4d 2774 1 (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cin 3913  wss 3914  cop 4595   × cxp 5636   Fn wfn 6506  cfv 6511  (class class class)co 7387   sSet csts 17133  ndxcnx 17163  Basecbs 17179  s cress 17200  Hom chom 17231  compcco 17232  cat cresc 17770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-hom 17244  df-cco 17245  df-resc 17773
This theorem is referenced by:  subsubc  17815  fldc  20693  fldcALTV  48320
  Copyright terms: Public domain W3C validator