MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescabs Structured version   Visualization version   GIF version

Theorem rescabs 17547
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by AV, 9-Nov-2024.)
Hypotheses
Ref Expression
rescabs.c (𝜑𝐶𝑉)
rescabs.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescabs.j (𝜑𝐽 Fn (𝑇 × 𝑇))
rescabs.s (𝜑𝑆𝑊)
rescabs.t (𝜑𝑇𝑆)
Assertion
Ref Expression
rescabs (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))

Proof of Theorem rescabs
StepHypRef Expression
1 eqid 2738 . . . 4 (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽)
2 ovexd 7310 . . . 4 (𝜑 → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
3 rescabs.s . . . . 5 (𝜑𝑆𝑊)
4 rescabs.t . . . . 5 (𝜑𝑇𝑆)
53, 4ssexd 5248 . . . 4 (𝜑𝑇 ∈ V)
6 rescabs.j . . . 4 (𝜑𝐽 Fn (𝑇 × 𝑇))
71, 2, 5, 6rescval2 17540 . . 3 (𝜑 → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
8 simpr 485 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (Base‘(𝐶s 𝑆)) ⊆ 𝑇)
9 ovexd 7310 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
105adantr 481 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇 ∈ V)
11 eqid 2738 . . . . . . . 8 (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇)
12 baseid 16915 . . . . . . . . 9 Base = Slot (Base‘ndx)
13 slotsbhcdif 17125 . . . . . . . . . 10 ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))
1413simp1i 1138 . . . . . . . . 9 (Base‘ndx) ≠ (Hom ‘ndx)
1512, 14setsnid 16910 . . . . . . . 8 (Base‘(𝐶s 𝑆)) = (Base‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
1611, 15ressid2 16945 . . . . . . 7 (((Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V ∧ 𝑇 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
178, 9, 10, 16syl3anc 1370 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
1817oveq1d 7290 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩))
19 ovex 7308 . . . . . 6 (𝐶s 𝑆) ∈ V
205, 5xpexd 7601 . . . . . . . 8 (𝜑 → (𝑇 × 𝑇) ∈ V)
216, 20fnexd 7094 . . . . . . 7 (𝜑𝐽 ∈ V)
2221adantr 481 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐽 ∈ V)
23 setsabs 16880 . . . . . 6 (((𝐶s 𝑆) ∈ V ∧ 𝐽 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩))
2419, 22, 23sylancr 587 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩))
25 eqid 2738 . . . . . . . . . . . . . 14 (𝐶s 𝑆) = (𝐶s 𝑆)
26 eqid 2738 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘𝐶)
2725, 26ressbas 16947 . . . . . . . . . . . . 13 (𝑆𝑊 → (𝑆 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑆)))
283, 27syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑆)))
2928sseq1d 3952 . . . . . . . . . . 11 (𝜑 → ((𝑆 ∩ (Base‘𝐶)) ⊆ 𝑇 ↔ (Base‘(𝐶s 𝑆)) ⊆ 𝑇))
3029biimpar 478 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ 𝑇)
31 inss2 4163 . . . . . . . . . . 11 (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)
3231a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶))
3330, 32ssind 4166 . . . . . . . . 9 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ (𝑇 ∩ (Base‘𝐶)))
344adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇𝑆)
3534ssrind 4169 . . . . . . . . 9 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑇 ∩ (Base‘𝐶)) ⊆ (𝑆 ∩ (Base‘𝐶)))
3633, 35eqssd 3938 . . . . . . . 8 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) = (𝑇 ∩ (Base‘𝐶)))
3736oveq2d 7291 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s (𝑆 ∩ (Base‘𝐶))) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
383adantr 481 . . . . . . . 8 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑆𝑊)
3926ressinbas 16955 . . . . . . . 8 (𝑆𝑊 → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
4038, 39syl 17 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
4126ressinbas 16955 . . . . . . . 8 (𝑇 ∈ V → (𝐶s 𝑇) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
4210, 41syl 17 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑇) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
4337, 40, 423eqtr4d 2788 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) = (𝐶s 𝑇))
4443oveq1d 7290 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
4518, 24, 443eqtrd 2782 . . . 4 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
46 simpr 485 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇)
47 ovexd 7310 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
485adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇 ∈ V)
4911, 15ressval2 16946 . . . . . . . 8 ((¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V ∧ 𝑇 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
5046, 47, 48, 49syl3anc 1370 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
51 ovexd 7310 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) ∈ V)
5214necomi 2998 . . . . . . . . 9 (Hom ‘ndx) ≠ (Base‘ndx)
5352a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (Hom ‘ndx) ≠ (Base‘ndx))
54 rescabs.h . . . . . . . . . 10 (𝜑𝐻 Fn (𝑆 × 𝑆))
553, 3xpexd 7601 . . . . . . . . . 10 (𝜑 → (𝑆 × 𝑆) ∈ V)
5654, 55fnexd 7094 . . . . . . . . 9 (𝜑𝐻 ∈ V)
5756adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐻 ∈ V)
58 fvex 6787 . . . . . . . . . 10 (Base‘(𝐶s 𝑆)) ∈ V
5958inex2 5242 . . . . . . . . 9 (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V
6059a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V)
61 fvex 6787 . . . . . . . . 9 (Hom ‘ndx) ∈ V
62 fvex 6787 . . . . . . . . 9 (Base‘ndx) ∈ V
6361, 62setscom 16881 . . . . . . . 8 ((((𝐶s 𝑆) ∈ V ∧ (Hom ‘ndx) ≠ (Base‘ndx)) ∧ (𝐻 ∈ V ∧ (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V)) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩))
6451, 53, 57, 60, 63syl22anc 836 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩))
65 eqid 2738 . . . . . . . . . . 11 ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) ↾s 𝑇)
66 eqid 2738 . . . . . . . . . . 11 (Base‘(𝐶s 𝑆)) = (Base‘(𝐶s 𝑆))
6765, 66ressval2 16946 . . . . . . . . . 10 ((¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ (𝐶s 𝑆) ∈ V ∧ 𝑇 ∈ V) → ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
6846, 51, 48, 67syl3anc 1370 . . . . . . . . 9 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
694adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇𝑆)
70 ressabs 16959 . . . . . . . . . 10 ((𝑆𝑊𝑇𝑆) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
713, 69, 70syl2an2r 682 . . . . . . . . 9 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
7268, 71eqtr3d 2780 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (𝐶s 𝑇))
7372oveq1d 7290 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩))
7450, 64, 733eqtrd 2782 . . . . . 6 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩))
7574oveq1d 7290 . . . . 5 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩))
76 ovex 7308 . . . . . 6 (𝐶s 𝑇) ∈ V
7721adantr 481 . . . . . 6 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐽 ∈ V)
78 setsabs 16880 . . . . . 6 (((𝐶s 𝑇) ∈ V ∧ 𝐽 ∈ V) → (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
7976, 77, 78sylancr 587 . . . . 5 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
8075, 79eqtrd 2778 . . . 4 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
8145, 80pm2.61dan 810 . . 3 (𝜑 → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
827, 81eqtrd 2778 . 2 (𝜑 → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
83 eqid 2738 . . . 4 (𝐶cat 𝐻) = (𝐶cat 𝐻)
84 rescabs.c . . . 4 (𝜑𝐶𝑉)
8583, 84, 3, 54rescval2 17540 . . 3 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
8685oveq1d 7290 . 2 (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽))
87 eqid 2738 . . 3 (𝐶cat 𝐽) = (𝐶cat 𝐽)
8887, 84, 5, 6rescval2 17540 . 2 (𝜑 → (𝐶cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
8982, 86, 883eqtr4d 2788 1 (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cin 3886  wss 3887  cop 4567   × cxp 5587   Fn wfn 6428  cfv 6433  (class class class)co 7275   sSet csts 16864  ndxcnx 16894  Basecbs 16912  s cress 16941  Hom chom 16973  compcco 16974  cat cresc 17520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-hom 16986  df-cco 16987  df-resc 17523
This theorem is referenced by:  subsubc  17568  fldc  45641  fldcALTV  45659
  Copyright terms: Public domain W3C validator