Proof of Theorem rescabs
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢ (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx),
𝐻〉)
↾cat 𝐽) =
(((𝐶 ↾s
𝑆) sSet 〈(Hom
‘ndx), 𝐻〉)
↾cat 𝐽) |
2 | | ovexd 7310 |
. . . 4
⊢ (𝜑 → ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ∈
V) |
3 | | rescabs.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
4 | | rescabs.t |
. . . . 5
⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
5 | 3, 4 | ssexd 5248 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ V) |
6 | | rescabs.j |
. . . 4
⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
7 | 1, 2, 5, 6 | rescval2 17540 |
. . 3
⊢ (𝜑 → (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ↾cat
𝐽) = ((((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐽〉)) |
8 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) |
9 | | ovexd 7310 |
. . . . . . 7
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ∈
V) |
10 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → 𝑇 ∈ V) |
11 | | eqid 2738 |
. . . . . . . 8
⊢ (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx),
𝐻〉)
↾s 𝑇) =
(((𝐶 ↾s
𝑆) sSet 〈(Hom
‘ndx), 𝐻〉)
↾s 𝑇) |
12 | | baseid 16915 |
. . . . . . . . 9
⊢ Base =
Slot (Base‘ndx) |
13 | | slotsbhcdif 17125 |
. . . . . . . . . 10
⊢
((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠
(comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) |
14 | 13 | simp1i 1138 |
. . . . . . . . 9
⊢
(Base‘ndx) ≠ (Hom ‘ndx) |
15 | 12, 14 | setsnid 16910 |
. . . . . . . 8
⊢
(Base‘(𝐶
↾s 𝑆)) =
(Base‘((𝐶
↾s 𝑆) sSet
〈(Hom ‘ndx), 𝐻〉)) |
16 | 11, 15 | ressid2 16945 |
. . . . . . 7
⊢
(((Base‘(𝐶
↾s 𝑆))
⊆ 𝑇 ∧ ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx),
𝐻〉) ∈ V ∧
𝑇 ∈ V) → (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx),
𝐻〉)
↾s 𝑇) =
((𝐶 ↾s
𝑆) sSet 〈(Hom
‘ndx), 𝐻〉)) |
17 | 8, 9, 10, 16 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ↾s
𝑇) = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
18 | 17 | oveq1d 7290 |
. . . . 5
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → ((((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐽〉) =
(((𝐶 ↾s
𝑆) sSet 〈(Hom
‘ndx), 𝐻〉) sSet
〈(Hom ‘ndx), 𝐽〉)) |
19 | | ovex 7308 |
. . . . . 6
⊢ (𝐶 ↾s 𝑆) ∈ V |
20 | 5, 5 | xpexd 7601 |
. . . . . . . 8
⊢ (𝜑 → (𝑇 × 𝑇) ∈ V) |
21 | 6, 20 | fnexd 7094 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ V) |
22 | 21 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → 𝐽 ∈ V) |
23 | | setsabs 16880 |
. . . . . 6
⊢ (((𝐶 ↾s 𝑆) ∈ V ∧ 𝐽 ∈ V) → (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx),
𝐻〉) sSet 〈(Hom
‘ndx), 𝐽〉) =
((𝐶 ↾s
𝑆) sSet 〈(Hom
‘ndx), 𝐽〉)) |
24 | 19, 22, 23 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) sSet 〈(Hom
‘ndx), 𝐽〉) =
((𝐶 ↾s
𝑆) sSet 〈(Hom
‘ndx), 𝐽〉)) |
25 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) |
26 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐶) =
(Base‘𝐶) |
27 | 25, 26 | ressbas 16947 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ 𝑊 → (𝑆 ∩ (Base‘𝐶)) = (Base‘(𝐶 ↾s 𝑆))) |
28 | 3, 27 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 ∩ (Base‘𝐶)) = (Base‘(𝐶 ↾s 𝑆))) |
29 | 28 | sseq1d 3952 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑆 ∩ (Base‘𝐶)) ⊆ 𝑇 ↔ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇)) |
30 | 29 | biimpar 478 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ 𝑇) |
31 | | inss2 4163 |
. . . . . . . . . . 11
⊢ (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶) |
32 | 31 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)) |
33 | 30, 32 | ssind 4166 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ (𝑇 ∩ (Base‘𝐶))) |
34 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → 𝑇 ⊆ 𝑆) |
35 | 34 | ssrind 4169 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (𝑇 ∩ (Base‘𝐶)) ⊆ (𝑆 ∩ (Base‘𝐶))) |
36 | 33, 35 | eqssd 3938 |
. . . . . . . 8
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) = (𝑇 ∩ (Base‘𝐶))) |
37 | 36 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) = (𝐶 ↾s (𝑇 ∩ (Base‘𝐶)))) |
38 | 3 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → 𝑆 ∈ 𝑊) |
39 | 26 | ressinbas 16955 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝑊 → (𝐶 ↾s 𝑆) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
40 | 38, 39 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (𝐶 ↾s 𝑆) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
41 | 26 | ressinbas 16955 |
. . . . . . . 8
⊢ (𝑇 ∈ V → (𝐶 ↾s 𝑇) = (𝐶 ↾s (𝑇 ∩ (Base‘𝐶)))) |
42 | 10, 41 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (𝐶 ↾s 𝑇) = (𝐶 ↾s (𝑇 ∩ (Base‘𝐶)))) |
43 | 37, 40, 42 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑇)) |
44 | 43 | oveq1d 7290 |
. . . . 5
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐽〉) = ((𝐶 ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉)) |
45 | 18, 24, 44 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → ((((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐽〉) =
((𝐶 ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐽〉)) |
46 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) |
47 | | ovexd 7310 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ∈
V) |
48 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → 𝑇 ∈ V) |
49 | 11, 15 | ressval2 16946 |
. . . . . . . 8
⊢ ((¬
(Base‘(𝐶
↾s 𝑆))
⊆ 𝑇 ∧ ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx),
𝐻〉) ∈ V ∧
𝑇 ∈ V) → (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx),
𝐻〉)
↾s 𝑇) =
(((𝐶 ↾s
𝑆) sSet 〈(Hom
‘ndx), 𝐻〉) sSet
〈(Base‘ndx), (𝑇
∩ (Base‘(𝐶
↾s 𝑆)))〉)) |
50 | 46, 47, 48, 49 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ↾s
𝑇) = (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) sSet
〈(Base‘ndx), (𝑇
∩ (Base‘(𝐶
↾s 𝑆)))〉)) |
51 | | ovexd 7310 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (𝐶 ↾s 𝑆) ∈ V) |
52 | 14 | necomi 2998 |
. . . . . . . . 9
⊢ (Hom
‘ndx) ≠ (Base‘ndx) |
53 | 52 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (Hom ‘ndx) ≠
(Base‘ndx)) |
54 | | rescabs.h |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
55 | 3, 3 | xpexd 7601 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 × 𝑆) ∈ V) |
56 | 54, 55 | fnexd 7094 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ V) |
57 | 56 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → 𝐻 ∈ V) |
58 | | fvex 6787 |
. . . . . . . . . 10
⊢
(Base‘(𝐶
↾s 𝑆))
∈ V |
59 | 58 | inex2 5242 |
. . . . . . . . 9
⊢ (𝑇 ∩ (Base‘(𝐶 ↾s 𝑆))) ∈ V |
60 | 59 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (𝑇 ∩ (Base‘(𝐶 ↾s 𝑆))) ∈ V) |
61 | | fvex 6787 |
. . . . . . . . 9
⊢ (Hom
‘ndx) ∈ V |
62 | | fvex 6787 |
. . . . . . . . 9
⊢
(Base‘ndx) ∈ V |
63 | 61, 62 | setscom 16881 |
. . . . . . . 8
⊢ ((((𝐶 ↾s 𝑆) ∈ V ∧ (Hom
‘ndx) ≠ (Base‘ndx)) ∧ (𝐻 ∈ V ∧ (𝑇 ∩ (Base‘(𝐶 ↾s 𝑆))) ∈ V)) → (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) sSet
〈(Base‘ndx), (𝑇
∩ (Base‘(𝐶
↾s 𝑆)))〉) = (((𝐶 ↾s 𝑆) sSet 〈(Base‘ndx), (𝑇 ∩ (Base‘(𝐶 ↾s 𝑆)))〉) sSet 〈(Hom
‘ndx), 𝐻〉)) |
64 | 51, 53, 57, 60, 63 | syl22anc 836 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) sSet
〈(Base‘ndx), (𝑇
∩ (Base‘(𝐶
↾s 𝑆)))〉) = (((𝐶 ↾s 𝑆) sSet 〈(Base‘ndx), (𝑇 ∩ (Base‘(𝐶 ↾s 𝑆)))〉) sSet 〈(Hom
‘ndx), 𝐻〉)) |
65 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ((𝐶 ↾s 𝑆) ↾s 𝑇) = ((𝐶 ↾s 𝑆) ↾s 𝑇) |
66 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘(𝐶
↾s 𝑆)) =
(Base‘(𝐶
↾s 𝑆)) |
67 | 65, 66 | ressval2 16946 |
. . . . . . . . . 10
⊢ ((¬
(Base‘(𝐶
↾s 𝑆))
⊆ 𝑇 ∧ (𝐶 ↾s 𝑆) ∈ V ∧ 𝑇 ∈ V) → ((𝐶 ↾s 𝑆) ↾s 𝑇) = ((𝐶 ↾s 𝑆) sSet 〈(Base‘ndx), (𝑇 ∩ (Base‘(𝐶 ↾s 𝑆)))〉)) |
68 | 46, 51, 48, 67 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → ((𝐶 ↾s 𝑆) ↾s 𝑇) = ((𝐶 ↾s 𝑆) sSet 〈(Base‘ndx), (𝑇 ∩ (Base‘(𝐶 ↾s 𝑆)))〉)) |
69 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → 𝑇 ⊆ 𝑆) |
70 | | ressabs 16959 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ 𝑊 ∧ 𝑇 ⊆ 𝑆) → ((𝐶 ↾s 𝑆) ↾s 𝑇) = (𝐶 ↾s 𝑇)) |
71 | 3, 69, 70 | syl2an2r 682 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → ((𝐶 ↾s 𝑆) ↾s 𝑇) = (𝐶 ↾s 𝑇)) |
72 | 68, 71 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → ((𝐶 ↾s 𝑆) sSet 〈(Base‘ndx), (𝑇 ∩ (Base‘(𝐶 ↾s 𝑆)))〉) = (𝐶 ↾s 𝑇)) |
73 | 72 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (((𝐶 ↾s 𝑆) sSet 〈(Base‘ndx), (𝑇 ∩ (Base‘(𝐶 ↾s 𝑆)))〉) sSet 〈(Hom
‘ndx), 𝐻〉) =
((𝐶 ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐻〉)) |
74 | 50, 64, 73 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ↾s
𝑇) = ((𝐶 ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐻〉)) |
75 | 74 | oveq1d 7290 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → ((((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐽〉) =
(((𝐶 ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐻〉) sSet
〈(Hom ‘ndx), 𝐽〉)) |
76 | | ovex 7308 |
. . . . . 6
⊢ (𝐶 ↾s 𝑇) ∈ V |
77 | 21 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → 𝐽 ∈ V) |
78 | | setsabs 16880 |
. . . . . 6
⊢ (((𝐶 ↾s 𝑇) ∈ V ∧ 𝐽 ∈ V) → (((𝐶 ↾s 𝑇) sSet 〈(Hom ‘ndx),
𝐻〉) sSet 〈(Hom
‘ndx), 𝐽〉) =
((𝐶 ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐽〉)) |
79 | 76, 77, 78 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → (((𝐶 ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐻〉) sSet 〈(Hom
‘ndx), 𝐽〉) =
((𝐶 ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐽〉)) |
80 | 75, 79 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ ¬ (Base‘(𝐶 ↾s 𝑆)) ⊆ 𝑇) → ((((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐽〉) =
((𝐶 ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐽〉)) |
81 | 45, 80 | pm2.61dan 810 |
. . 3
⊢ (𝜑 → ((((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐽〉) =
((𝐶 ↾s
𝑇) sSet 〈(Hom
‘ndx), 𝐽〉)) |
82 | 7, 81 | eqtrd 2778 |
. 2
⊢ (𝜑 → (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ↾cat
𝐽) = ((𝐶 ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉)) |
83 | | eqid 2738 |
. . . 4
⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) |
84 | | rescabs.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
85 | 83, 84, 3, 54 | rescval2 17540 |
. . 3
⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
86 | 85 | oveq1d 7290 |
. 2
⊢ (𝜑 → ((𝐶 ↾cat 𝐻) ↾cat 𝐽) = (((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉) ↾cat
𝐽)) |
87 | | eqid 2738 |
. . 3
⊢ (𝐶 ↾cat 𝐽) = (𝐶 ↾cat 𝐽) |
88 | 87, 84, 5, 6 | rescval2 17540 |
. 2
⊢ (𝜑 → (𝐶 ↾cat 𝐽) = ((𝐶 ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉)) |
89 | 82, 86, 88 | 3eqtr4d 2788 |
1
⊢ (𝜑 → ((𝐶 ↾cat 𝐻) ↾cat 𝐽) = (𝐶 ↾cat 𝐽)) |