MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescabs Structured version   Visualization version   GIF version

Theorem rescabs 17339
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
rescabs.c (𝜑𝐶𝑉)
rescabs.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescabs.j (𝜑𝐽 Fn (𝑇 × 𝑇))
rescabs.s (𝜑𝑆𝑊)
rescabs.t (𝜑𝑇𝑆)
Assertion
Ref Expression
rescabs (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))

Proof of Theorem rescabs
StepHypRef Expression
1 eqid 2737 . . . 4 (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽)
2 ovexd 7248 . . . 4 (𝜑 → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
3 rescabs.s . . . . 5 (𝜑𝑆𝑊)
4 rescabs.t . . . . 5 (𝜑𝑇𝑆)
53, 4ssexd 5217 . . . 4 (𝜑𝑇 ∈ V)
6 rescabs.j . . . 4 (𝜑𝐽 Fn (𝑇 × 𝑇))
71, 2, 5, 6rescval2 17333 . . 3 (𝜑 → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
8 simpr 488 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (Base‘(𝐶s 𝑆)) ⊆ 𝑇)
9 ovexd 7248 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
105adantr 484 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇 ∈ V)
11 eqid 2737 . . . . . . . 8 (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇)
12 baseid 16763 . . . . . . . . 9 Base = Slot (Base‘ndx)
13 1re 10833 . . . . . . . . . . 11 1 ∈ ℝ
14 1nn 11841 . . . . . . . . . . . 12 1 ∈ ℕ
15 4nn0 12109 . . . . . . . . . . . 12 4 ∈ ℕ0
16 1nn0 12106 . . . . . . . . . . . 12 1 ∈ ℕ0
17 1lt10 12432 . . . . . . . . . . . 12 1 < 10
1814, 15, 16, 17declti 12331 . . . . . . . . . . 11 1 < 14
1913, 18ltneii 10945 . . . . . . . . . 10 1 ≠ 14
20 basendx 16769 . . . . . . . . . . 11 (Base‘ndx) = 1
21 homndx 16918 . . . . . . . . . . 11 (Hom ‘ndx) = 14
2220, 21neeq12i 3007 . . . . . . . . . 10 ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ 14)
2319, 22mpbir 234 . . . . . . . . 9 (Base‘ndx) ≠ (Hom ‘ndx)
2412, 23setsnid 16759 . . . . . . . 8 (Base‘(𝐶s 𝑆)) = (Base‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
2511, 24ressid2 16788 . . . . . . 7 (((Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V ∧ 𝑇 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
268, 9, 10, 25syl3anc 1373 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
2726oveq1d 7228 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩))
28 ovex 7246 . . . . . 6 (𝐶s 𝑆) ∈ V
295, 5xpexd 7536 . . . . . . . 8 (𝜑 → (𝑇 × 𝑇) ∈ V)
30 fnex 7033 . . . . . . . 8 ((𝐽 Fn (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ∈ V) → 𝐽 ∈ V)
316, 29, 30syl2anc 587 . . . . . . 7 (𝜑𝐽 ∈ V)
3231adantr 484 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐽 ∈ V)
33 setsabs 16732 . . . . . 6 (((𝐶s 𝑆) ∈ V ∧ 𝐽 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩))
3428, 32, 33sylancr 590 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩))
35 eqid 2737 . . . . . . . . . . . . . 14 (𝐶s 𝑆) = (𝐶s 𝑆)
36 eqid 2737 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘𝐶)
3735, 36ressbas 16790 . . . . . . . . . . . . 13 (𝑆𝑊 → (𝑆 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑆)))
383, 37syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑆)))
3938sseq1d 3932 . . . . . . . . . . 11 (𝜑 → ((𝑆 ∩ (Base‘𝐶)) ⊆ 𝑇 ↔ (Base‘(𝐶s 𝑆)) ⊆ 𝑇))
4039biimpar 481 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ 𝑇)
41 inss2 4144 . . . . . . . . . . 11 (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)
4241a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶))
4340, 42ssind 4147 . . . . . . . . 9 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ (𝑇 ∩ (Base‘𝐶)))
444adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇𝑆)
4544ssrind 4150 . . . . . . . . 9 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑇 ∩ (Base‘𝐶)) ⊆ (𝑆 ∩ (Base‘𝐶)))
4643, 45eqssd 3918 . . . . . . . 8 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) = (𝑇 ∩ (Base‘𝐶)))
4746oveq2d 7229 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s (𝑆 ∩ (Base‘𝐶))) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
483adantr 484 . . . . . . . 8 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑆𝑊)
4936ressinbas 16797 . . . . . . . 8 (𝑆𝑊 → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
5048, 49syl 17 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
5136ressinbas 16797 . . . . . . . 8 (𝑇 ∈ V → (𝐶s 𝑇) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
5210, 51syl 17 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑇) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
5347, 50, 523eqtr4d 2787 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) = (𝐶s 𝑇))
5453oveq1d 7228 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
5527, 34, 543eqtrd 2781 . . . 4 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
56 simpr 488 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇)
57 ovexd 7248 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
585adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇 ∈ V)
5911, 24ressval2 16789 . . . . . . . 8 ((¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V ∧ 𝑇 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
6056, 57, 58, 59syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
61 ovexd 7248 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) ∈ V)
6223necomi 2995 . . . . . . . . 9 (Hom ‘ndx) ≠ (Base‘ndx)
6362a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (Hom ‘ndx) ≠ (Base‘ndx))
64 rescabs.h . . . . . . . . . 10 (𝜑𝐻 Fn (𝑆 × 𝑆))
653, 3xpexd 7536 . . . . . . . . . 10 (𝜑 → (𝑆 × 𝑆) ∈ V)
66 fnex 7033 . . . . . . . . . 10 ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V)
6764, 65, 66syl2anc 587 . . . . . . . . 9 (𝜑𝐻 ∈ V)
6867adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐻 ∈ V)
69 fvex 6730 . . . . . . . . . 10 (Base‘(𝐶s 𝑆)) ∈ V
7069inex2 5211 . . . . . . . . 9 (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V
7170a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V)
72 fvex 6730 . . . . . . . . 9 (Hom ‘ndx) ∈ V
73 fvex 6730 . . . . . . . . 9 (Base‘ndx) ∈ V
7472, 73setscom 16733 . . . . . . . 8 ((((𝐶s 𝑆) ∈ V ∧ (Hom ‘ndx) ≠ (Base‘ndx)) ∧ (𝐻 ∈ V ∧ (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V)) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩))
7561, 63, 68, 71, 74syl22anc 839 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩))
76 eqid 2737 . . . . . . . . . . 11 ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) ↾s 𝑇)
77 eqid 2737 . . . . . . . . . . 11 (Base‘(𝐶s 𝑆)) = (Base‘(𝐶s 𝑆))
7876, 77ressval2 16789 . . . . . . . . . 10 ((¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ (𝐶s 𝑆) ∈ V ∧ 𝑇 ∈ V) → ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
7956, 61, 58, 78syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
803adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑆𝑊)
814adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇𝑆)
82 ressabs 16800 . . . . . . . . . 10 ((𝑆𝑊𝑇𝑆) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
8380, 81, 82syl2anc 587 . . . . . . . . 9 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
8479, 83eqtr3d 2779 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (𝐶s 𝑇))
8584oveq1d 7228 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩))
8660, 75, 853eqtrd 2781 . . . . . 6 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩))
8786oveq1d 7228 . . . . 5 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩))
88 ovex 7246 . . . . . 6 (𝐶s 𝑇) ∈ V
8931adantr 484 . . . . . 6 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐽 ∈ V)
90 setsabs 16732 . . . . . 6 (((𝐶s 𝑇) ∈ V ∧ 𝐽 ∈ V) → (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
9188, 89, 90sylancr 590 . . . . 5 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
9287, 91eqtrd 2777 . . . 4 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
9355, 92pm2.61dan 813 . . 3 (𝜑 → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
947, 93eqtrd 2777 . 2 (𝜑 → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
95 eqid 2737 . . . 4 (𝐶cat 𝐻) = (𝐶cat 𝐻)
96 rescabs.c . . . 4 (𝜑𝐶𝑉)
9795, 96, 3, 64rescval2 17333 . . 3 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
9897oveq1d 7228 . 2 (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽))
99 eqid 2737 . . 3 (𝐶cat 𝐽) = (𝐶cat 𝐽)
10099, 96, 5, 6rescval2 17333 . 2 (𝜑 → (𝐶cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
10194, 98, 1003eqtr4d 2787 1 (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  Vcvv 3408  cin 3865  wss 3866  cop 4547   × cxp 5549   Fn wfn 6375  cfv 6380  (class class class)co 7213  1c1 10730  4c4 11887  cdc 12293   sSet csts 16716  ndxcnx 16744  Basecbs 16760  s cress 16784  Hom chom 16813  cat cresc 17313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-hom 16826  df-resc 17316
This theorem is referenced by:  subsubc  17359  fldc  45314  fldcALTV  45332
  Copyright terms: Public domain W3C validator