Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rescbas | Structured version Visualization version GIF version |
Description: Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Ref | Expression |
---|---|
rescbas | ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 16614 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
2 | 1re 10692 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 1nn 11698 | . . . . . 6 ⊢ 1 ∈ ℕ | |
4 | 4nn0 11966 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
5 | 1nn0 11963 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12289 | . . . . . 6 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12188 | . . . . 5 ⊢ 1 < ;14 |
8 | 2, 7 | ltneii 10804 | . . . 4 ⊢ 1 ≠ ;14 |
9 | basendx 16618 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
10 | homndx 16758 | . . . . 5 ⊢ (Hom ‘ndx) = ;14 | |
11 | 9, 10 | neeq12i 3017 | . . . 4 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ ;14) |
12 | 8, 11 | mpbir 234 | . . 3 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
13 | 1, 12 | setsnid 16610 | . 2 ⊢ (Base‘(𝐶 ↾s 𝑆)) = (Base‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
14 | rescbas.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
15 | eqid 2758 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
16 | rescbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
17 | 15, 16 | ressbas2 16626 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘(𝐶 ↾s 𝑆))) |
18 | 14, 17 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 = (Base‘(𝐶 ↾s 𝑆))) |
19 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
20 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
21 | 16 | fvexi 6677 | . . . . . 6 ⊢ 𝐵 ∈ V |
22 | 21 | ssex 5195 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
23 | 14, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
24 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
25 | 19, 20, 23, 24 | rescval2 17170 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
26 | 25 | fveq2d 6667 | . 2 ⊢ (𝜑 → (Base‘𝐷) = (Base‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
27 | 13, 18, 26 | 3eqtr4a 2819 | 1 ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 Vcvv 3409 ⊆ wss 3860 〈cop 4531 × cxp 5526 Fn wfn 6335 ‘cfv 6340 (class class class)co 7156 1c1 10589 4c4 11744 ;cdc 12150 ndxcnx 16551 sSet csts 16552 Basecbs 16554 ↾s cress 16555 Hom chom 16647 ↾cat cresc 17150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-hom 16660 df-resc 17153 |
This theorem is referenced by: reschomf 17173 subccatid 17188 issubc3 17191 fullresc 17193 funcres 17238 funcres2b 17239 funcres2 17240 rngcbas 45005 ringcbas 45051 |
Copyright terms: Public domain | W3C validator |