| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescbas | Structured version Visualization version GIF version | ||
| Description: Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
| Ref | Expression |
|---|---|
| rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
| rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| rescbas | ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseid 17120 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
| 2 | slotsbhcdif 17316 | . . . 4 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 3 | 2 | simp1i 1139 | . . 3 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
| 4 | 1, 3 | setsnid 17116 | . 2 ⊢ (Base‘(𝐶 ↾s 𝑆)) = (Base‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 5 | rescbas.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 6 | eqid 2731 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
| 7 | rescbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 8 | 6, 7 | ressbas2 17146 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘(𝐶 ↾s 𝑆))) |
| 9 | 5, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 = (Base‘(𝐶 ↾s 𝑆))) |
| 10 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
| 11 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 12 | 7 | fvexi 6836 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 13 | 12 | ssex 5259 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
| 14 | 5, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
| 15 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 16 | 10, 11, 14, 15 | rescval2 17732 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 17 | 16 | fveq2d 6826 | . 2 ⊢ (𝜑 → (Base‘𝐷) = (Base‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
| 18 | 4, 9, 17 | 3eqtr4a 2792 | 1 ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3902 〈cop 4582 × cxp 5614 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 sSet csts 17071 ndxcnx 17101 Basecbs 17117 ↾s cress 17138 Hom chom 17169 compcco 17170 ↾cat cresc 17712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-hom 17182 df-cco 17183 df-resc 17715 |
| This theorem is referenced by: reschomf 17735 subccatid 17750 issubc3 17753 fullresc 17755 funcres 17800 funcres2b 17801 funcres2 17802 rngcbas 20534 ringcbas 20563 ssccatid 49103 resccatlem 49104 subthinc 49474 |
| Copyright terms: Public domain | W3C validator |