![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescbas | Structured version Visualization version GIF version |
Description: Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Ref | Expression |
---|---|
rescbas | ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 16289 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
2 | 1re 10363 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 1nn 11370 | . . . . . 6 ⊢ 1 ∈ ℕ | |
4 | 4nn0 11646 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
5 | 1nn0 11643 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 11969 | . . . . . 6 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 11867 | . . . . 5 ⊢ 1 < ;14 |
8 | 2, 7 | ltneii 10476 | . . . 4 ⊢ 1 ≠ ;14 |
9 | basendx 16293 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
10 | homndx 16434 | . . . . 5 ⊢ (Hom ‘ndx) = ;14 | |
11 | 9, 10 | neeq12i 3065 | . . . 4 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ ;14) |
12 | 8, 11 | mpbir 223 | . . 3 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
13 | 1, 12 | setsnid 16285 | . 2 ⊢ (Base‘(𝐶 ↾s 𝑆)) = (Base‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
14 | rescbas.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
15 | eqid 2825 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
16 | rescbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
17 | 15, 16 | ressbas2 16301 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘(𝐶 ↾s 𝑆))) |
18 | 14, 17 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 = (Base‘(𝐶 ↾s 𝑆))) |
19 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
20 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
21 | 16 | fvexi 6451 | . . . . . 6 ⊢ 𝐵 ∈ V |
22 | 21 | ssex 5029 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
23 | 14, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
24 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
25 | 19, 20, 23, 24 | rescval2 16847 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
26 | 25 | fveq2d 6441 | . 2 ⊢ (𝜑 → (Base‘𝐷) = (Base‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
27 | 13, 18, 26 | 3eqtr4a 2887 | 1 ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 Vcvv 3414 ⊆ wss 3798 〈cop 4405 × cxp 5344 Fn wfn 6122 ‘cfv 6127 (class class class)co 6910 1c1 10260 4c4 11415 ;cdc 11828 ndxcnx 16226 sSet csts 16227 Basecbs 16229 ↾s cress 16230 Hom chom 16323 ↾cat cresc 16827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-hom 16336 df-resc 16830 |
This theorem is referenced by: reschomf 16850 subccatid 16865 issubc3 16868 fullresc 16870 funcres 16915 funcres2b 16916 funcres2 16917 rngcbas 42830 ringcbas 42876 |
Copyright terms: Public domain | W3C validator |