![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescbas | Structured version Visualization version GIF version |
Description: Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
Ref | Expression |
---|---|
rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Ref | Expression |
---|---|
rescbas | ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 17261 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
2 | slotsbhcdif 17474 | . . . 4 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
3 | 2 | simp1i 1139 | . . 3 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
4 | 1, 3 | setsnid 17256 | . 2 ⊢ (Base‘(𝐶 ↾s 𝑆)) = (Base‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
5 | rescbas.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
6 | eqid 2740 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
7 | rescbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
8 | 6, 7 | ressbas2 17296 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘(𝐶 ↾s 𝑆))) |
9 | 5, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 = (Base‘(𝐶 ↾s 𝑆))) |
10 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
11 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
12 | 7 | fvexi 6934 | . . . . . 6 ⊢ 𝐵 ∈ V |
13 | 12 | ssex 5339 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
14 | 5, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
15 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
16 | 10, 11, 14, 15 | rescval2 17889 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
17 | 16 | fveq2d 6924 | . 2 ⊢ (𝜑 → (Base‘𝐷) = (Base‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
18 | 4, 9, 17 | 3eqtr4a 2806 | 1 ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 〈cop 4654 × cxp 5698 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 sSet csts 17210 ndxcnx 17240 Basecbs 17258 ↾s cress 17287 Hom chom 17322 compcco 17323 ↾cat cresc 17869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-hom 17335 df-cco 17336 df-resc 17872 |
This theorem is referenced by: reschomf 17893 subccatid 17910 issubc3 17913 fullresc 17915 funcres 17960 funcres2b 17961 funcres2 17962 rngcbas 20643 ringcbas 20672 subthinc 48707 |
Copyright terms: Public domain | W3C validator |