| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | stoweidlem31.14 | . . 3
⊢ (𝜑 → ran 𝐺 ∈ Fin) | 
| 2 |  | fnchoice 45039 | . . 3
⊢ (ran
𝐺 ∈ Fin →
∃𝑙(𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) | 
| 3 | 1, 2 | syl 17 | . 2
⊢ (𝜑 → ∃𝑙(𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) | 
| 4 |  | vex 3483 | . . . . 5
⊢ 𝑙 ∈ V | 
| 5 |  | stoweidlem31.6 | . . . . . . 7
⊢ 𝐺 = (𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 6 |  | stoweidlem31.12 | . . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ V) | 
| 7 |  | stoweidlem31.7 | . . . . . . . . 9
⊢ (𝜑 → 𝑅 ⊆ 𝑉) | 
| 8 | 6, 7 | ssexd 5323 | . . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ V) | 
| 9 |  | mptexg 7242 | . . . . . . . 8
⊢ (𝑅 ∈ V → (𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) ∈ V) | 
| 10 | 8, 9 | syl 17 | . . . . . . 7
⊢ (𝜑 → (𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) ∈ V) | 
| 11 | 5, 10 | eqeltrid 2844 | . . . . . 6
⊢ (𝜑 → 𝐺 ∈ V) | 
| 12 |  | vex 3483 | . . . . . 6
⊢ 𝑣 ∈ V | 
| 13 |  | coexg 7952 | . . . . . 6
⊢ ((𝐺 ∈ V ∧ 𝑣 ∈ V) → (𝐺 ∘ 𝑣) ∈ V) | 
| 14 | 11, 12, 13 | sylancl 586 | . . . . 5
⊢ (𝜑 → (𝐺 ∘ 𝑣) ∈ V) | 
| 15 |  | coexg 7952 | . . . . 5
⊢ ((𝑙 ∈ V ∧ (𝐺 ∘ 𝑣) ∈ V) → (𝑙 ∘ (𝐺 ∘ 𝑣)) ∈ V) | 
| 16 | 4, 14, 15 | sylancr 587 | . . . 4
⊢ (𝜑 → (𝑙 ∘ (𝐺 ∘ 𝑣)) ∈ V) | 
| 17 | 16 | adantr 480 | . . 3
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → (𝑙 ∘ (𝐺 ∘ 𝑣)) ∈ V) | 
| 18 |  | simprl 770 | . . . . . 6
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → 𝑙 Fn ran 𝐺) | 
| 19 |  | stoweidlem31.1 | . . . . . . . . 9
⊢
Ⅎℎ𝜑 | 
| 20 |  | nfcv 2904 | . . . . . . . . . . 11
⊢
Ⅎℎ𝑙 | 
| 21 |  | nfcv 2904 | . . . . . . . . . . . . . 14
⊢
Ⅎℎ𝑅 | 
| 22 |  | nfrab1 3456 | . . . . . . . . . . . . . 14
⊢
Ⅎℎ{ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} | 
| 23 | 21, 22 | nfmpt 5248 | . . . . . . . . . . . . 13
⊢
Ⅎℎ(𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 24 | 5, 23 | nfcxfr 2902 | . . . . . . . . . . . 12
⊢
Ⅎℎ𝐺 | 
| 25 | 24 | nfrn 5962 | . . . . . . . . . . 11
⊢
Ⅎℎran
𝐺 | 
| 26 | 20, 25 | nffn 6666 | . . . . . . . . . 10
⊢
Ⅎℎ 𝑙 Fn ran 𝐺 | 
| 27 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎℎ(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) | 
| 28 | 25, 27 | nfralw 3310 | . . . . . . . . . 10
⊢
Ⅎℎ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) | 
| 29 | 26, 28 | nfan 1898 | . . . . . . . . 9
⊢
Ⅎℎ(𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) | 
| 30 | 19, 29 | nfan 1898 | . . . . . . . 8
⊢
Ⅎℎ(𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) | 
| 31 |  | fvelrnb 6968 | . . . . . . . . . . . . 13
⊢ (𝑙 Fn ran 𝐺 → (ℎ ∈ ran 𝑙 ↔ ∃𝑏 ∈ ran 𝐺(𝑙‘𝑏) = ℎ)) | 
| 32 | 18, 31 | syl 17 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → (ℎ ∈ ran 𝑙 ↔ ∃𝑏 ∈ ran 𝐺(𝑙‘𝑏) = ℎ)) | 
| 33 | 32 | biimpa 476 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → ∃𝑏 ∈ ran 𝐺(𝑙‘𝑏) = ℎ) | 
| 34 |  | nfv 1913 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑏𝜑 | 
| 35 |  | nfv 1913 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏 𝑙 Fn ran 𝐺 | 
| 36 |  | nfra1 3283 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) | 
| 37 | 35, 36 | nfan 1898 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑏(𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) | 
| 38 | 34, 37 | nfan 1898 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑏(𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) | 
| 39 |  | nfv 1913 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑏 ℎ ∈ ran 𝑙 | 
| 40 | 38, 39 | nfan 1898 | . . . . . . . . . . . 12
⊢
Ⅎ𝑏((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) | 
| 41 |  | simp3 1138 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) ∧ 𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) = ℎ) → (𝑙‘𝑏) = ℎ) | 
| 42 |  | simp1ll 1236 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) ∧ 𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) = ℎ) → 𝜑) | 
| 43 |  | simplrr 777 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) | 
| 44 | 43 | 3ad2ant1 1133 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) ∧ 𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) = ℎ) → ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) | 
| 45 |  | simp2 1137 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) ∧ 𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) = ℎ) → 𝑏 ∈ ran 𝐺) | 
| 46 |  | simp3 1138 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → 𝑏 ∈ ran 𝐺) | 
| 47 |  | 3simpc 1150 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → (∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺)) | 
| 48 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → 𝑏 ∈ ran 𝐺) | 
| 49 |  | stoweidlem31.3 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑤𝜑 | 
| 50 |  | stoweidlem31.13 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐴 ∈ V) | 
| 51 |  | rabexg 5336 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐴 ∈ V → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) | 
| 52 | 50, 51 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) | 
| 53 | 52 | a1d 25 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑤 ∈ 𝑅 → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V)) | 
| 54 | 49, 53 | ralrimi 3256 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ∀𝑤 ∈ 𝑅 {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) | 
| 55 | 5 | fnmpt 6707 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑤 ∈
𝑅 {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V → 𝐺 Fn 𝑅) | 
| 56 | 54, 55 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐺 Fn 𝑅) | 
| 57 | 56 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → 𝐺 Fn 𝑅) | 
| 58 |  | fvelrnb 6968 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺 Fn 𝑅 → (𝑏 ∈ ran 𝐺 ↔ ∃𝑢 ∈ 𝑅 (𝐺‘𝑢) = 𝑏)) | 
| 59 |  | nfmpt1 5249 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑤(𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 60 | 5, 59 | nfcxfr 2902 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑤𝐺 | 
| 61 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑤𝑢 | 
| 62 | 60, 61 | nffv 6915 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑤(𝐺‘𝑢) | 
| 63 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑤𝑏 | 
| 64 | 62, 63 | nfeq 2918 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑤(𝐺‘𝑢) = 𝑏 | 
| 65 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑢(𝐺‘𝑤) = 𝑏 | 
| 66 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑢 = 𝑤 → (𝐺‘𝑢) = (𝐺‘𝑤)) | 
| 67 | 66 | eqeq1d 2738 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 = 𝑤 → ((𝐺‘𝑢) = 𝑏 ↔ (𝐺‘𝑤) = 𝑏)) | 
| 68 | 64, 65, 67 | cbvrexw 3306 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃𝑢 ∈
𝑅 (𝐺‘𝑢) = 𝑏 ↔ ∃𝑤 ∈ 𝑅 (𝐺‘𝑤) = 𝑏) | 
| 69 | 58, 68 | bitrdi 287 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 Fn 𝑅 → (𝑏 ∈ ran 𝐺 ↔ ∃𝑤 ∈ 𝑅 (𝐺‘𝑤) = 𝑏)) | 
| 70 | 57, 69 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → (𝑏 ∈ ran 𝐺 ↔ ∃𝑤 ∈ 𝑅 (𝐺‘𝑤) = 𝑏)) | 
| 71 | 48, 70 | mpbid 232 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → ∃𝑤 ∈ 𝑅 (𝐺‘𝑤) = 𝑏) | 
| 72 | 60 | nfrn 5962 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑤ran
𝐺 | 
| 73 | 72 | nfcri 2896 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑤 𝑏 ∈ ran 𝐺 | 
| 74 | 49, 73 | nfan 1898 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑤(𝜑 ∧ 𝑏 ∈ ran 𝐺) | 
| 75 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑤 𝑏 ≠ ∅ | 
| 76 |  | simp3 1138 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅 ∧ (𝐺‘𝑤) = 𝑏) → (𝐺‘𝑤) = 𝑏) | 
| 77 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → 𝑤 ∈ 𝑅) | 
| 78 | 50 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → 𝐴 ∈ V) | 
| 79 | 78, 51 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) | 
| 80 | 5 | fvmpt2 7026 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑤 ∈ 𝑅 ∧ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) → (𝐺‘𝑤) = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 81 | 77, 79, 80 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → (𝐺‘𝑤) = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 82 | 7 | sselda 3982 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → 𝑤 ∈ 𝑉) | 
| 83 |  | stoweidlem31.5 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 𝑉 = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} | 
| 84 | 83 | reqabi 3459 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 ∈ 𝑉 ↔ (𝑤 ∈ 𝐽 ∧ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡)))) | 
| 85 | 82, 84 | sylib 218 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → (𝑤 ∈ 𝐽 ∧ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡)))) | 
| 86 | 85 | simprd 495 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))) | 
| 87 |  | stoweidlem31.10 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝐸 ∈
ℝ+) | 
| 88 |  | stoweidlem31.8 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 89 | 88 | nnrpd 13076 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝑀 ∈
ℝ+) | 
| 90 | 87, 89 | rpdivcld 13095 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (𝐸 / 𝑀) ∈
ℝ+) | 
| 91 | 90 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → (𝐸 / 𝑀) ∈
ℝ+) | 
| 92 |  | breq2 5146 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 = (𝐸 / 𝑀) → ((ℎ‘𝑡) < 𝑒 ↔ (ℎ‘𝑡) < (𝐸 / 𝑀))) | 
| 93 | 92 | ralbidv 3177 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑒 = (𝐸 / 𝑀) → (∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ↔ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀))) | 
| 94 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑒 = (𝐸 / 𝑀) → (1 − 𝑒) = (1 − (𝐸 / 𝑀))) | 
| 95 | 94 | breq1d 5152 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 = (𝐸 / 𝑀) → ((1 − 𝑒) < (ℎ‘𝑡) ↔ (1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) | 
| 96 | 95 | ralbidv 3177 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑒 = (𝐸 / 𝑀) → (∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡) ↔ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) | 
| 97 | 93, 96 | 3anbi23d 1440 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑒 = (𝐸 / 𝑀) → ((∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)))) | 
| 98 | 97 | rexbidv 3178 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑒 = (𝐸 / 𝑀) → (∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡)) ↔ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)))) | 
| 99 | 98 | rspccva 3620 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((∀𝑒 ∈
ℝ+ ∃ℎ
∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡)) ∧ (𝐸 / 𝑀) ∈ ℝ+) →
∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) | 
| 100 | 86, 91, 99 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) | 
| 101 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Ⅎℎ 𝑤 ∈ 𝑅 | 
| 102 | 19, 101 | nfan 1898 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎℎ(𝜑 ∧ 𝑤 ∈ 𝑅) | 
| 103 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Ⅎℎ∅ | 
| 104 | 22, 103 | nfne 3042 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎℎ{ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ≠ ∅ | 
| 105 |  | 3simpc 1150 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑅) ∧ ℎ ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) → (ℎ ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)))) | 
| 106 |  | rabid 3457 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (ℎ ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ↔ (ℎ ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)))) | 
| 107 | 105, 106 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑅) ∧ ℎ ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) → ℎ ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 108 |  | ne0i 4340 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (ℎ ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ≠ ∅) | 
| 109 | 107, 108 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑅) ∧ ℎ ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ≠ ∅) | 
| 110 | 109 | 3exp 1119 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → (ℎ ∈ 𝐴 → ((∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ≠ ∅))) | 
| 111 | 102, 104,
110 | rexlimd 3265 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → (∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ≠ ∅)) | 
| 112 | 100, 111 | mpd 15 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ≠ ∅) | 
| 113 | 81, 112 | eqnetrd 3007 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → (𝐺‘𝑤) ≠ ∅) | 
| 114 | 113 | 3adant3 1132 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅 ∧ (𝐺‘𝑤) = 𝑏) → (𝐺‘𝑤) ≠ ∅) | 
| 115 | 76, 114 | eqnetrrd 3008 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅 ∧ (𝐺‘𝑤) = 𝑏) → 𝑏 ≠ ∅) | 
| 116 | 115 | 3adant1r 1177 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑏 ∈ ran 𝐺) ∧ 𝑤 ∈ 𝑅 ∧ (𝐺‘𝑤) = 𝑏) → 𝑏 ≠ ∅) | 
| 117 | 116 | 3exp 1119 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → (𝑤 ∈ 𝑅 → ((𝐺‘𝑤) = 𝑏 → 𝑏 ≠ ∅))) | 
| 118 | 74, 75, 117 | rexlimd 3265 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → (∃𝑤 ∈ 𝑅 (𝐺‘𝑤) = 𝑏 → 𝑏 ≠ ∅)) | 
| 119 | 71, 118 | mpd 15 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → 𝑏 ≠ ∅) | 
| 120 | 119 | 3adant2 1131 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → 𝑏 ≠ ∅) | 
| 121 |  | rspa 3247 | . . . . . . . . . . . . . . . . . 18
⊢
((∀𝑏 ∈
ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → (𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) | 
| 122 | 47, 120, 121 | sylc 65 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → (𝑙‘𝑏) ∈ 𝑏) | 
| 123 | 46, 122 | jca 511 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → (𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏)) | 
| 124 |  | vex 3483 | . . . . . . . . . . . . . . . . . 18
⊢ 𝑏 ∈ V | 
| 125 | 5 | elrnmpt 5968 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ V → (𝑏 ∈ ran 𝐺 ↔ ∃𝑤 ∈ 𝑅 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))})) | 
| 126 | 124, 125 | ax-mp 5 | . . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ ran 𝐺 ↔ ∃𝑤 ∈ 𝑅 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 127 | 46, 126 | sylib 218 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → ∃𝑤 ∈ 𝑅 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 128 |  | nfv 1913 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑤(𝑙‘𝑏) ∈ 𝑏 | 
| 129 | 73, 128 | nfan 1898 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑤(𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏) | 
| 130 |  | nfv 1913 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑤(𝑙‘𝑏) ∈ 𝑌 | 
| 131 |  | simp1r 1198 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑤 ∈ 𝑅 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → (𝑙‘𝑏) ∈ 𝑏) | 
| 132 |  | simp3 1138 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑤 ∈ 𝑅 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 133 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑙‘𝑏) ∈ 𝑏 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → (𝑙‘𝑏) ∈ 𝑏) | 
| 134 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑙‘𝑏) ∈ 𝑏 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 135 | 133, 134 | eleqtrd 2842 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑙‘𝑏) ∈ 𝑏 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → (𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 136 |  | elrabi 3686 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → (𝑙‘𝑏) ∈ 𝐴) | 
| 137 |  | fveq1 6904 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (ℎ = (𝑙‘𝑏) → (ℎ‘𝑡) = ((𝑙‘𝑏)‘𝑡)) | 
| 138 | 137 | breq2d 5154 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (ℎ = (𝑙‘𝑏) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ ((𝑙‘𝑏)‘𝑡))) | 
| 139 | 137 | breq1d 5152 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (ℎ = (𝑙‘𝑏) → ((ℎ‘𝑡) ≤ 1 ↔ ((𝑙‘𝑏)‘𝑡) ≤ 1)) | 
| 140 | 138, 139 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℎ = (𝑙‘𝑏) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1))) | 
| 141 | 140 | ralbidv 3177 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = (𝑙‘𝑏) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1))) | 
| 142 | 137 | breq1d 5152 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℎ = (𝑙‘𝑏) → ((ℎ‘𝑡) < (𝐸 / 𝑀) ↔ ((𝑙‘𝑏)‘𝑡) < (𝐸 / 𝑀))) | 
| 143 | 142 | ralbidv 3177 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = (𝑙‘𝑏) → (∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ↔ ∀𝑡 ∈ 𝑤 ((𝑙‘𝑏)‘𝑡) < (𝐸 / 𝑀))) | 
| 144 | 137 | breq2d 5154 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℎ = (𝑙‘𝑏) → ((1 − (𝐸 / 𝑀)) < (ℎ‘𝑡) ↔ (1 − (𝐸 / 𝑀)) < ((𝑙‘𝑏)‘𝑡))) | 
| 145 | 144 | ralbidv 3177 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = (𝑙‘𝑏) → (∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡) ↔ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < ((𝑙‘𝑏)‘𝑡))) | 
| 146 | 141, 143,
145 | 3anbi123d 1437 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = (𝑙‘𝑏) → ((∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 ((𝑙‘𝑏)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < ((𝑙‘𝑏)‘𝑡)))) | 
| 147 | 146 | elrab 3691 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ↔ ((𝑙‘𝑏) ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 ((𝑙‘𝑏)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < ((𝑙‘𝑏)‘𝑡)))) | 
| 148 | 147 | simprbi 496 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → (∀𝑡 ∈ 𝑇 (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 ((𝑙‘𝑏)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < ((𝑙‘𝑏)‘𝑡))) | 
| 149 | 148 | simp1d 1142 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1)) | 
| 150 | 141 | elrab 3691 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} ↔ ((𝑙‘𝑏) ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1))) | 
| 151 | 136, 149,
150 | sylanbrc 583 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → (𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)}) | 
| 152 | 135, 151 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑙‘𝑏) ∈ 𝑏 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → (𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)}) | 
| 153 |  | stoweidlem31.4 | . . . . . . . . . . . . . . . . . . . 20
⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} | 
| 154 | 152, 153 | eleqtrrdi 2851 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑙‘𝑏) ∈ 𝑏 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → (𝑙‘𝑏) ∈ 𝑌) | 
| 155 | 131, 132,
154 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑤 ∈ 𝑅 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → (𝑙‘𝑏) ∈ 𝑌) | 
| 156 | 155 | 3exp 1119 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏) → (𝑤 ∈ 𝑅 → (𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → (𝑙‘𝑏) ∈ 𝑌))) | 
| 157 | 129, 130,
156 | rexlimd 3265 | . . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏) → (∃𝑤 ∈ 𝑅 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → (𝑙‘𝑏) ∈ 𝑌)) | 
| 158 | 123, 127,
157 | sylc 65 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → (𝑙‘𝑏) ∈ 𝑌) | 
| 159 | 42, 44, 45, 158 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) ∧ 𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) = ℎ) → (𝑙‘𝑏) ∈ 𝑌) | 
| 160 | 41, 159 | eqeltrrd 2841 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) ∧ 𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) = ℎ) → ℎ ∈ 𝑌) | 
| 161 | 160 | 3exp 1119 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → (𝑏 ∈ ran 𝐺 → ((𝑙‘𝑏) = ℎ → ℎ ∈ 𝑌))) | 
| 162 | 40, 161 | reximdai 3260 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → (∃𝑏 ∈ ran 𝐺(𝑙‘𝑏) = ℎ → ∃𝑏 ∈ ran 𝐺 ℎ ∈ 𝑌)) | 
| 163 | 33, 162 | mpd 15 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → ∃𝑏 ∈ ran 𝐺 ℎ ∈ 𝑌) | 
| 164 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎ𝑏 ℎ ∈ 𝑌 | 
| 165 |  | idd 24 | . . . . . . . . . . . 12
⊢ (𝑏 ∈ ran 𝐺 → (ℎ ∈ 𝑌 → ℎ ∈ 𝑌)) | 
| 166 | 165 | a1i 11 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → (𝑏 ∈ ran 𝐺 → (ℎ ∈ 𝑌 → ℎ ∈ 𝑌))) | 
| 167 | 40, 164, 166 | rexlimd 3265 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → (∃𝑏 ∈ ran 𝐺 ℎ ∈ 𝑌 → ℎ ∈ 𝑌)) | 
| 168 | 163, 167 | mpd 15 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → ℎ ∈ 𝑌) | 
| 169 | 168 | ex 412 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → (ℎ ∈ ran 𝑙 → ℎ ∈ 𝑌)) | 
| 170 | 30, 169 | ralrimi 3256 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → ∀ℎ ∈ ran 𝑙 ℎ ∈ 𝑌) | 
| 171 |  | dfss3 3971 | . . . . . . . 8
⊢ (ran
𝑙 ⊆ 𝑌 ↔ ∀𝑧 ∈ ran 𝑙 𝑧 ∈ 𝑌) | 
| 172 |  | nfrab1 3456 | . . . . . . . . . . 11
⊢
Ⅎℎ{ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} | 
| 173 | 153, 172 | nfcxfr 2902 | . . . . . . . . . 10
⊢
Ⅎℎ𝑌 | 
| 174 | 173 | nfcri 2896 | . . . . . . . . 9
⊢
Ⅎℎ 𝑧 ∈ 𝑌 | 
| 175 |  | nfv 1913 | . . . . . . . . 9
⊢
Ⅎ𝑧 ℎ ∈ 𝑌 | 
| 176 |  | eleq1 2828 | . . . . . . . . 9
⊢ (𝑧 = ℎ → (𝑧 ∈ 𝑌 ↔ ℎ ∈ 𝑌)) | 
| 177 | 174, 175,
176 | cbvralw 3305 | . . . . . . . 8
⊢
(∀𝑧 ∈
ran 𝑙 𝑧 ∈ 𝑌 ↔ ∀ℎ ∈ ran 𝑙 ℎ ∈ 𝑌) | 
| 178 | 171, 177 | bitri 275 | . . . . . . 7
⊢ (ran
𝑙 ⊆ 𝑌 ↔ ∀ℎ ∈ ran 𝑙 ℎ ∈ 𝑌) | 
| 179 | 170, 178 | sylibr 234 | . . . . . 6
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → ran 𝑙 ⊆ 𝑌) | 
| 180 |  | df-f 6564 | . . . . . 6
⊢ (𝑙:ran 𝐺⟶𝑌 ↔ (𝑙 Fn ran 𝐺 ∧ ran 𝑙 ⊆ 𝑌)) | 
| 181 | 18, 179, 180 | sylanbrc 583 | . . . . 5
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → 𝑙:ran 𝐺⟶𝑌) | 
| 182 |  | dffn3 6747 | . . . . . . . 8
⊢ (𝐺 Fn 𝑅 ↔ 𝐺:𝑅⟶ran 𝐺) | 
| 183 | 56, 182 | sylib 218 | . . . . . . 7
⊢ (𝜑 → 𝐺:𝑅⟶ran 𝐺) | 
| 184 | 183 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → 𝐺:𝑅⟶ran 𝐺) | 
| 185 |  | stoweidlem31.9 | . . . . . . . 8
⊢ (𝜑 → 𝑣:(1...𝑀)–1-1-onto→𝑅) | 
| 186 |  | f1of 6847 | . . . . . . . 8
⊢ (𝑣:(1...𝑀)–1-1-onto→𝑅 → 𝑣:(1...𝑀)⟶𝑅) | 
| 187 | 185, 186 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝑣:(1...𝑀)⟶𝑅) | 
| 188 | 187 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → 𝑣:(1...𝑀)⟶𝑅) | 
| 189 |  | fco 6759 | . . . . . 6
⊢ ((𝐺:𝑅⟶ran 𝐺 ∧ 𝑣:(1...𝑀)⟶𝑅) → (𝐺 ∘ 𝑣):(1...𝑀)⟶ran 𝐺) | 
| 190 | 184, 188,
189 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → (𝐺 ∘ 𝑣):(1...𝑀)⟶ran 𝐺) | 
| 191 |  | fco 6759 | . . . . 5
⊢ ((𝑙:ran 𝐺⟶𝑌 ∧ (𝐺 ∘ 𝑣):(1...𝑀)⟶ran 𝐺) → (𝑙 ∘ (𝐺 ∘ 𝑣)):(1...𝑀)⟶𝑌) | 
| 192 | 181, 190,
191 | syl2anc 584 | . . . 4
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → (𝑙 ∘ (𝐺 ∘ 𝑣)):(1...𝑀)⟶𝑌) | 
| 193 |  | fvco3 7007 | . . . . . . . . 9
⊢ (((𝐺 ∘ 𝑣):(1...𝑀)⟶ran 𝐺 ∧ 𝑖 ∈ (1...𝑀)) → ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) = (𝑙‘((𝐺 ∘ 𝑣)‘𝑖))) | 
| 194 | 190, 193 | sylan 580 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) = (𝑙‘((𝐺 ∘ 𝑣)‘𝑖))) | 
| 195 |  | simpll 766 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → 𝜑) | 
| 196 |  | simplrr 777 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) | 
| 197 | 190 | ffvelcdmda 7103 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) | 
| 198 |  | simp3 1138 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) → ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) | 
| 199 |  | nfv 1913 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑏((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺 | 
| 200 | 34, 36, 199 | nf3an 1900 | . . . . . . . . . . . 12
⊢
Ⅎ𝑏(𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) | 
| 201 |  | nfv 1913 | . . . . . . . . . . . 12
⊢
Ⅎ𝑏(𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖) | 
| 202 | 200, 201 | nfim 1895 | . . . . . . . . . . 11
⊢
Ⅎ𝑏((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) → (𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖)) | 
| 203 |  | eleq1 2828 | . . . . . . . . . . . . 13
⊢ (𝑏 = ((𝐺 ∘ 𝑣)‘𝑖) → (𝑏 ∈ ran 𝐺 ↔ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺)) | 
| 204 | 203 | 3anbi3d 1443 | . . . . . . . . . . . 12
⊢ (𝑏 = ((𝐺 ∘ 𝑣)‘𝑖) → ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) ↔ (𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺))) | 
| 205 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑏 = ((𝐺 ∘ 𝑣)‘𝑖) → (𝑙‘𝑏) = (𝑙‘((𝐺 ∘ 𝑣)‘𝑖))) | 
| 206 |  | id 22 | . . . . . . . . . . . . 13
⊢ (𝑏 = ((𝐺 ∘ 𝑣)‘𝑖) → 𝑏 = ((𝐺 ∘ 𝑣)‘𝑖)) | 
| 207 | 205, 206 | eleq12d 2834 | . . . . . . . . . . . 12
⊢ (𝑏 = ((𝐺 ∘ 𝑣)‘𝑖) → ((𝑙‘𝑏) ∈ 𝑏 ↔ (𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖))) | 
| 208 | 204, 207 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑏 = ((𝐺 ∘ 𝑣)‘𝑖) → (((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → (𝑙‘𝑏) ∈ 𝑏) ↔ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) → (𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖)))) | 
| 209 | 202, 208,
122 | vtoclg1f 3569 | . . . . . . . . . 10
⊢ (((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺 → ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) → (𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖))) | 
| 210 | 198, 209 | mpcom 38 | . . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) → (𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖)) | 
| 211 | 195, 196,
197, 210 | syl3anc 1372 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → (𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖)) | 
| 212 | 194, 211 | eqeltrd 2840 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ ((𝐺 ∘ 𝑣)‘𝑖)) | 
| 213 |  | fvco3 7007 | . . . . . . . . . . . 12
⊢ ((𝑣:(1...𝑀)⟶𝑅 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺 ∘ 𝑣)‘𝑖) = (𝐺‘(𝑣‘𝑖))) | 
| 214 | 187, 213 | sylan 580 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺 ∘ 𝑣)‘𝑖) = (𝐺‘(𝑣‘𝑖))) | 
| 215 |  | raleq 3322 | . . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑣‘𝑖) → (∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ↔ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀))) | 
| 216 | 215 | 3anbi2d 1442 | . . . . . . . . . . . . 13
⊢ (𝑤 = (𝑣‘𝑖) → ((∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)))) | 
| 217 | 216 | rabbidv 3443 | . . . . . . . . . . . 12
⊢ (𝑤 = (𝑣‘𝑖) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 218 | 187 | ffvelcdmda 7103 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑣‘𝑖) ∈ 𝑅) | 
| 219 | 50 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 ∈ V) | 
| 220 |  | rabexg 5336 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ V → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) | 
| 221 | 219, 220 | syl 17 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) | 
| 222 | 5, 217, 218, 221 | fvmptd3 7038 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘(𝑣‘𝑖)) = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 223 | 214, 222 | eqtrd 2776 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺 ∘ 𝑣)‘𝑖) = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 224 | 223 | adantlr 715 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺 ∘ 𝑣)‘𝑖) = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 225 | 224 | eleq2d 2826 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ ((𝐺 ∘ 𝑣)‘𝑖) ↔ ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))})) | 
| 226 |  | nfcv 2904 | . . . . . . . . . . . . . 14
⊢
Ⅎℎ𝑣 | 
| 227 | 24, 226 | nfco 5875 | . . . . . . . . . . . . 13
⊢
Ⅎℎ(𝐺 ∘ 𝑣) | 
| 228 | 20, 227 | nfco 5875 | . . . . . . . . . . . 12
⊢
Ⅎℎ(𝑙 ∘ (𝐺 ∘ 𝑣)) | 
| 229 |  | nfcv 2904 | . . . . . . . . . . . 12
⊢
Ⅎℎ𝑖 | 
| 230 | 228, 229 | nffv 6915 | . . . . . . . . . . 11
⊢
Ⅎℎ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) | 
| 231 |  | nfcv 2904 | . . . . . . . . . . 11
⊢
Ⅎℎ𝐴 | 
| 232 |  | nfcv 2904 | . . . . . . . . . . . . 13
⊢
Ⅎℎ𝑇 | 
| 233 |  | nfcv 2904 | . . . . . . . . . . . . . . 15
⊢
Ⅎℎ0 | 
| 234 |  | nfcv 2904 | . . . . . . . . . . . . . . 15
⊢
Ⅎℎ
≤ | 
| 235 |  | nfcv 2904 | . . . . . . . . . . . . . . . 16
⊢
Ⅎℎ𝑡 | 
| 236 | 230, 235 | nffv 6915 | . . . . . . . . . . . . . . 15
⊢
Ⅎℎ(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) | 
| 237 | 233, 234,
236 | nfbr 5189 | . . . . . . . . . . . . . 14
⊢
Ⅎℎ0 ≤
(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) | 
| 238 |  | nfcv 2904 | . . . . . . . . . . . . . . 15
⊢
Ⅎℎ1 | 
| 239 | 236, 234,
238 | nfbr 5189 | . . . . . . . . . . . . . 14
⊢
Ⅎℎ(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1 | 
| 240 | 237, 239 | nfan 1898 | . . . . . . . . . . . . 13
⊢
Ⅎℎ(0 ≤
(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1) | 
| 241 | 232, 240 | nfralw 3310 | . . . . . . . . . . . 12
⊢
Ⅎℎ∀𝑡 ∈ 𝑇 (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1) | 
| 242 |  | nfcv 2904 | . . . . . . . . . . . . 13
⊢
Ⅎℎ(𝑣‘𝑖) | 
| 243 |  | nfcv 2904 | . . . . . . . . . . . . . 14
⊢
Ⅎℎ
< | 
| 244 |  | nfcv 2904 | . . . . . . . . . . . . . 14
⊢
Ⅎℎ(𝐸 / 𝑀) | 
| 245 | 236, 243,
244 | nfbr 5189 | . . . . . . . . . . . . 13
⊢
Ⅎℎ(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) | 
| 246 | 242, 245 | nfralw 3310 | . . . . . . . . . . . 12
⊢
Ⅎℎ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) | 
| 247 |  | nfcv 2904 | . . . . . . . . . . . . 13
⊢
Ⅎℎ(𝑇 ∖ 𝑈) | 
| 248 |  | nfcv 2904 | . . . . . . . . . . . . . 14
⊢
Ⅎℎ(1
− (𝐸 / 𝑀)) | 
| 249 | 248, 243,
236 | nfbr 5189 | . . . . . . . . . . . . 13
⊢
Ⅎℎ(1 −
(𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) | 
| 250 | 247, 249 | nfralw 3310 | . . . . . . . . . . . 12
⊢
Ⅎℎ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) | 
| 251 | 241, 246,
250 | nf3an 1900 | . . . . . . . . . . 11
⊢
Ⅎℎ(∀𝑡 ∈ 𝑇 (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) | 
| 252 |  | nfcv 2904 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑡ℎ | 
| 253 |  | nfcv 2904 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡𝑙 | 
| 254 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡𝑅 | 
| 255 |  | nfra1 3283 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) | 
| 256 |  | nfra1 3283 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) | 
| 257 |  | nfra1 3283 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡) | 
| 258 | 255, 256,
257 | nf3an 1900 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡(∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)) | 
| 259 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡𝐴 | 
| 260 | 258, 259 | nfrabw 3474 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡{ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} | 
| 261 | 254, 260 | nfmpt 5248 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡(𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) | 
| 262 | 5, 261 | nfcxfr 2902 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡𝐺 | 
| 263 |  | nfcv 2904 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡𝑣 | 
| 264 | 262, 263 | nfco 5875 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡(𝐺 ∘ 𝑣) | 
| 265 | 253, 264 | nfco 5875 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡(𝑙 ∘ (𝐺 ∘ 𝑣)) | 
| 266 |  | nfcv 2904 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡𝑖 | 
| 267 | 265, 266 | nffv 6915 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑡((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) | 
| 268 | 252, 267 | nfeq 2918 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑡 ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) | 
| 269 |  | fveq1 6904 | . . . . . . . . . . . . . . 15
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → (ℎ‘𝑡) = (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) | 
| 270 | 269 | breq2d 5154 | . . . . . . . . . . . . . 14
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) | 
| 271 | 269 | breq1d 5152 | . . . . . . . . . . . . . 14
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → ((ℎ‘𝑡) ≤ 1 ↔ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1)) | 
| 272 | 270, 271 | anbi12d 632 | . . . . . . . . . . . . 13
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1))) | 
| 273 | 268, 272 | ralbid 3272 | . . . . . . . . . . . 12
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1))) | 
| 274 | 269 | breq1d 5152 | . . . . . . . . . . . . 13
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → ((ℎ‘𝑡) < (𝐸 / 𝑀) ↔ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀))) | 
| 275 | 268, 274 | ralbid 3272 | . . . . . . . . . . . 12
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → (∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ↔ ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀))) | 
| 276 | 269 | breq2d 5154 | . . . . . . . . . . . . 13
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → ((1 − (𝐸 / 𝑀)) < (ℎ‘𝑡) ↔ (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) | 
| 277 | 268, 276 | ralbid 3272 | . . . . . . . . . . . 12
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → (∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡) ↔ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) | 
| 278 | 273, 275,
277 | 3anbi123d 1437 | . . . . . . . . . . 11
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → ((∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)))) | 
| 279 | 230, 231,
251, 278 | elrabf 3687 | . . . . . . . . . 10
⊢ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ↔ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)))) | 
| 280 | 279 | simprbi 496 | . . . . . . . . 9
⊢ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → (∀𝑡 ∈ 𝑇 (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) | 
| 281 | 280 | simp2d 1143 | . . . . . . . 8
⊢ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀)) | 
| 282 | 225, 281 | biimtrdi 253 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ ((𝐺 ∘ 𝑣)‘𝑖) → ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀))) | 
| 283 | 212, 282 | mpd 15 | . . . . . 6
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀)) | 
| 284 |  | stoweidlem31.2 | . . . . . . . . 9
⊢
Ⅎ𝑡𝜑 | 
| 285 | 262 | nfrn 5962 | . . . . . . . . . . 11
⊢
Ⅎ𝑡ran
𝐺 | 
| 286 | 253, 285 | nffn 6666 | . . . . . . . . . 10
⊢
Ⅎ𝑡 𝑙 Fn ran 𝐺 | 
| 287 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎ𝑡(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) | 
| 288 | 285, 287 | nfralw 3310 | . . . . . . . . . 10
⊢
Ⅎ𝑡∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) | 
| 289 | 286, 288 | nfan 1898 | . . . . . . . . 9
⊢
Ⅎ𝑡(𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) | 
| 290 | 284, 289 | nfan 1898 | . . . . . . . 8
⊢
Ⅎ𝑡(𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) | 
| 291 |  | nfv 1913 | . . . . . . . 8
⊢
Ⅎ𝑡 𝑖 ∈ (1...𝑀) | 
| 292 | 290, 291 | nfan 1898 | . . . . . . 7
⊢
Ⅎ𝑡((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) | 
| 293 |  | stoweidlem31.11 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ⊆ (𝑇 ∖ 𝑈)) | 
| 294 | 293 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ 𝐵) → 𝐵 ⊆ (𝑇 ∖ 𝑈)) | 
| 295 |  | simpr 484 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ 𝐵) → 𝑡 ∈ 𝐵) | 
| 296 | 294, 295 | sseldd 3983 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ 𝐵) → 𝑡 ∈ (𝑇 ∖ 𝑈)) | 
| 297 | 280 | simp3d 1144 | . . . . . . . . . . . 12
⊢ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) | 
| 298 | 225, 297 | biimtrdi 253 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ ((𝐺 ∘ 𝑣)‘𝑖) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) | 
| 299 | 212, 298 | mpd 15 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) | 
| 300 | 299 | r19.21bi 3250 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) | 
| 301 | 296, 300 | syldan 591 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ 𝐵) → (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) | 
| 302 | 301 | ex 412 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → (𝑡 ∈ 𝐵 → (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) | 
| 303 | 292, 302 | ralrimi 3256 | . . . . . 6
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) | 
| 304 | 283, 303 | jca 511 | . . . . 5
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → (∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) | 
| 305 | 304 | ralrimiva 3145 | . . . 4
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) | 
| 306 | 192, 305 | jca 511 | . . 3
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → ((𝑙 ∘ (𝐺 ∘ 𝑣)):(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)))) | 
| 307 |  | feq1 6715 | . . . . 5
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → (𝑥:(1...𝑀)⟶𝑌 ↔ (𝑙 ∘ (𝐺 ∘ 𝑣)):(1...𝑀)⟶𝑌)) | 
| 308 |  | nfcv 2904 | . . . . . . . . 9
⊢
Ⅎ𝑡𝑥 | 
| 309 | 308, 265 | nfeq 2918 | . . . . . . . 8
⊢
Ⅎ𝑡 𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) | 
| 310 |  | fveq1 6904 | . . . . . . . . . 10
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → (𝑥‘𝑖) = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)) | 
| 311 | 310 | fveq1d 6907 | . . . . . . . . 9
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → ((𝑥‘𝑖)‘𝑡) = (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) | 
| 312 | 311 | breq1d 5152 | . . . . . . . 8
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → (((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ↔ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀))) | 
| 313 | 309, 312 | ralbid 3272 | . . . . . . 7
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → (∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ↔ ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀))) | 
| 314 | 311 | breq2d 5154 | . . . . . . . 8
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → ((1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡) ↔ (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) | 
| 315 | 309, 314 | ralbid 3272 | . . . . . . 7
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → (∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡) ↔ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) | 
| 316 | 313, 315 | anbi12d 632 | . . . . . 6
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → ((∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡)) ↔ (∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)))) | 
| 317 | 316 | ralbidv 3177 | . . . . 5
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡)) ↔ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)))) | 
| 318 | 307, 317 | anbi12d 632 | . . . 4
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → ((𝑥:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡))) ↔ ((𝑙 ∘ (𝐺 ∘ 𝑣)):(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))))) | 
| 319 | 318 | spcegv 3596 | . . 3
⊢ ((𝑙 ∘ (𝐺 ∘ 𝑣)) ∈ V → (((𝑙 ∘ (𝐺 ∘ 𝑣)):(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) → ∃𝑥(𝑥:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡))))) | 
| 320 | 17, 306, 319 | sylc 65 | . 2
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → ∃𝑥(𝑥:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡)))) | 
| 321 | 3, 320 | exlimddv 1934 | 1
⊢ (𝜑 → ∃𝑥(𝑥:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡)))) |