MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem8 Structured version   Visualization version   GIF version

Theorem mdetunilem8 22112
Description: Lemma for mdetuni 22115. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem8.id (𝜑 → (𝐷‘(1r𝐴)) = 0 )
Assertion
Ref Expression
mdetunilem8 ((𝜑𝐸:𝑁𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem mdetunilem8
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → 𝜑)
2 mdetuni.n . . . . . . . . 9 (𝜑𝑁 ∈ Fin)
3 enrefg 8976 . . . . . . . . 9 (𝑁 ∈ Fin → 𝑁𝑁)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁𝑁)
5 f1finf1o 9267 . . . . . . . 8 ((𝑁𝑁𝑁 ∈ Fin) → (𝐸:𝑁1-1𝑁𝐸:𝑁1-1-onto𝑁))
64, 2, 5syl2anc 584 . . . . . . 7 (𝜑 → (𝐸:𝑁1-1𝑁𝐸:𝑁1-1-onto𝑁))
76biimpa 477 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → 𝐸:𝑁1-1-onto𝑁)
8 mdetuni.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
9 mdetuni.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
109matring 21936 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
112, 8, 10syl2anc 584 . . . . . . . 8 (𝜑𝐴 ∈ Ring)
12 mdetuni.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
13 eqid 2732 . . . . . . . . 9 (1r𝐴) = (1r𝐴)
1412, 13ringidcl 20076 . . . . . . . 8 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
1511, 14syl 17 . . . . . . 7 (𝜑 → (1r𝐴) ∈ 𝐵)
1615adantr 481 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → (1r𝐴) ∈ 𝐵)
17 mdetuni.k . . . . . . 7 𝐾 = (Base‘𝑅)
18 mdetuni.0g . . . . . . 7 0 = (0g𝑅)
19 mdetuni.1r . . . . . . 7 1 = (1r𝑅)
20 mdetuni.pg . . . . . . 7 + = (+g𝑅)
21 mdetuni.tg . . . . . . 7 · = (.r𝑅)
22 mdetuni.ff . . . . . . 7 (𝜑𝐷:𝐵𝐾)
23 mdetuni.al . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
24 mdetuni.li . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
25 mdetuni.sc . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
269, 12, 17, 18, 19, 20, 21, 2, 8, 22, 23, 24, 25mdetunilem7 22111 . . . . . 6 ((𝜑𝐸:𝑁1-1-onto𝑁 ∧ (1r𝐴) ∈ 𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))))
271, 7, 16, 26syl3anc 1371 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))))
282adantr 481 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → 𝑁 ∈ Fin)
29283ad2ant1 1133 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑁 ∈ Fin)
308adantr 481 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → 𝑅 ∈ Ring)
31303ad2ant1 1133 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ Ring)
32 simp1r 1198 . . . . . . . . . 10 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝐸:𝑁1-1𝑁)
33 f1f 6784 . . . . . . . . . 10 (𝐸:𝑁1-1𝑁𝐸:𝑁𝑁)
3432, 33syl 17 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝐸:𝑁𝑁)
35 simp2 1137 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
3634, 35ffvelcdmd 7084 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → (𝐸𝑎) ∈ 𝑁)
37 simp3 1138 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
389, 19, 18, 29, 31, 36, 37, 13mat1ov 21941 . . . . . . 7 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → ((𝐸𝑎)(1r𝐴)𝑏) = if((𝐸𝑎) = 𝑏, 1 , 0 ))
3938mpoeq3dva 7482 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 )))
4039fveq2d 6892 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))))
41 mdetunilem8.id . . . . . . . 8 (𝜑 → (𝐷‘(1r𝐴)) = 0 )
4241adantr 481 . . . . . . 7 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(1r𝐴)) = 0 )
4342oveq2d 7421 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ))
44 zrhpsgnmhm 21128 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
458, 2, 44syl2anc 584 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
46 eqid 2732 . . . . . . . . . . 11 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
47 eqid 2732 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4847, 17mgpbas 19987 . . . . . . . . . . 11 𝐾 = (Base‘(mulGrp‘𝑅))
4946, 48mhmf 18673 . . . . . . . . . 10 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
5045, 49syl 17 . . . . . . . . 9 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
5150adantr 481 . . . . . . . 8 ((𝜑𝐸:𝑁1-1𝑁) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
52 eqid 2732 . . . . . . . . . . 11 (SymGrp‘𝑁) = (SymGrp‘𝑁)
5352, 46elsymgbas 19235 . . . . . . . . . 10 (𝑁 ∈ Fin → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
5428, 53syl 17 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
557, 54mpbird 256 . . . . . . . 8 ((𝜑𝐸:𝑁1-1𝑁) → 𝐸 ∈ (Base‘(SymGrp‘𝑁)))
5651, 55ffvelcdmd 7084 . . . . . . 7 ((𝜑𝐸:𝑁1-1𝑁) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) ∈ 𝐾)
5717, 21, 18ringrz 20101 . . . . . . 7 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) ∈ 𝐾) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ) = 0 )
5830, 56, 57syl2anc 584 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ) = 0 )
5943, 58eqtrd 2772 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))) = 0 )
6027, 40, 593eqtr3d 2780 . . . 4 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
6160ex 413 . . 3 (𝜑 → (𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
6261adantr 481 . 2 ((𝜑𝐸:𝑁𝑁) → (𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
63 dff13 7250 . . . . . 6 (𝐸:𝑁1-1𝑁 ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
64 ibar 529 . . . . . . 7 (𝐸:𝑁𝑁 → (∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))))
6564adantl 482 . . . . . 6 ((𝜑𝐸:𝑁𝑁) → (∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))))
6663, 65bitr4id 289 . . . . 5 ((𝜑𝐸:𝑁𝑁) → (𝐸:𝑁1-1𝑁 ↔ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
6766notbid 317 . . . 4 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 ↔ ¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
68 rexnal 3100 . . . . 5 (∃𝑐𝑁 ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
69 rexnal 3100 . . . . . . 7 (∃𝑑𝑁 ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
70 df-ne 2941 . . . . . . . . . 10 (𝑐𝑑 ↔ ¬ 𝑐 = 𝑑)
7170anbi2i 623 . . . . . . . . 9 (((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) ↔ ((𝐸𝑐) = (𝐸𝑑) ∧ ¬ 𝑐 = 𝑑))
72 annim 404 . . . . . . . . 9 (((𝐸𝑐) = (𝐸𝑑) ∧ ¬ 𝑐 = 𝑑) ↔ ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
7371, 72bitr2i 275 . . . . . . . 8 (¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7473rexbii 3094 . . . . . . 7 (∃𝑑𝑁 ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7569, 74bitr3i 276 . . . . . 6 (¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7675rexbii 3094 . . . . 5 (∃𝑐𝑁 ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7768, 76bitr3i 276 . . . 4 (¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7867, 77bitrdi 286 . . 3 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑)))
79 simprrl 779 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐸𝑐) = (𝐸𝑑))
80 fveqeq2 6897 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → ((𝐸𝑎) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
8180ifbid 4550 . . . . . . . . . . . 12 (𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
82 iftrue 4533 . . . . . . . . . . . 12 (𝑎 = 𝑐 → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
8381, 82eqtr4d 2775 . . . . . . . . . . 11 (𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
84 fveqeq2 6897 . . . . . . . . . . . . . . 15 (𝑎 = 𝑑 → ((𝐸𝑎) = 𝑏 ↔ (𝐸𝑑) = 𝑏))
8584ifbid 4550 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if((𝐸𝑑) = 𝑏, 1 , 0 ))
86 iftrue 4533 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if((𝐸𝑑) = 𝑏, 1 , 0 ))
8785, 86eqtr4d 2775 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
88 iffalse 4536 . . . . . . . . . . . . . 14 𝑎 = 𝑑 → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if((𝐸𝑎) = 𝑏, 1 , 0 ))
8988eqcomd 2738 . . . . . . . . . . . . 13 𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9087, 89pm2.61i 182 . . . . . . . . . . . 12 if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))
91 iffalse 4536 . . . . . . . . . . . 12 𝑎 = 𝑐 → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9290, 91eqtr4id 2791 . . . . . . . . . . 11 𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
9383, 92pm2.61i 182 . . . . . . . . . 10 if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
94 eqeq1 2736 . . . . . . . . . . . . . 14 ((𝐸𝑑) = (𝐸𝑐) → ((𝐸𝑑) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
9594eqcoms 2740 . . . . . . . . . . . . 13 ((𝐸𝑐) = (𝐸𝑑) → ((𝐸𝑑) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
9695ifbid 4550 . . . . . . . . . . . 12 ((𝐸𝑐) = (𝐸𝑑) → if((𝐸𝑑) = 𝑏, 1 , 0 ) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
9796ifeq1d 4546 . . . . . . . . . . 11 ((𝐸𝑐) = (𝐸𝑑) → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9897ifeq2d 4547 . . . . . . . . . 10 ((𝐸𝑐) = (𝐸𝑑) → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
9993, 98eqtrid 2784 . . . . . . . . 9 ((𝐸𝑐) = (𝐸𝑑) → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
10099mpoeq3dv 7484 . . . . . . . 8 ((𝐸𝑐) = (𝐸𝑑) → (𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))))
101100fveq2d 6892 . . . . . . 7 ((𝐸𝑐) = (𝐸𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))))
10279, 101syl 17 . . . . . 6 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))))
103 simpll 765 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝜑)
104 simprll 777 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑐𝑁)
105 simprlr 778 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑑𝑁)
106 simprrr 780 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑐𝑑)
107104, 105, 1063jca 1128 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝑐𝑁𝑑𝑁𝑐𝑑))
10817, 19ringidcl 20076 . . . . . . . . . 10 (𝑅 ∈ Ring → 1𝐾)
1098, 108syl 17 . . . . . . . . 9 (𝜑1𝐾)
11017, 18ring0cl 20077 . . . . . . . . . 10 (𝑅 ∈ Ring → 0𝐾)
1118, 110syl 17 . . . . . . . . 9 (𝜑0𝐾)
112109, 111ifcld 4573 . . . . . . . 8 (𝜑 → if((𝐸𝑐) = 𝑏, 1 , 0 ) ∈ 𝐾)
113112ad3antrrr 728 . . . . . . 7 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑏𝑁) → if((𝐸𝑐) = 𝑏, 1 , 0 ) ∈ 𝐾)
114 simp1ll 1236 . . . . . . . 8 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝜑)
115109, 111ifcld 4573 . . . . . . . 8 (𝜑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) ∈ 𝐾)
116114, 115syl 17 . . . . . . 7 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if((𝐸𝑎) = 𝑏, 1 , 0 ) ∈ 𝐾)
1179, 12, 17, 18, 19, 20, 21, 2, 8, 22, 23, 24, 25, 103, 107, 113, 116mdetunilem2 22106 . . . . . 6 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))) = 0 )
118102, 117eqtrd 2772 . . . . 5 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
119118expr 457 . . . 4 (((𝜑𝐸:𝑁𝑁) ∧ (𝑐𝑁𝑑𝑁)) → (((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
120119rexlimdvva 3211 . . 3 ((𝜑𝐸:𝑁𝑁) → (∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
12178, 120sylbid 239 . 2 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
12262, 121pm2.61d 179 1 ((𝜑𝐸:𝑁𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  cdif 3944  ifcif 4527  {csn 4627   class class class wbr 5147   × cxp 5673  cres 5677  ccom 5679  wf 6536  1-1wf1 6537  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  cmpo 7407  f cof 7664  cen 8932  Fincfn 8935  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  0gc0g 17381   MndHom cmhm 18665  SymGrpcsymg 19228  pmSgncpsgn 19351  mulGrpcmgp 19981  1rcur 19998  Ringcrg 20049  ℤRHomczrh 21040   Mat cmat 21898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-splice 14696  df-reverse 14705  df-s2 14795  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-efmnd 18746  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-gim 19127  df-cntz 19175  df-oppg 19204  df-symg 19229  df-pmtr 19304  df-psgn 19353  df-evpm 19354  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-dvr 20207  df-rnghom 20243  df-drng 20309  df-subrg 20353  df-lmod 20465  df-lss 20535  df-sra 20777  df-rgmod 20778  df-cnfld 20937  df-zring 21010  df-zrh 21044  df-dsmm 21278  df-frlm 21293  df-mamu 21877  df-mat 21899
This theorem is referenced by:  mdetunilem9  22113
  Copyright terms: Public domain W3C validator