MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem8 Structured version   Visualization version   GIF version

Theorem mdetunilem8 22513
Description: Lemma for mdetuni 22516. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem8.id (𝜑 → (𝐷‘(1r𝐴)) = 0 )
Assertion
Ref Expression
mdetunilem8 ((𝜑𝐸:𝑁𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem mdetunilem8
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → 𝜑)
2 mdetuni.n . . . . . . . . 9 (𝜑𝑁 ∈ Fin)
3 enrefg 8958 . . . . . . . . 9 (𝑁 ∈ Fin → 𝑁𝑁)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁𝑁)
5 f1finf1o 9223 . . . . . . . 8 ((𝑁𝑁𝑁 ∈ Fin) → (𝐸:𝑁1-1𝑁𝐸:𝑁1-1-onto𝑁))
64, 2, 5syl2anc 584 . . . . . . 7 (𝜑 → (𝐸:𝑁1-1𝑁𝐸:𝑁1-1-onto𝑁))
76biimpa 476 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → 𝐸:𝑁1-1-onto𝑁)
8 mdetuni.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
9 mdetuni.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
109matring 22337 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
112, 8, 10syl2anc 584 . . . . . . . 8 (𝜑𝐴 ∈ Ring)
12 mdetuni.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
13 eqid 2730 . . . . . . . . 9 (1r𝐴) = (1r𝐴)
1412, 13ringidcl 20181 . . . . . . . 8 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
1511, 14syl 17 . . . . . . 7 (𝜑 → (1r𝐴) ∈ 𝐵)
1615adantr 480 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → (1r𝐴) ∈ 𝐵)
17 mdetuni.k . . . . . . 7 𝐾 = (Base‘𝑅)
18 mdetuni.0g . . . . . . 7 0 = (0g𝑅)
19 mdetuni.1r . . . . . . 7 1 = (1r𝑅)
20 mdetuni.pg . . . . . . 7 + = (+g𝑅)
21 mdetuni.tg . . . . . . 7 · = (.r𝑅)
22 mdetuni.ff . . . . . . 7 (𝜑𝐷:𝐵𝐾)
23 mdetuni.al . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
24 mdetuni.li . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
25 mdetuni.sc . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
269, 12, 17, 18, 19, 20, 21, 2, 8, 22, 23, 24, 25mdetunilem7 22512 . . . . . 6 ((𝜑𝐸:𝑁1-1-onto𝑁 ∧ (1r𝐴) ∈ 𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))))
271, 7, 16, 26syl3anc 1373 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))))
282adantr 480 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → 𝑁 ∈ Fin)
29283ad2ant1 1133 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑁 ∈ Fin)
308adantr 480 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → 𝑅 ∈ Ring)
31303ad2ant1 1133 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ Ring)
32 simp1r 1199 . . . . . . . . . 10 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝐸:𝑁1-1𝑁)
33 f1f 6759 . . . . . . . . . 10 (𝐸:𝑁1-1𝑁𝐸:𝑁𝑁)
3432, 33syl 17 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝐸:𝑁𝑁)
35 simp2 1137 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
3634, 35ffvelcdmd 7060 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → (𝐸𝑎) ∈ 𝑁)
37 simp3 1138 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
389, 19, 18, 29, 31, 36, 37, 13mat1ov 22342 . . . . . . 7 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → ((𝐸𝑎)(1r𝐴)𝑏) = if((𝐸𝑎) = 𝑏, 1 , 0 ))
3938mpoeq3dva 7469 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 )))
4039fveq2d 6865 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))))
41 mdetunilem8.id . . . . . . . 8 (𝜑 → (𝐷‘(1r𝐴)) = 0 )
4241adantr 480 . . . . . . 7 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(1r𝐴)) = 0 )
4342oveq2d 7406 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ))
44 zrhpsgnmhm 21500 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
458, 2, 44syl2anc 584 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
46 eqid 2730 . . . . . . . . . . 11 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
47 eqid 2730 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4847, 17mgpbas 20061 . . . . . . . . . . 11 𝐾 = (Base‘(mulGrp‘𝑅))
4946, 48mhmf 18723 . . . . . . . . . 10 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
5045, 49syl 17 . . . . . . . . 9 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
5150adantr 480 . . . . . . . 8 ((𝜑𝐸:𝑁1-1𝑁) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
52 eqid 2730 . . . . . . . . . . 11 (SymGrp‘𝑁) = (SymGrp‘𝑁)
5352, 46elsymgbas 19311 . . . . . . . . . 10 (𝑁 ∈ Fin → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
5428, 53syl 17 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
557, 54mpbird 257 . . . . . . . 8 ((𝜑𝐸:𝑁1-1𝑁) → 𝐸 ∈ (Base‘(SymGrp‘𝑁)))
5651, 55ffvelcdmd 7060 . . . . . . 7 ((𝜑𝐸:𝑁1-1𝑁) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) ∈ 𝐾)
5717, 21, 18ringrz 20210 . . . . . . 7 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) ∈ 𝐾) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ) = 0 )
5830, 56, 57syl2anc 584 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ) = 0 )
5943, 58eqtrd 2765 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))) = 0 )
6027, 40, 593eqtr3d 2773 . . . 4 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
6160ex 412 . . 3 (𝜑 → (𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
6261adantr 480 . 2 ((𝜑𝐸:𝑁𝑁) → (𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
63 dff13 7232 . . . . . 6 (𝐸:𝑁1-1𝑁 ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
64 ibar 528 . . . . . . 7 (𝐸:𝑁𝑁 → (∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))))
6564adantl 481 . . . . . 6 ((𝜑𝐸:𝑁𝑁) → (∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))))
6663, 65bitr4id 290 . . . . 5 ((𝜑𝐸:𝑁𝑁) → (𝐸:𝑁1-1𝑁 ↔ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
6766notbid 318 . . . 4 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 ↔ ¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
68 rexnal 3083 . . . . 5 (∃𝑐𝑁 ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
69 rexnal 3083 . . . . . . 7 (∃𝑑𝑁 ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
70 df-ne 2927 . . . . . . . . . 10 (𝑐𝑑 ↔ ¬ 𝑐 = 𝑑)
7170anbi2i 623 . . . . . . . . 9 (((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) ↔ ((𝐸𝑐) = (𝐸𝑑) ∧ ¬ 𝑐 = 𝑑))
72 annim 403 . . . . . . . . 9 (((𝐸𝑐) = (𝐸𝑑) ∧ ¬ 𝑐 = 𝑑) ↔ ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
7371, 72bitr2i 276 . . . . . . . 8 (¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7473rexbii 3077 . . . . . . 7 (∃𝑑𝑁 ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7569, 74bitr3i 277 . . . . . 6 (¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7675rexbii 3077 . . . . 5 (∃𝑐𝑁 ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7768, 76bitr3i 277 . . . 4 (¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7867, 77bitrdi 287 . . 3 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑)))
79 simprrl 780 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐸𝑐) = (𝐸𝑑))
80 fveqeq2 6870 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → ((𝐸𝑎) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
8180ifbid 4515 . . . . . . . . . . . 12 (𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
82 iftrue 4497 . . . . . . . . . . . 12 (𝑎 = 𝑐 → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
8381, 82eqtr4d 2768 . . . . . . . . . . 11 (𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
84 fveqeq2 6870 . . . . . . . . . . . . . . 15 (𝑎 = 𝑑 → ((𝐸𝑎) = 𝑏 ↔ (𝐸𝑑) = 𝑏))
8584ifbid 4515 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if((𝐸𝑑) = 𝑏, 1 , 0 ))
86 iftrue 4497 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if((𝐸𝑑) = 𝑏, 1 , 0 ))
8785, 86eqtr4d 2768 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
88 iffalse 4500 . . . . . . . . . . . . . 14 𝑎 = 𝑑 → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if((𝐸𝑎) = 𝑏, 1 , 0 ))
8988eqcomd 2736 . . . . . . . . . . . . 13 𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9087, 89pm2.61i 182 . . . . . . . . . . . 12 if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))
91 iffalse 4500 . . . . . . . . . . . 12 𝑎 = 𝑐 → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9290, 91eqtr4id 2784 . . . . . . . . . . 11 𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
9383, 92pm2.61i 182 . . . . . . . . . 10 if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
94 eqeq1 2734 . . . . . . . . . . . . . 14 ((𝐸𝑑) = (𝐸𝑐) → ((𝐸𝑑) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
9594eqcoms 2738 . . . . . . . . . . . . 13 ((𝐸𝑐) = (𝐸𝑑) → ((𝐸𝑑) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
9695ifbid 4515 . . . . . . . . . . . 12 ((𝐸𝑐) = (𝐸𝑑) → if((𝐸𝑑) = 𝑏, 1 , 0 ) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
9796ifeq1d 4511 . . . . . . . . . . 11 ((𝐸𝑐) = (𝐸𝑑) → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9897ifeq2d 4512 . . . . . . . . . 10 ((𝐸𝑐) = (𝐸𝑑) → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
9993, 98eqtrid 2777 . . . . . . . . 9 ((𝐸𝑐) = (𝐸𝑑) → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
10099mpoeq3dv 7471 . . . . . . . 8 ((𝐸𝑐) = (𝐸𝑑) → (𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))))
101100fveq2d 6865 . . . . . . 7 ((𝐸𝑐) = (𝐸𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))))
10279, 101syl 17 . . . . . 6 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))))
103 simpll 766 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝜑)
104 simprll 778 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑐𝑁)
105 simprlr 779 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑑𝑁)
106 simprrr 781 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑐𝑑)
107104, 105, 1063jca 1128 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝑐𝑁𝑑𝑁𝑐𝑑))
10817, 19ringidcl 20181 . . . . . . . . . 10 (𝑅 ∈ Ring → 1𝐾)
1098, 108syl 17 . . . . . . . . 9 (𝜑1𝐾)
11017, 18ring0cl 20183 . . . . . . . . . 10 (𝑅 ∈ Ring → 0𝐾)
1118, 110syl 17 . . . . . . . . 9 (𝜑0𝐾)
112109, 111ifcld 4538 . . . . . . . 8 (𝜑 → if((𝐸𝑐) = 𝑏, 1 , 0 ) ∈ 𝐾)
113112ad3antrrr 730 . . . . . . 7 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑏𝑁) → if((𝐸𝑐) = 𝑏, 1 , 0 ) ∈ 𝐾)
114 simp1ll 1237 . . . . . . . 8 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝜑)
115109, 111ifcld 4538 . . . . . . . 8 (𝜑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) ∈ 𝐾)
116114, 115syl 17 . . . . . . 7 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if((𝐸𝑎) = 𝑏, 1 , 0 ) ∈ 𝐾)
1179, 12, 17, 18, 19, 20, 21, 2, 8, 22, 23, 24, 25, 103, 107, 113, 116mdetunilem2 22507 . . . . . 6 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))) = 0 )
118102, 117eqtrd 2765 . . . . 5 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
119118expr 456 . . . 4 (((𝜑𝐸:𝑁𝑁) ∧ (𝑐𝑁𝑑𝑁)) → (((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
120119rexlimdvva 3195 . . 3 ((𝜑𝐸:𝑁𝑁) → (∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
12178, 120sylbid 240 . 2 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
12262, 121pm2.61d 179 1 ((𝜑𝐸:𝑁𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  ifcif 4491  {csn 4592   class class class wbr 5110   × cxp 5639  cres 5643  ccom 5645  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cmpo 7392  f cof 7654  cen 8918  Fincfn 8921  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409   MndHom cmhm 18715  SymGrpcsymg 19306  pmSgncpsgn 19426  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  ℤRHomczrh 21416   Mat cmat 22301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-reverse 14731  df-s2 14821  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-efmnd 18803  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-gim 19198  df-cntz 19256  df-oppg 19285  df-symg 19307  df-pmtr 19379  df-psgn 19428  df-evpm 19429  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-dsmm 21648  df-frlm 21663  df-mamu 22285  df-mat 22302
This theorem is referenced by:  mdetunilem9  22514
  Copyright terms: Public domain W3C validator