MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem8 Structured version   Visualization version   GIF version

Theorem mdetunilem8 21768
Description: Lemma for mdetuni 21771. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem8.id (𝜑 → (𝐷‘(1r𝐴)) = 0 )
Assertion
Ref Expression
mdetunilem8 ((𝜑𝐸:𝑁𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem mdetunilem8
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → 𝜑)
2 mdetuni.n . . . . . . . . 9 (𝜑𝑁 ∈ Fin)
3 enrefg 8772 . . . . . . . . 9 (𝑁 ∈ Fin → 𝑁𝑁)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁𝑁)
5 f1finf1o 9046 . . . . . . . 8 ((𝑁𝑁𝑁 ∈ Fin) → (𝐸:𝑁1-1𝑁𝐸:𝑁1-1-onto𝑁))
64, 2, 5syl2anc 584 . . . . . . 7 (𝜑 → (𝐸:𝑁1-1𝑁𝐸:𝑁1-1-onto𝑁))
76biimpa 477 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → 𝐸:𝑁1-1-onto𝑁)
8 mdetuni.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
9 mdetuni.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
109matring 21592 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
112, 8, 10syl2anc 584 . . . . . . . 8 (𝜑𝐴 ∈ Ring)
12 mdetuni.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
13 eqid 2738 . . . . . . . . 9 (1r𝐴) = (1r𝐴)
1412, 13ringidcl 19807 . . . . . . . 8 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
1511, 14syl 17 . . . . . . 7 (𝜑 → (1r𝐴) ∈ 𝐵)
1615adantr 481 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → (1r𝐴) ∈ 𝐵)
17 mdetuni.k . . . . . . 7 𝐾 = (Base‘𝑅)
18 mdetuni.0g . . . . . . 7 0 = (0g𝑅)
19 mdetuni.1r . . . . . . 7 1 = (1r𝑅)
20 mdetuni.pg . . . . . . 7 + = (+g𝑅)
21 mdetuni.tg . . . . . . 7 · = (.r𝑅)
22 mdetuni.ff . . . . . . 7 (𝜑𝐷:𝐵𝐾)
23 mdetuni.al . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
24 mdetuni.li . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
25 mdetuni.sc . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
269, 12, 17, 18, 19, 20, 21, 2, 8, 22, 23, 24, 25mdetunilem7 21767 . . . . . 6 ((𝜑𝐸:𝑁1-1-onto𝑁 ∧ (1r𝐴) ∈ 𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))))
271, 7, 16, 26syl3anc 1370 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))))
282adantr 481 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → 𝑁 ∈ Fin)
29283ad2ant1 1132 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑁 ∈ Fin)
308adantr 481 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → 𝑅 ∈ Ring)
31303ad2ant1 1132 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ Ring)
32 simp1r 1197 . . . . . . . . . 10 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝐸:𝑁1-1𝑁)
33 f1f 6670 . . . . . . . . . 10 (𝐸:𝑁1-1𝑁𝐸:𝑁𝑁)
3432, 33syl 17 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝐸:𝑁𝑁)
35 simp2 1136 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
3634, 35ffvelrnd 6962 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → (𝐸𝑎) ∈ 𝑁)
37 simp3 1137 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
389, 19, 18, 29, 31, 36, 37, 13mat1ov 21597 . . . . . . 7 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → ((𝐸𝑎)(1r𝐴)𝑏) = if((𝐸𝑎) = 𝑏, 1 , 0 ))
3938mpoeq3dva 7352 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 )))
4039fveq2d 6778 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))))
41 mdetunilem8.id . . . . . . . 8 (𝜑 → (𝐷‘(1r𝐴)) = 0 )
4241adantr 481 . . . . . . 7 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(1r𝐴)) = 0 )
4342oveq2d 7291 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ))
44 zrhpsgnmhm 20789 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
458, 2, 44syl2anc 584 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
46 eqid 2738 . . . . . . . . . . 11 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
47 eqid 2738 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4847, 17mgpbas 19726 . . . . . . . . . . 11 𝐾 = (Base‘(mulGrp‘𝑅))
4946, 48mhmf 18435 . . . . . . . . . 10 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
5045, 49syl 17 . . . . . . . . 9 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
5150adantr 481 . . . . . . . 8 ((𝜑𝐸:𝑁1-1𝑁) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
52 eqid 2738 . . . . . . . . . . 11 (SymGrp‘𝑁) = (SymGrp‘𝑁)
5352, 46elsymgbas 18981 . . . . . . . . . 10 (𝑁 ∈ Fin → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
5428, 53syl 17 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
557, 54mpbird 256 . . . . . . . 8 ((𝜑𝐸:𝑁1-1𝑁) → 𝐸 ∈ (Base‘(SymGrp‘𝑁)))
5651, 55ffvelrnd 6962 . . . . . . 7 ((𝜑𝐸:𝑁1-1𝑁) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) ∈ 𝐾)
5717, 21, 18ringrz 19827 . . . . . . 7 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) ∈ 𝐾) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ) = 0 )
5830, 56, 57syl2anc 584 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ) = 0 )
5943, 58eqtrd 2778 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))) = 0 )
6027, 40, 593eqtr3d 2786 . . . 4 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
6160ex 413 . . 3 (𝜑 → (𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
6261adantr 481 . 2 ((𝜑𝐸:𝑁𝑁) → (𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
63 dff13 7128 . . . . . 6 (𝐸:𝑁1-1𝑁 ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
64 ibar 529 . . . . . . 7 (𝐸:𝑁𝑁 → (∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))))
6564adantl 482 . . . . . 6 ((𝜑𝐸:𝑁𝑁) → (∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))))
6663, 65bitr4id 290 . . . . 5 ((𝜑𝐸:𝑁𝑁) → (𝐸:𝑁1-1𝑁 ↔ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
6766notbid 318 . . . 4 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 ↔ ¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
68 rexnal 3169 . . . . 5 (∃𝑐𝑁 ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
69 rexnal 3169 . . . . . . 7 (∃𝑑𝑁 ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
70 df-ne 2944 . . . . . . . . . 10 (𝑐𝑑 ↔ ¬ 𝑐 = 𝑑)
7170anbi2i 623 . . . . . . . . 9 (((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) ↔ ((𝐸𝑐) = (𝐸𝑑) ∧ ¬ 𝑐 = 𝑑))
72 annim 404 . . . . . . . . 9 (((𝐸𝑐) = (𝐸𝑑) ∧ ¬ 𝑐 = 𝑑) ↔ ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
7371, 72bitr2i 275 . . . . . . . 8 (¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7473rexbii 3181 . . . . . . 7 (∃𝑑𝑁 ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7569, 74bitr3i 276 . . . . . 6 (¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7675rexbii 3181 . . . . 5 (∃𝑐𝑁 ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7768, 76bitr3i 276 . . . 4 (¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7867, 77bitrdi 287 . . 3 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑)))
79 simprrl 778 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐸𝑐) = (𝐸𝑑))
80 fveqeq2 6783 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → ((𝐸𝑎) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
8180ifbid 4482 . . . . . . . . . . . 12 (𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
82 iftrue 4465 . . . . . . . . . . . 12 (𝑎 = 𝑐 → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
8381, 82eqtr4d 2781 . . . . . . . . . . 11 (𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
84 fveqeq2 6783 . . . . . . . . . . . . . . 15 (𝑎 = 𝑑 → ((𝐸𝑎) = 𝑏 ↔ (𝐸𝑑) = 𝑏))
8584ifbid 4482 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if((𝐸𝑑) = 𝑏, 1 , 0 ))
86 iftrue 4465 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if((𝐸𝑑) = 𝑏, 1 , 0 ))
8785, 86eqtr4d 2781 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
88 iffalse 4468 . . . . . . . . . . . . . 14 𝑎 = 𝑑 → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if((𝐸𝑎) = 𝑏, 1 , 0 ))
8988eqcomd 2744 . . . . . . . . . . . . 13 𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9087, 89pm2.61i 182 . . . . . . . . . . . 12 if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))
91 iffalse 4468 . . . . . . . . . . . 12 𝑎 = 𝑐 → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9290, 91eqtr4id 2797 . . . . . . . . . . 11 𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
9383, 92pm2.61i 182 . . . . . . . . . 10 if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
94 eqeq1 2742 . . . . . . . . . . . . . 14 ((𝐸𝑑) = (𝐸𝑐) → ((𝐸𝑑) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
9594eqcoms 2746 . . . . . . . . . . . . 13 ((𝐸𝑐) = (𝐸𝑑) → ((𝐸𝑑) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
9695ifbid 4482 . . . . . . . . . . . 12 ((𝐸𝑐) = (𝐸𝑑) → if((𝐸𝑑) = 𝑏, 1 , 0 ) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
9796ifeq1d 4478 . . . . . . . . . . 11 ((𝐸𝑐) = (𝐸𝑑) → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9897ifeq2d 4479 . . . . . . . . . 10 ((𝐸𝑐) = (𝐸𝑑) → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
9993, 98eqtrid 2790 . . . . . . . . 9 ((𝐸𝑐) = (𝐸𝑑) → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
10099mpoeq3dv 7354 . . . . . . . 8 ((𝐸𝑐) = (𝐸𝑑) → (𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))))
101100fveq2d 6778 . . . . . . 7 ((𝐸𝑐) = (𝐸𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))))
10279, 101syl 17 . . . . . 6 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))))
103 simpll 764 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝜑)
104 simprll 776 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑐𝑁)
105 simprlr 777 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑑𝑁)
106 simprrr 779 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑐𝑑)
107104, 105, 1063jca 1127 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝑐𝑁𝑑𝑁𝑐𝑑))
10817, 19ringidcl 19807 . . . . . . . . . 10 (𝑅 ∈ Ring → 1𝐾)
1098, 108syl 17 . . . . . . . . 9 (𝜑1𝐾)
11017, 18ring0cl 19808 . . . . . . . . . 10 (𝑅 ∈ Ring → 0𝐾)
1118, 110syl 17 . . . . . . . . 9 (𝜑0𝐾)
112109, 111ifcld 4505 . . . . . . . 8 (𝜑 → if((𝐸𝑐) = 𝑏, 1 , 0 ) ∈ 𝐾)
113112ad3antrrr 727 . . . . . . 7 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑏𝑁) → if((𝐸𝑐) = 𝑏, 1 , 0 ) ∈ 𝐾)
114 simp1ll 1235 . . . . . . . 8 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝜑)
115109, 111ifcld 4505 . . . . . . . 8 (𝜑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) ∈ 𝐾)
116114, 115syl 17 . . . . . . 7 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if((𝐸𝑎) = 𝑏, 1 , 0 ) ∈ 𝐾)
1179, 12, 17, 18, 19, 20, 21, 2, 8, 22, 23, 24, 25, 103, 107, 113, 116mdetunilem2 21762 . . . . . 6 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))) = 0 )
118102, 117eqtrd 2778 . . . . 5 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
119118expr 457 . . . 4 (((𝜑𝐸:𝑁𝑁) ∧ (𝑐𝑁𝑑𝑁)) → (((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
120119rexlimdvva 3223 . . 3 ((𝜑𝐸:𝑁𝑁) → (∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
12178, 120sylbid 239 . 2 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
12262, 121pm2.61d 179 1 ((𝜑𝐸:𝑁𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cdif 3884  ifcif 4459  {csn 4561   class class class wbr 5074   × cxp 5587  cres 5591  ccom 5593  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  f cof 7531  cen 8730  Fincfn 8733  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  0gc0g 17150   MndHom cmhm 18428  SymGrpcsymg 18974  pmSgncpsgn 19097  mulGrpcmgp 19720  1rcur 19737  Ringcrg 19783  ℤRHomczrh 20701   Mat cmat 21554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-s2 14561  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-efmnd 18508  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-gim 18875  df-cntz 18923  df-oppg 18950  df-symg 18975  df-pmtr 19050  df-psgn 19099  df-evpm 19100  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-dsmm 20939  df-frlm 20954  df-mamu 21533  df-mat 21555
This theorem is referenced by:  mdetunilem9  21769
  Copyright terms: Public domain W3C validator