MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem8 Structured version   Visualization version   GIF version

Theorem mdetunilem8 22539
Description: Lemma for mdetuni 22542. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem8.id (𝜑 → (𝐷‘(1r𝐴)) = 0 )
Assertion
Ref Expression
mdetunilem8 ((𝜑𝐸:𝑁𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem mdetunilem8
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → 𝜑)
2 mdetuni.n . . . . . . . . 9 (𝜑𝑁 ∈ Fin)
3 enrefg 8932 . . . . . . . . 9 (𝑁 ∈ Fin → 𝑁𝑁)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁𝑁)
5 f1finf1o 9192 . . . . . . . 8 ((𝑁𝑁𝑁 ∈ Fin) → (𝐸:𝑁1-1𝑁𝐸:𝑁1-1-onto𝑁))
64, 2, 5syl2anc 584 . . . . . . 7 (𝜑 → (𝐸:𝑁1-1𝑁𝐸:𝑁1-1-onto𝑁))
76biimpa 476 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → 𝐸:𝑁1-1-onto𝑁)
8 mdetuni.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
9 mdetuni.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
109matring 22363 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
112, 8, 10syl2anc 584 . . . . . . . 8 (𝜑𝐴 ∈ Ring)
12 mdetuni.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
13 eqid 2729 . . . . . . . . 9 (1r𝐴) = (1r𝐴)
1412, 13ringidcl 20185 . . . . . . . 8 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
1511, 14syl 17 . . . . . . 7 (𝜑 → (1r𝐴) ∈ 𝐵)
1615adantr 480 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → (1r𝐴) ∈ 𝐵)
17 mdetuni.k . . . . . . 7 𝐾 = (Base‘𝑅)
18 mdetuni.0g . . . . . . 7 0 = (0g𝑅)
19 mdetuni.1r . . . . . . 7 1 = (1r𝑅)
20 mdetuni.pg . . . . . . 7 + = (+g𝑅)
21 mdetuni.tg . . . . . . 7 · = (.r𝑅)
22 mdetuni.ff . . . . . . 7 (𝜑𝐷:𝐵𝐾)
23 mdetuni.al . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
24 mdetuni.li . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
25 mdetuni.sc . . . . . . 7 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
269, 12, 17, 18, 19, 20, 21, 2, 8, 22, 23, 24, 25mdetunilem7 22538 . . . . . 6 ((𝜑𝐸:𝑁1-1-onto𝑁 ∧ (1r𝐴) ∈ 𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))))
271, 7, 16, 26syl3anc 1373 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))))
282adantr 480 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → 𝑁 ∈ Fin)
29283ad2ant1 1133 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑁 ∈ Fin)
308adantr 480 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → 𝑅 ∈ Ring)
31303ad2ant1 1133 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ Ring)
32 simp1r 1199 . . . . . . . . . 10 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝐸:𝑁1-1𝑁)
33 f1f 6738 . . . . . . . . . 10 (𝐸:𝑁1-1𝑁𝐸:𝑁𝑁)
3432, 33syl 17 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝐸:𝑁𝑁)
35 simp2 1137 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
3634, 35ffvelcdmd 7039 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → (𝐸𝑎) ∈ 𝑁)
37 simp3 1138 . . . . . . . 8 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
389, 19, 18, 29, 31, 36, 37, 13mat1ov 22368 . . . . . . 7 (((𝜑𝐸:𝑁1-1𝑁) ∧ 𝑎𝑁𝑏𝑁) → ((𝐸𝑎)(1r𝐴)𝑏) = if((𝐸𝑎) = 𝑏, 1 , 0 ))
3938mpoeq3dva 7446 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 )))
4039fveq2d 6844 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)(1r𝐴)𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))))
41 mdetunilem8.id . . . . . . . 8 (𝜑 → (𝐷‘(1r𝐴)) = 0 )
4241adantr 480 . . . . . . 7 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(1r𝐴)) = 0 )
4342oveq2d 7385 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ))
44 zrhpsgnmhm 21526 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
458, 2, 44syl2anc 584 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
46 eqid 2729 . . . . . . . . . . 11 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
47 eqid 2729 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4847, 17mgpbas 20065 . . . . . . . . . . 11 𝐾 = (Base‘(mulGrp‘𝑅))
4946, 48mhmf 18698 . . . . . . . . . 10 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
5045, 49syl 17 . . . . . . . . 9 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
5150adantr 480 . . . . . . . 8 ((𝜑𝐸:𝑁1-1𝑁) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
52 eqid 2729 . . . . . . . . . . 11 (SymGrp‘𝑁) = (SymGrp‘𝑁)
5352, 46elsymgbas 19288 . . . . . . . . . 10 (𝑁 ∈ Fin → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
5428, 53syl 17 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1𝑁) → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
557, 54mpbird 257 . . . . . . . 8 ((𝜑𝐸:𝑁1-1𝑁) → 𝐸 ∈ (Base‘(SymGrp‘𝑁)))
5651, 55ffvelcdmd 7039 . . . . . . 7 ((𝜑𝐸:𝑁1-1𝑁) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) ∈ 𝐾)
5717, 21, 18ringrz 20214 . . . . . . 7 ((𝑅 ∈ Ring ∧ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) ∈ 𝐾) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ) = 0 )
5830, 56, 57syl2anc 584 . . . . . 6 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · 0 ) = 0 )
5943, 58eqtrd 2764 . . . . 5 ((𝜑𝐸:𝑁1-1𝑁) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘(1r𝐴))) = 0 )
6027, 40, 593eqtr3d 2772 . . . 4 ((𝜑𝐸:𝑁1-1𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
6160ex 412 . . 3 (𝜑 → (𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
6261adantr 480 . 2 ((𝜑𝐸:𝑁𝑁) → (𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
63 dff13 7211 . . . . . 6 (𝐸:𝑁1-1𝑁 ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
64 ibar 528 . . . . . . 7 (𝐸:𝑁𝑁 → (∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))))
6564adantl 481 . . . . . 6 ((𝜑𝐸:𝑁𝑁) → (∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ (𝐸:𝑁𝑁 ∧ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))))
6663, 65bitr4id 290 . . . . 5 ((𝜑𝐸:𝑁𝑁) → (𝐸:𝑁1-1𝑁 ↔ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
6766notbid 318 . . . 4 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 ↔ ¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑)))
68 rexnal 3082 . . . . 5 (∃𝑐𝑁 ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
69 rexnal 3082 . . . . . . 7 (∃𝑑𝑁 ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
70 df-ne 2926 . . . . . . . . . 10 (𝑐𝑑 ↔ ¬ 𝑐 = 𝑑)
7170anbi2i 623 . . . . . . . . 9 (((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) ↔ ((𝐸𝑐) = (𝐸𝑑) ∧ ¬ 𝑐 = 𝑑))
72 annim 403 . . . . . . . . 9 (((𝐸𝑐) = (𝐸𝑑) ∧ ¬ 𝑐 = 𝑑) ↔ ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑))
7371, 72bitr2i 276 . . . . . . . 8 (¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7473rexbii 3076 . . . . . . 7 (∃𝑑𝑁 ¬ ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7569, 74bitr3i 277 . . . . . 6 (¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7675rexbii 3076 . . . . 5 (∃𝑐𝑁 ¬ ∀𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7768, 76bitr3i 277 . . . 4 (¬ ∀𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) → 𝑐 = 𝑑) ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))
7867, 77bitrdi 287 . . 3 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 ↔ ∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑)))
79 simprrl 780 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐸𝑐) = (𝐸𝑑))
80 fveqeq2 6849 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → ((𝐸𝑎) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
8180ifbid 4508 . . . . . . . . . . . 12 (𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
82 iftrue 4490 . . . . . . . . . . . 12 (𝑎 = 𝑐 → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
8381, 82eqtr4d 2767 . . . . . . . . . . 11 (𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
84 fveqeq2 6849 . . . . . . . . . . . . . . 15 (𝑎 = 𝑑 → ((𝐸𝑎) = 𝑏 ↔ (𝐸𝑑) = 𝑏))
8584ifbid 4508 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if((𝐸𝑑) = 𝑏, 1 , 0 ))
86 iftrue 4490 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if((𝐸𝑑) = 𝑏, 1 , 0 ))
8785, 86eqtr4d 2767 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
88 iffalse 4493 . . . . . . . . . . . . . 14 𝑎 = 𝑑 → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if((𝐸𝑎) = 𝑏, 1 , 0 ))
8988eqcomd 2735 . . . . . . . . . . . . 13 𝑎 = 𝑑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9087, 89pm2.61i 182 . . . . . . . . . . . 12 if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))
91 iffalse 4493 . . . . . . . . . . . 12 𝑎 = 𝑐 → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9290, 91eqtr4id 2783 . . . . . . . . . . 11 𝑎 = 𝑐 → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
9383, 92pm2.61i 182 . . . . . . . . . 10 if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
94 eqeq1 2733 . . . . . . . . . . . . . 14 ((𝐸𝑑) = (𝐸𝑐) → ((𝐸𝑑) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
9594eqcoms 2737 . . . . . . . . . . . . 13 ((𝐸𝑐) = (𝐸𝑑) → ((𝐸𝑑) = 𝑏 ↔ (𝐸𝑐) = 𝑏))
9695ifbid 4508 . . . . . . . . . . . 12 ((𝐸𝑐) = (𝐸𝑑) → if((𝐸𝑑) = 𝑏, 1 , 0 ) = if((𝐸𝑐) = 𝑏, 1 , 0 ))
9796ifeq1d 4504 . . . . . . . . . . 11 ((𝐸𝑐) = (𝐸𝑑) → if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )) = if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))
9897ifeq2d 4505 . . . . . . . . . 10 ((𝐸𝑐) = (𝐸𝑑) → if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑑) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
9993, 98eqtrid 2776 . . . . . . . . 9 ((𝐸𝑐) = (𝐸𝑑) → if((𝐸𝑎) = 𝑏, 1 , 0 ) = if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))
10099mpoeq3dv 7448 . . . . . . . 8 ((𝐸𝑐) = (𝐸𝑑) → (𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 )))))
101100fveq2d 6844 . . . . . . 7 ((𝐸𝑐) = (𝐸𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))))
10279, 101syl 17 . . . . . 6 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))))
103 simpll 766 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝜑)
104 simprll 778 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑐𝑁)
105 simprlr 779 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑑𝑁)
106 simprrr 781 . . . . . . . 8 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → 𝑐𝑑)
107104, 105, 1063jca 1128 . . . . . . 7 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝑐𝑁𝑑𝑁𝑐𝑑))
10817, 19ringidcl 20185 . . . . . . . . . 10 (𝑅 ∈ Ring → 1𝐾)
1098, 108syl 17 . . . . . . . . 9 (𝜑1𝐾)
11017, 18ring0cl 20187 . . . . . . . . . 10 (𝑅 ∈ Ring → 0𝐾)
1118, 110syl 17 . . . . . . . . 9 (𝜑0𝐾)
112109, 111ifcld 4531 . . . . . . . 8 (𝜑 → if((𝐸𝑐) = 𝑏, 1 , 0 ) ∈ 𝐾)
113112ad3antrrr 730 . . . . . . 7 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑏𝑁) → if((𝐸𝑐) = 𝑏, 1 , 0 ) ∈ 𝐾)
114 simp1ll 1237 . . . . . . . 8 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝜑)
115109, 111ifcld 4531 . . . . . . . 8 (𝜑 → if((𝐸𝑎) = 𝑏, 1 , 0 ) ∈ 𝐾)
116114, 115syl 17 . . . . . . 7 ((((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if((𝐸𝑎) = 𝑏, 1 , 0 ) ∈ 𝐾)
1179, 12, 17, 18, 19, 20, 21, 2, 8, 22, 23, 24, 25, 103, 107, 113, 116mdetunilem2 22533 . . . . . 6 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, if((𝐸𝑐) = 𝑏, 1 , 0 ), if(𝑎 = 𝑑, if((𝐸𝑐) = 𝑏, 1 , 0 ), if((𝐸𝑎) = 𝑏, 1 , 0 ))))) = 0 )
118102, 117eqtrd 2764 . . . . 5 (((𝜑𝐸:𝑁𝑁) ∧ ((𝑐𝑁𝑑𝑁) ∧ ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
119118expr 456 . . . 4 (((𝜑𝐸:𝑁𝑁) ∧ (𝑐𝑁𝑑𝑁)) → (((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
120119rexlimdvva 3192 . . 3 ((𝜑𝐸:𝑁𝑁) → (∃𝑐𝑁𝑑𝑁 ((𝐸𝑐) = (𝐸𝑑) ∧ 𝑐𝑑) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
12178, 120sylbid 240 . 2 ((𝜑𝐸:𝑁𝑁) → (¬ 𝐸:𝑁1-1𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 ))
12262, 121pm2.61d 179 1 ((𝜑𝐸:𝑁𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if((𝐸𝑎) = 𝑏, 1 , 0 ))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3908  ifcif 4484  {csn 4585   class class class wbr 5102   × cxp 5629  cres 5633  ccom 5635  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cmpo 7371  f cof 7631  cen 8892  Fincfn 8895  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  0gc0g 17378   MndHom cmhm 18690  SymGrpcsymg 19283  pmSgncpsgn 19403  mulGrpcmgp 20060  1rcur 20101  Ringcrg 20153  ℤRHomczrh 21441   Mat cmat 22327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-reverse 14700  df-s2 14790  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-efmnd 18778  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-gim 19173  df-cntz 19231  df-oppg 19260  df-symg 19284  df-pmtr 19356  df-psgn 19405  df-evpm 19406  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-drng 20651  df-lmod 20800  df-lss 20870  df-sra 21112  df-rgmod 21113  df-cnfld 21297  df-zring 21389  df-zrh 21445  df-dsmm 21674  df-frlm 21689  df-mamu 22311  df-mat 22328
This theorem is referenced by:  mdetunilem9  22540
  Copyright terms: Public domain W3C validator