Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabfodom Structured version   Visualization version   GIF version

Theorem rabfodom 32533
Description: Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Hypotheses
Ref Expression
rabfodom.1 ((𝜑𝑥𝐴𝑦 = (𝐹𝑥)) → (𝜒𝜓))
rabfodom.2 (𝜑𝐴𝑉)
rabfodom.3 (𝜑𝐹:𝐴onto𝐵)
Assertion
Ref Expression
rabfodom (𝜑 → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem rabfodom
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . . . 6 𝑎 ∈ V
21rabex 5345 . . . . 5 {𝑥𝑎𝜓} ∈ V
3 eqid 2735 . . . . . 6 (𝑥𝑎 ↦ (𝐹𝑥)) = (𝑥𝑎 ↦ (𝐹𝑥))
4 rabfodom.3 . . . . . . . . . . . 12 (𝜑𝐹:𝐴onto𝐵)
5 fof 6821 . . . . . . . . . . . 12 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
64, 5syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
76feqmptd 6977 . . . . . . . . . 10 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
87ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
98reseq1d 5999 . . . . . . . 8 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝐹𝑎) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ 𝑎))
10 elpwi 4612 . . . . . . . . . 10 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
1110ad2antlr 727 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → 𝑎𝐴)
1211resmptd 6060 . . . . . . . 8 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ 𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)))
139, 12eqtrd 2775 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝐹𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)))
14 f1oeq1 6837 . . . . . . . 8 ((𝐹𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)) → ((𝐹𝑎):𝑎1-1-onto𝐵 ↔ (𝑥𝑎 ↦ (𝐹𝑥)):𝑎1-1-onto𝐵))
1514biimpa 476 . . . . . . 7 (((𝐹𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝑥𝑎 ↦ (𝐹𝑥)):𝑎1-1-onto𝐵)
1613, 15sylancom 588 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝑥𝑎 ↦ (𝐹𝑥)):𝑎1-1-onto𝐵)
17 simp1ll 1235 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝜑)
18113ad2ant1 1132 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑎𝐴)
19 simp2 1136 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑥𝑎)
2018, 19sseldd 3996 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑥𝐴)
21 simp3 1137 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
22 rabfodom.1 . . . . . . 7 ((𝜑𝑥𝐴𝑦 = (𝐹𝑥)) → (𝜒𝜓))
2317, 20, 21, 22syl3anc 1370 . . . . . 6 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → (𝜒𝜓))
243, 16, 23f1oresrab 7147 . . . . 5 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → ((𝑥𝑎 ↦ (𝐹𝑥)) ↾ {𝑥𝑎𝜓}):{𝑥𝑎𝜓}–1-1-onto→{𝑦𝐵𝜒})
25 f1oeng 9010 . . . . 5 (({𝑥𝑎𝜓} ∈ V ∧ ((𝑥𝑎 ↦ (𝐹𝑥)) ↾ {𝑥𝑎𝜓}):{𝑥𝑎𝜓}–1-1-onto→{𝑦𝐵𝜒}) → {𝑥𝑎𝜓} ≈ {𝑦𝐵𝜒})
262, 24, 25sylancr 587 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝑎𝜓} ≈ {𝑦𝐵𝜒})
2726ensymd 9044 . . 3 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑦𝐵𝜒} ≈ {𝑥𝑎𝜓})
28 rabfodom.2 . . . . . 6 (𝜑𝐴𝑉)
29 rabexg 5343 . . . . . 6 (𝐴𝑉 → {𝑥𝐴𝜓} ∈ V)
3028, 29syl 17 . . . . 5 (𝜑 → {𝑥𝐴𝜓} ∈ V)
3130ad2antrr 726 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝐴𝜓} ∈ V)
32 rabss2 4088 . . . . 5 (𝑎𝐴 → {𝑥𝑎𝜓} ⊆ {𝑥𝐴𝜓})
3311, 32syl 17 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝑎𝜓} ⊆ {𝑥𝐴𝜓})
34 ssdomg 9039 . . . 4 ({𝑥𝐴𝜓} ∈ V → ({𝑥𝑎𝜓} ⊆ {𝑥𝐴𝜓} → {𝑥𝑎𝜓} ≼ {𝑥𝐴𝜓}))
3531, 33, 34sylc 65 . . 3 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝑎𝜓} ≼ {𝑥𝐴𝜓})
36 endomtr 9051 . . 3 (({𝑦𝐵𝜒} ≈ {𝑥𝑎𝜓} ∧ {𝑥𝑎𝜓} ≼ {𝑥𝐴𝜓}) → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
3727, 35, 36syl2anc 584 . 2 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
38 foresf1o 32532 . . 3 ((𝐴𝑉𝐹:𝐴onto𝐵) → ∃𝑎 ∈ 𝒫 𝐴(𝐹𝑎):𝑎1-1-onto𝐵)
3928, 4, 38syl2anc 584 . 2 (𝜑 → ∃𝑎 ∈ 𝒫 𝐴(𝐹𝑎):𝑎1-1-onto𝐵)
4037, 39r19.29a 3160 1 (𝜑 → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  {crab 3433  Vcvv 3478  wss 3963  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  cres 5691  wf 6559  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563  cen 8981  cdom 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679  ax-ac2 10501
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-r1 9802  df-rank 9803  df-card 9977  df-ac 10154
This theorem is referenced by:  locfinreflem  33801
  Copyright terms: Public domain W3C validator