| Step | Hyp | Ref
| Expression |
| 1 | | vex 3468 |
. . . . . 6
⊢ 𝑎 ∈ V |
| 2 | 1 | rabex 5314 |
. . . . 5
⊢ {𝑥 ∈ 𝑎 ∣ 𝜓} ∈ V |
| 3 | | eqid 2736 |
. . . . . 6
⊢ (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)) |
| 4 | | rabfodom.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) |
| 5 | | fof 6795 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 7 | 6 | feqmptd 6952 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 8 | 7 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 9 | 8 | reseq1d 5970 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → (𝐹 ↾ 𝑎) = ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ 𝑎)) |
| 10 | | elpwi 4587 |
. . . . . . . . . 10
⊢ (𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴) |
| 11 | 10 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → 𝑎 ⊆ 𝐴) |
| 12 | 11 | resmptd 6032 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ 𝑎) = (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥))) |
| 13 | 9, 12 | eqtrd 2771 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → (𝐹 ↾ 𝑎) = (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥))) |
| 14 | | f1oeq1 6811 |
. . . . . . . 8
⊢ ((𝐹 ↾ 𝑎) = (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)) → ((𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵 ↔ (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)):𝑎–1-1-onto→𝐵)) |
| 15 | 14 | biimpa 476 |
. . . . . . 7
⊢ (((𝐹 ↾ 𝑎) = (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)):𝑎–1-1-onto→𝐵) |
| 16 | 13, 15 | sylancom 588 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)):𝑎–1-1-onto→𝐵) |
| 17 | | simp1ll 1237 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = (𝐹‘𝑥)) → 𝜑) |
| 18 | 11 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = (𝐹‘𝑥)) → 𝑎 ⊆ 𝐴) |
| 19 | | simp2 1137 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = (𝐹‘𝑥)) → 𝑥 ∈ 𝑎) |
| 20 | 18, 19 | sseldd 3964 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = (𝐹‘𝑥)) → 𝑥 ∈ 𝐴) |
| 21 | | simp3 1138 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = (𝐹‘𝑥)) → 𝑦 = (𝐹‘𝑥)) |
| 22 | | rabfodom.1 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) → (𝜒 ↔ 𝜓)) |
| 23 | 17, 20, 21, 22 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = (𝐹‘𝑥)) → (𝜒 ↔ 𝜓)) |
| 24 | 3, 16, 23 | f1oresrab 7122 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → ((𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)) ↾ {𝑥 ∈ 𝑎 ∣ 𝜓}):{𝑥 ∈ 𝑎 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
| 25 | | f1oeng 8990 |
. . . . 5
⊢ (({𝑥 ∈ 𝑎 ∣ 𝜓} ∈ V ∧ ((𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)) ↾ {𝑥 ∈ 𝑎 ∣ 𝜓}):{𝑥 ∈ 𝑎 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) → {𝑥 ∈ 𝑎 ∣ 𝜓} ≈ {𝑦 ∈ 𝐵 ∣ 𝜒}) |
| 26 | 2, 24, 25 | sylancr 587 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → {𝑥 ∈ 𝑎 ∣ 𝜓} ≈ {𝑦 ∈ 𝐵 ∣ 𝜒}) |
| 27 | 26 | ensymd 9024 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → {𝑦 ∈ 𝐵 ∣ 𝜒} ≈ {𝑥 ∈ 𝑎 ∣ 𝜓}) |
| 28 | | rabfodom.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 29 | | rabexg 5312 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 30 | 28, 29 | syl 17 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 31 | 30 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 32 | | rabss2 4058 |
. . . . 5
⊢ (𝑎 ⊆ 𝐴 → {𝑥 ∈ 𝑎 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 33 | 11, 32 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → {𝑥 ∈ 𝑎 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 34 | | ssdomg 9019 |
. . . 4
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V → ({𝑥 ∈ 𝑎 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} → {𝑥 ∈ 𝑎 ∣ 𝜓} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓})) |
| 35 | 31, 33, 34 | sylc 65 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → {𝑥 ∈ 𝑎 ∣ 𝜓} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 36 | | endomtr 9031 |
. . 3
⊢ (({𝑦 ∈ 𝐵 ∣ 𝜒} ≈ {𝑥 ∈ 𝑎 ∣ 𝜓} ∧ {𝑥 ∈ 𝑎 ∣ 𝜓} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) → {𝑦 ∈ 𝐵 ∣ 𝜒} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 37 | 27, 35, 36 | syl2anc 584 |
. 2
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → {𝑦 ∈ 𝐵 ∣ 𝜒} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 38 | | foresf1o 32490 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ∃𝑎 ∈ 𝒫 𝐴(𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) |
| 39 | 28, 4, 38 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ 𝒫 𝐴(𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) |
| 40 | 37, 39 | r19.29a 3149 |
1
⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) |