Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabfodom Structured version   Visualization version   GIF version

Theorem rabfodom 31432
Description: Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Hypotheses
Ref Expression
rabfodom.1 ((𝜑𝑥𝐴𝑦 = (𝐹𝑥)) → (𝜒𝜓))
rabfodom.2 (𝜑𝐴𝑉)
rabfodom.3 (𝜑𝐹:𝐴onto𝐵)
Assertion
Ref Expression
rabfodom (𝜑 → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem rabfodom
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3449 . . . . . 6 𝑎 ∈ V
21rabex 5289 . . . . 5 {𝑥𝑎𝜓} ∈ V
3 eqid 2736 . . . . . 6 (𝑥𝑎 ↦ (𝐹𝑥)) = (𝑥𝑎 ↦ (𝐹𝑥))
4 rabfodom.3 . . . . . . . . . . . 12 (𝜑𝐹:𝐴onto𝐵)
5 fof 6756 . . . . . . . . . . . 12 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
64, 5syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
76feqmptd 6910 . . . . . . . . . 10 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
87ad2antrr 724 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
98reseq1d 5936 . . . . . . . 8 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝐹𝑎) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ 𝑎))
10 elpwi 4567 . . . . . . . . . 10 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
1110ad2antlr 725 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → 𝑎𝐴)
1211resmptd 5994 . . . . . . . 8 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ 𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)))
139, 12eqtrd 2776 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝐹𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)))
14 f1oeq1 6772 . . . . . . . 8 ((𝐹𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)) → ((𝐹𝑎):𝑎1-1-onto𝐵 ↔ (𝑥𝑎 ↦ (𝐹𝑥)):𝑎1-1-onto𝐵))
1514biimpa 477 . . . . . . 7 (((𝐹𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝑥𝑎 ↦ (𝐹𝑥)):𝑎1-1-onto𝐵)
1613, 15sylancom 588 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝑥𝑎 ↦ (𝐹𝑥)):𝑎1-1-onto𝐵)
17 simp1ll 1236 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝜑)
18113ad2ant1 1133 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑎𝐴)
19 simp2 1137 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑥𝑎)
2018, 19sseldd 3945 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑥𝐴)
21 simp3 1138 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
22 rabfodom.1 . . . . . . 7 ((𝜑𝑥𝐴𝑦 = (𝐹𝑥)) → (𝜒𝜓))
2317, 20, 21, 22syl3anc 1371 . . . . . 6 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → (𝜒𝜓))
243, 16, 23f1oresrab 7073 . . . . 5 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → ((𝑥𝑎 ↦ (𝐹𝑥)) ↾ {𝑥𝑎𝜓}):{𝑥𝑎𝜓}–1-1-onto→{𝑦𝐵𝜒})
25 f1oeng 8911 . . . . 5 (({𝑥𝑎𝜓} ∈ V ∧ ((𝑥𝑎 ↦ (𝐹𝑥)) ↾ {𝑥𝑎𝜓}):{𝑥𝑎𝜓}–1-1-onto→{𝑦𝐵𝜒}) → {𝑥𝑎𝜓} ≈ {𝑦𝐵𝜒})
262, 24, 25sylancr 587 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝑎𝜓} ≈ {𝑦𝐵𝜒})
2726ensymd 8945 . . 3 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑦𝐵𝜒} ≈ {𝑥𝑎𝜓})
28 rabfodom.2 . . . . . 6 (𝜑𝐴𝑉)
29 rabexg 5288 . . . . . 6 (𝐴𝑉 → {𝑥𝐴𝜓} ∈ V)
3028, 29syl 17 . . . . 5 (𝜑 → {𝑥𝐴𝜓} ∈ V)
3130ad2antrr 724 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝐴𝜓} ∈ V)
32 rabss2 4035 . . . . 5 (𝑎𝐴 → {𝑥𝑎𝜓} ⊆ {𝑥𝐴𝜓})
3311, 32syl 17 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝑎𝜓} ⊆ {𝑥𝐴𝜓})
34 ssdomg 8940 . . . 4 ({𝑥𝐴𝜓} ∈ V → ({𝑥𝑎𝜓} ⊆ {𝑥𝐴𝜓} → {𝑥𝑎𝜓} ≼ {𝑥𝐴𝜓}))
3531, 33, 34sylc 65 . . 3 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝑎𝜓} ≼ {𝑥𝐴𝜓})
36 endomtr 8952 . . 3 (({𝑦𝐵𝜒} ≈ {𝑥𝑎𝜓} ∧ {𝑥𝑎𝜓} ≼ {𝑥𝐴𝜓}) → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
3727, 35, 36syl2anc 584 . 2 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
38 foresf1o 31431 . . 3 ((𝐴𝑉𝐹:𝐴onto𝐵) → ∃𝑎 ∈ 𝒫 𝐴(𝐹𝑎):𝑎1-1-onto𝐵)
3928, 4, 38syl2anc 584 . 2 (𝜑 → ∃𝑎 ∈ 𝒫 𝐴(𝐹𝑎):𝑎1-1-onto𝐵)
4037, 39r19.29a 3159 1 (𝜑 → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  𝒫 cpw 4560   class class class wbr 5105  cmpt 5188  cres 5635  wf 6492  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496  cen 8880  cdom 8881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-reg 9528  ax-inf2 9577  ax-ac2 10399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-r1 9700  df-rank 9701  df-card 9875  df-ac 10052
This theorem is referenced by:  locfinreflem  32421
  Copyright terms: Public domain W3C validator