| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | vex 3484 | . . . . . 6
⊢ 𝑎 ∈ V | 
| 2 | 1 | rabex 5339 | . . . . 5
⊢ {𝑥 ∈ 𝑎 ∣ 𝜓} ∈ V | 
| 3 |  | eqid 2737 | . . . . . 6
⊢ (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)) | 
| 4 |  | rabfodom.3 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) | 
| 5 |  | fof 6820 | . . . . . . . . . . . 12
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | 
| 6 | 4, 5 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| 7 | 6 | feqmptd 6977 | . . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | 
| 8 | 7 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | 
| 9 | 8 | reseq1d 5996 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → (𝐹 ↾ 𝑎) = ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ 𝑎)) | 
| 10 |  | elpwi 4607 | . . . . . . . . . 10
⊢ (𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴) | 
| 11 | 10 | ad2antlr 727 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → 𝑎 ⊆ 𝐴) | 
| 12 | 11 | resmptd 6058 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ 𝑎) = (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥))) | 
| 13 | 9, 12 | eqtrd 2777 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → (𝐹 ↾ 𝑎) = (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥))) | 
| 14 |  | f1oeq1 6836 | . . . . . . . 8
⊢ ((𝐹 ↾ 𝑎) = (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)) → ((𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵 ↔ (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)):𝑎–1-1-onto→𝐵)) | 
| 15 | 14 | biimpa 476 | . . . . . . 7
⊢ (((𝐹 ↾ 𝑎) = (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)):𝑎–1-1-onto→𝐵) | 
| 16 | 13, 15 | sylancom 588 | . . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → (𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)):𝑎–1-1-onto→𝐵) | 
| 17 |  | simp1ll 1237 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = (𝐹‘𝑥)) → 𝜑) | 
| 18 | 11 | 3ad2ant1 1134 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = (𝐹‘𝑥)) → 𝑎 ⊆ 𝐴) | 
| 19 |  | simp2 1138 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = (𝐹‘𝑥)) → 𝑥 ∈ 𝑎) | 
| 20 | 18, 19 | sseldd 3984 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = (𝐹‘𝑥)) → 𝑥 ∈ 𝐴) | 
| 21 |  | simp3 1139 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = (𝐹‘𝑥)) → 𝑦 = (𝐹‘𝑥)) | 
| 22 |  | rabfodom.1 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) → (𝜒 ↔ 𝜓)) | 
| 23 | 17, 20, 21, 22 | syl3anc 1373 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = (𝐹‘𝑥)) → (𝜒 ↔ 𝜓)) | 
| 24 | 3, 16, 23 | f1oresrab 7147 | . . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → ((𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)) ↾ {𝑥 ∈ 𝑎 ∣ 𝜓}):{𝑥 ∈ 𝑎 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | 
| 25 |  | f1oeng 9011 | . . . . 5
⊢ (({𝑥 ∈ 𝑎 ∣ 𝜓} ∈ V ∧ ((𝑥 ∈ 𝑎 ↦ (𝐹‘𝑥)) ↾ {𝑥 ∈ 𝑎 ∣ 𝜓}):{𝑥 ∈ 𝑎 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) → {𝑥 ∈ 𝑎 ∣ 𝜓} ≈ {𝑦 ∈ 𝐵 ∣ 𝜒}) | 
| 26 | 2, 24, 25 | sylancr 587 | . . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → {𝑥 ∈ 𝑎 ∣ 𝜓} ≈ {𝑦 ∈ 𝐵 ∣ 𝜒}) | 
| 27 | 26 | ensymd 9045 | . . 3
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → {𝑦 ∈ 𝐵 ∣ 𝜒} ≈ {𝑥 ∈ 𝑎 ∣ 𝜓}) | 
| 28 |  | rabfodom.2 | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 29 |  | rabexg 5337 | . . . . . 6
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | 
| 30 | 28, 29 | syl 17 | . . . . 5
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | 
| 31 | 30 | ad2antrr 726 | . . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | 
| 32 |  | rabss2 4078 | . . . . 5
⊢ (𝑎 ⊆ 𝐴 → {𝑥 ∈ 𝑎 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) | 
| 33 | 11, 32 | syl 17 | . . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → {𝑥 ∈ 𝑎 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) | 
| 34 |  | ssdomg 9040 | . . . 4
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V → ({𝑥 ∈ 𝑎 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} → {𝑥 ∈ 𝑎 ∣ 𝜓} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓})) | 
| 35 | 31, 33, 34 | sylc 65 | . . 3
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → {𝑥 ∈ 𝑎 ∣ 𝜓} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) | 
| 36 |  | endomtr 9052 | . . 3
⊢ (({𝑦 ∈ 𝐵 ∣ 𝜒} ≈ {𝑥 ∈ 𝑎 ∣ 𝜓} ∧ {𝑥 ∈ 𝑎 ∣ 𝜓} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) → {𝑦 ∈ 𝐵 ∣ 𝜒} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) | 
| 37 | 27, 35, 36 | syl2anc 584 | . 2
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) → {𝑦 ∈ 𝐵 ∣ 𝜒} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) | 
| 38 |  | foresf1o 32523 | . . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ∃𝑎 ∈ 𝒫 𝐴(𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) | 
| 39 | 28, 4, 38 | syl2anc 584 | . 2
⊢ (𝜑 → ∃𝑎 ∈ 𝒫 𝐴(𝐹 ↾ 𝑎):𝑎–1-1-onto→𝐵) | 
| 40 | 37, 39 | r19.29a 3162 | 1
⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} ≼ {𝑥 ∈ 𝐴 ∣ 𝜓}) |