Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnv Structured version   Visualization version   GIF version

Theorem ltrncnv 40111
Description: The converse of a lattice translation is a lattice translation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ltrncnv.h 𝐻 = (LHyp‘𝐾)
ltrncnv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)

Proof of Theorem ltrncnv
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrncnv.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2735 . . . 4 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
3 ltrncnv.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3ltrnldil 40087 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
51, 2ldilcnv 40080 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
64, 5syldan 591 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
7 simp1 1136 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇))
8 simp1l 1198 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simp1r 1199 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐹𝑇)
10 simp2l 1200 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑝 ∈ (Atoms‘𝐾))
11 simp3l 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑝(le‘𝐾)𝑊)
12 eqid 2735 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
13 eqid 2735 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
1412, 13, 1, 3ltrncnvel 40107 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑝)(le‘𝐾)𝑊))
158, 9, 10, 11, 14syl112anc 1376 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑝) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑝)(le‘𝐾)𝑊))
16 simp2r 1201 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑞 ∈ (Atoms‘𝐾))
17 simp3r 1203 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑞(le‘𝐾)𝑊)
1812, 13, 1, 3ltrncnvel 40107 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑞) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑞)(le‘𝐾)𝑊))
198, 9, 16, 17, 18syl112anc 1376 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑞) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑞)(le‘𝐾)𝑊))
20 eqid 2735 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
21 eqid 2735 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
2212, 20, 21, 13, 1, 3ltrnu 40086 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ((𝐹𝑝) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑝)(le‘𝐾)𝑊) ∧ ((𝐹𝑞) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑞)(le‘𝐾)𝑊)) → (((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝)))(meet‘𝐾)𝑊) = (((𝐹𝑞)(join‘𝐾)(𝐹‘(𝐹𝑞)))(meet‘𝐾)𝑊))
237, 15, 19, 22syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝)))(meet‘𝐾)𝑊) = (((𝐹𝑞)(join‘𝐾)(𝐹‘(𝐹𝑞)))(meet‘𝐾)𝑊))
24 eqid 2735 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
2524, 1, 3ltrn1o 40089 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
26253ad2ant1 1133 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
2724, 13atbase 39253 . . . . . . . . . 10 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
2810, 27syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑝 ∈ (Base‘𝐾))
29 f1ocnvfv2 7269 . . . . . . . . 9 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑝)) = 𝑝)
3026, 28, 29syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐹‘(𝐹𝑝)) = 𝑝)
3130oveq2d 7419 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝))) = ((𝐹𝑝)(join‘𝐾)𝑝))
32 simp1ll 1237 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐾 ∈ HL)
3312, 13, 1, 3ltrncnvat 40106 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑝 ∈ (Atoms‘𝐾)) → (𝐹𝑝) ∈ (Atoms‘𝐾))
348, 9, 10, 33syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐹𝑝) ∈ (Atoms‘𝐾))
3520, 13hlatjcom 39332 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝐹𝑝) ∈ (Atoms‘𝐾) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝐹𝑝)(join‘𝐾)𝑝) = (𝑝(join‘𝐾)(𝐹𝑝)))
3632, 34, 10, 35syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑝)(join‘𝐾)𝑝) = (𝑝(join‘𝐾)(𝐹𝑝)))
3731, 36eqtrd 2770 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝))) = (𝑝(join‘𝐾)(𝐹𝑝)))
3837oveq1d 7418 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝)))(meet‘𝐾)𝑊) = ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊))
3924, 13atbase 39253 . . . . . . . . . 10 (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ (Base‘𝐾))
4016, 39syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑞 ∈ (Base‘𝐾))
41 f1ocnvfv2 7269 . . . . . . . . 9 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑞)) = 𝑞)
4226, 40, 41syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐹‘(𝐹𝑞)) = 𝑞)
4342oveq2d 7419 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑞)(join‘𝐾)(𝐹‘(𝐹𝑞))) = ((𝐹𝑞)(join‘𝐾)𝑞))
4412, 13, 1, 3ltrncnvat 40106 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑞 ∈ (Atoms‘𝐾)) → (𝐹𝑞) ∈ (Atoms‘𝐾))
458, 9, 16, 44syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐹𝑞) ∈ (Atoms‘𝐾))
4620, 13hlatjcom 39332 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝐹𝑞) ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝐹𝑞)(join‘𝐾)𝑞) = (𝑞(join‘𝐾)(𝐹𝑞)))
4732, 45, 16, 46syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑞)(join‘𝐾)𝑞) = (𝑞(join‘𝐾)(𝐹𝑞)))
4843, 47eqtrd 2770 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑞)(join‘𝐾)(𝐹‘(𝐹𝑞))) = (𝑞(join‘𝐾)(𝐹𝑞)))
4948oveq1d 7418 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (((𝐹𝑞)(join‘𝐾)(𝐹‘(𝐹𝑞)))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊))
5023, 38, 493eqtr3d 2778 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊))
51503exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊))))
5251ralrimivv 3185 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊)))
5312, 20, 21, 13, 1, 2, 3isltrn 40084 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊)))))
5453adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊)))))
556, 52, 54mpbir2and 713 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  ccnv 5653  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  Basecbs 17226  lecple 17276  joincjn 18321  meetcmee 18322  Atomscatm 39227  HLchlt 39314  LHypclh 39949  LDilcldil 40065  LTrncltrn 40066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-p0 18433  df-lat 18440  df-oposet 39140  df-ol 39142  df-oml 39143  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-lhyp 39953  df-laut 39954  df-ldil 40069  df-ltrn 40070
This theorem is referenced by:  trlcnv  40130  trlcocnv  40685  trlcoabs2N  40687  trlcoat  40688  trlcocnvat  40689  trlcone  40693  cdlemg46  40700  tgrpgrplem  40714  tendoicl  40761  cdlemh1  40780  cdlemh2  40781  cdlemh  40782  cdlemi2  40784  cdlemi  40785  cdlemk2  40797  cdlemk3  40798  cdlemk4  40799  cdlemk8  40803  cdlemk9  40804  cdlemk9bN  40805  cdlemkvcl  40807  cdlemk10  40808  cdlemk11  40814  cdlemk12  40815  cdlemk14  40819  cdlemk11u  40836  cdlemk12u  40837  cdlemk37  40879  cdlemkfid1N  40886  cdlemkid1  40887  cdlemkid2  40889  tendocnv  40986  tendospcanN  40988  dvhgrp  41072  cdlemn8  41169  dihopelvalcpre  41213  dih1  41251  dihglbcpreN  41265  dihjatcclem3  41385  dihjatcclem4  41386
  Copyright terms: Public domain W3C validator