MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madutpos Structured version   Visualization version   GIF version

Theorem madutpos 22669
Description: The adjuct of a transposed matrix is the transposition of the adjunct of the matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Hypotheses
Ref Expression
maduf.a 𝐴 = (𝑁 Mat 𝑅)
maduf.j 𝐽 = (𝑁 maAdju 𝑅)
maduf.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
madutpos ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) = tpos (𝐽𝑀))

Proof of Theorem madutpos
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . . . . 9 (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) = (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))
21tposmpo 8304 . . . . . . . 8 tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) = (𝑐𝑁, 𝑑𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))
3 orcom 869 . . . . . . . . . . 11 ((𝑑 = 𝑎𝑐 = 𝑏) ↔ (𝑐 = 𝑏𝑑 = 𝑎))
43a1i 11 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑑 = 𝑎𝑐 = 𝑏) ↔ (𝑐 = 𝑏𝑑 = 𝑎)))
5 ancom 460 . . . . . . . . . . . 12 ((𝑐 = 𝑏𝑑 = 𝑎) ↔ (𝑑 = 𝑎𝑐 = 𝑏))
65a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑐 = 𝑏𝑑 = 𝑎) ↔ (𝑑 = 𝑎𝑐 = 𝑏)))
76ifbid 4571 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)) = if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)))
8 ovtpos 8282 . . . . . . . . . . . 12 (𝑐tpos 𝑀𝑑) = (𝑑𝑀𝑐)
98eqcomi 2749 . . . . . . . . . . 11 (𝑑𝑀𝑐) = (𝑐tpos 𝑀𝑑)
109a1i 11 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑑𝑀𝑐) = (𝑐tpos 𝑀𝑑))
114, 7, 10ifbieq12d 4576 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)) = if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))
1211mpoeq3dv 7529 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑐𝑁, 𝑑𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) = (𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑))))
132, 12eqtrid 2792 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) = (𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑))))
1413fveq2d 6924 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑁 maDet 𝑅)‘tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))) = ((𝑁 maDet 𝑅)‘(𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))))
15 simpll 766 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑅 ∈ CRing)
16 maduf.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
17 eqid 2740 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
18 maduf.b . . . . . . . 8 𝐵 = (Base‘𝐴)
1916, 18matrcl 22437 . . . . . . . . . 10 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2019simpld 494 . . . . . . . . 9 (𝑀𝐵𝑁 ∈ Fin)
2120ad2antlr 726 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑁 ∈ Fin)
22 simp1ll 1236 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑑𝑁𝑐𝑁) → 𝑅 ∈ CRing)
23 crngring 20272 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
24 eqid 2740 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
2517, 24ringidcl 20289 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
26 eqid 2740 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
2717, 26ring0cl 20290 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
2825, 27ifcld 4594 . . . . . . . . . 10 (𝑅 ∈ Ring → if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2922, 23, 283syl 18 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑑𝑁𝑐𝑁) → if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3016, 17, 18matbas2i 22449 . . . . . . . . . . . . 13 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
31 elmapi 8907 . . . . . . . . . . . . 13 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3230, 31syl 17 . . . . . . . . . . . 12 (𝑀𝐵𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3332ad2antlr 726 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3433fovcdmda 7621 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ (𝑑𝑁𝑐𝑁)) → (𝑑𝑀𝑐) ∈ (Base‘𝑅))
35343impb 1115 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑑𝑁𝑐𝑁) → (𝑑𝑀𝑐) ∈ (Base‘𝑅))
3629, 35ifcld 4594 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑑𝑁𝑐𝑁) → if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)) ∈ (Base‘𝑅))
3716, 17, 18, 21, 15, 36matbas2d 22450 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) ∈ 𝐵)
38 eqid 2740 . . . . . . . 8 (𝑁 maDet 𝑅) = (𝑁 maDet 𝑅)
3938, 16, 18mdettpos 22638 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) ∈ 𝐵) → ((𝑁 maDet 𝑅)‘tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
4015, 37, 39syl2anc 583 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑁 maDet 𝑅)‘tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
4114, 40eqtr3d 2782 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑁 maDet 𝑅)‘(𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
4216, 18mattposcl 22480 . . . . . . . 8 (𝑀𝐵 → tpos 𝑀𝐵)
4342adantl 481 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → tpos 𝑀𝐵)
4443adantr 480 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → tpos 𝑀𝐵)
45 simprl 770 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
46 simprr 772 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
47 maduf.j . . . . . . 7 𝐽 = (𝑁 maAdju 𝑅)
4816, 38, 47, 18, 24, 26maducoeval2 22667 . . . . . 6 (((𝑅 ∈ CRing ∧ tpos 𝑀𝐵) ∧ 𝑎𝑁𝑏𝑁) → (𝑎(𝐽‘tpos 𝑀)𝑏) = ((𝑁 maDet 𝑅)‘(𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))))
4915, 44, 45, 46, 48syl211anc 1376 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝐽‘tpos 𝑀)𝑏) = ((𝑁 maDet 𝑅)‘(𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))))
50 simplr 768 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑀𝐵)
5116, 38, 47, 18, 24, 26maducoeval2 22667 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑏𝑁𝑎𝑁) → (𝑏(𝐽𝑀)𝑎) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
5215, 50, 46, 45, 51syl211anc 1376 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑏(𝐽𝑀)𝑎) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
5341, 49, 523eqtr4d 2790 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑏(𝐽𝑀)𝑎))
54 ovtpos 8282 . . . 4 (𝑎tpos (𝐽𝑀)𝑏) = (𝑏(𝐽𝑀)𝑎)
5553, 54eqtr4di 2798 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽𝑀)𝑏))
5655ralrimivva 3208 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑎𝑁𝑏𝑁 (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽𝑀)𝑏))
5716, 47, 18maduf 22668 . . . . . 6 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
5857adantr 480 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐽:𝐵𝐵)
5958, 43ffvelcdmd 7119 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) ∈ 𝐵)
6016, 17, 18matbas2i 22449 . . . 4 ((𝐽‘tpos 𝑀) ∈ 𝐵 → (𝐽‘tpos 𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
61 elmapi 8907 . . . 4 ((𝐽‘tpos 𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → (𝐽‘tpos 𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅))
62 ffn 6747 . . . 4 ((𝐽‘tpos 𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅) → (𝐽‘tpos 𝑀) Fn (𝑁 × 𝑁))
6359, 60, 61, 624syl 19 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) Fn (𝑁 × 𝑁))
6457ffvelcdmda 7118 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽𝑀) ∈ 𝐵)
6516, 18mattposcl 22480 . . . . 5 ((𝐽𝑀) ∈ 𝐵 → tpos (𝐽𝑀) ∈ 𝐵)
6616, 17, 18matbas2i 22449 . . . . 5 (tpos (𝐽𝑀) ∈ 𝐵 → tpos (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
6764, 65, 663syl 18 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → tpos (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
68 elmapi 8907 . . . 4 (tpos (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → tpos (𝐽𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅))
69 ffn 6747 . . . 4 (tpos (𝐽𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅) → tpos (𝐽𝑀) Fn (𝑁 × 𝑁))
7067, 68, 693syl 18 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → tpos (𝐽𝑀) Fn (𝑁 × 𝑁))
71 eqfnov2 7580 . . 3 (((𝐽‘tpos 𝑀) Fn (𝑁 × 𝑁) ∧ tpos (𝐽𝑀) Fn (𝑁 × 𝑁)) → ((𝐽‘tpos 𝑀) = tpos (𝐽𝑀) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽𝑀)𝑏)))
7263, 70, 71syl2anc 583 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝐽‘tpos 𝑀) = tpos (𝐽𝑀) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽𝑀)𝑏)))
7356, 72mpbird 257 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) = tpos (𝐽𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  ifcif 4548   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  tpos ctpos 8266  m cmap 8884  Fincfn 9003  Basecbs 17258  0gc0g 17499  1rcur 20208  Ringcrg 20260  CRingccrg 20261   Mat cmat 22432   maDet cmdat 22611   maAdju cmadu 22659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-evpm 19534  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-dsmm 21775  df-frlm 21790  df-mat 22433  df-mdet 22612  df-madu 22661
This theorem is referenced by:  madulid  22672
  Copyright terms: Public domain W3C validator