MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madutpos Structured version   Visualization version   GIF version

Theorem madutpos 22073
Description: The adjuct of a transposed matrix is the transposition of the adjunct of the matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Hypotheses
Ref Expression
maduf.a 𝐴 = (𝑁 Mat 𝑅)
maduf.j 𝐽 = (𝑁 maAdju 𝑅)
maduf.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
madutpos ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) = tpos (𝐽𝑀))

Proof of Theorem madutpos
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . . . . 9 (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) = (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))
21tposmpo 8230 . . . . . . . 8 tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) = (𝑐𝑁, 𝑑𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))
3 orcom 868 . . . . . . . . . . 11 ((𝑑 = 𝑎𝑐 = 𝑏) ↔ (𝑐 = 𝑏𝑑 = 𝑎))
43a1i 11 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑑 = 𝑎𝑐 = 𝑏) ↔ (𝑐 = 𝑏𝑑 = 𝑎)))
5 ancom 461 . . . . . . . . . . . 12 ((𝑐 = 𝑏𝑑 = 𝑎) ↔ (𝑑 = 𝑎𝑐 = 𝑏))
65a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑐 = 𝑏𝑑 = 𝑎) ↔ (𝑑 = 𝑎𝑐 = 𝑏)))
76ifbid 4545 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)) = if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)))
8 ovtpos 8208 . . . . . . . . . . . 12 (𝑐tpos 𝑀𝑑) = (𝑑𝑀𝑐)
98eqcomi 2740 . . . . . . . . . . 11 (𝑑𝑀𝑐) = (𝑐tpos 𝑀𝑑)
109a1i 11 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑑𝑀𝑐) = (𝑐tpos 𝑀𝑑))
114, 7, 10ifbieq12d 4550 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)) = if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))
1211mpoeq3dv 7472 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑐𝑁, 𝑑𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) = (𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑))))
132, 12eqtrid 2783 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) = (𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑))))
1413fveq2d 6882 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑁 maDet 𝑅)‘tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))) = ((𝑁 maDet 𝑅)‘(𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))))
15 simpll 765 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑅 ∈ CRing)
16 maduf.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
17 eqid 2731 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
18 maduf.b . . . . . . . 8 𝐵 = (Base‘𝐴)
1916, 18matrcl 21841 . . . . . . . . . 10 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2019simpld 495 . . . . . . . . 9 (𝑀𝐵𝑁 ∈ Fin)
2120ad2antlr 725 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑁 ∈ Fin)
22 simp1ll 1236 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑑𝑁𝑐𝑁) → 𝑅 ∈ CRing)
23 crngring 20026 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
24 eqid 2731 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
2517, 24ringidcl 20040 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
26 eqid 2731 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
2717, 26ring0cl 20041 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
2825, 27ifcld 4568 . . . . . . . . . 10 (𝑅 ∈ Ring → if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2922, 23, 283syl 18 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑑𝑁𝑐𝑁) → if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3016, 17, 18matbas2i 21853 . . . . . . . . . . . . 13 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
31 elmapi 8826 . . . . . . . . . . . . 13 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3230, 31syl 17 . . . . . . . . . . . 12 (𝑀𝐵𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3332ad2antlr 725 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3433fovcdmda 7561 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ (𝑑𝑁𝑐𝑁)) → (𝑑𝑀𝑐) ∈ (Base‘𝑅))
35343impb 1115 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑑𝑁𝑐𝑁) → (𝑑𝑀𝑐) ∈ (Base‘𝑅))
3629, 35ifcld 4568 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑑𝑁𝑐𝑁) → if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)) ∈ (Base‘𝑅))
3716, 17, 18, 21, 15, 36matbas2d 21854 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) ∈ 𝐵)
38 eqid 2731 . . . . . . . 8 (𝑁 maDet 𝑅) = (𝑁 maDet 𝑅)
3938, 16, 18mdettpos 22042 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) ∈ 𝐵) → ((𝑁 maDet 𝑅)‘tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
4015, 37, 39syl2anc 584 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑁 maDet 𝑅)‘tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
4114, 40eqtr3d 2773 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑁 maDet 𝑅)‘(𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
4216, 18mattposcl 21884 . . . . . . . 8 (𝑀𝐵 → tpos 𝑀𝐵)
4342adantl 482 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → tpos 𝑀𝐵)
4443adantr 481 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → tpos 𝑀𝐵)
45 simprl 769 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
46 simprr 771 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
47 maduf.j . . . . . . 7 𝐽 = (𝑁 maAdju 𝑅)
4816, 38, 47, 18, 24, 26maducoeval2 22071 . . . . . 6 (((𝑅 ∈ CRing ∧ tpos 𝑀𝐵) ∧ 𝑎𝑁𝑏𝑁) → (𝑎(𝐽‘tpos 𝑀)𝑏) = ((𝑁 maDet 𝑅)‘(𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))))
4915, 44, 45, 46, 48syl211anc 1376 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝐽‘tpos 𝑀)𝑏) = ((𝑁 maDet 𝑅)‘(𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))))
50 simplr 767 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑀𝐵)
5116, 38, 47, 18, 24, 26maducoeval2 22071 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑏𝑁𝑎𝑁) → (𝑏(𝐽𝑀)𝑎) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
5215, 50, 46, 45, 51syl211anc 1376 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑏(𝐽𝑀)𝑎) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
5341, 49, 523eqtr4d 2781 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑏(𝐽𝑀)𝑎))
54 ovtpos 8208 . . . 4 (𝑎tpos (𝐽𝑀)𝑏) = (𝑏(𝐽𝑀)𝑎)
5553, 54eqtr4di 2789 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽𝑀)𝑏))
5655ralrimivva 3199 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑎𝑁𝑏𝑁 (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽𝑀)𝑏))
5716, 47, 18maduf 22072 . . . . . . 7 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
5857adantr 481 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐽:𝐵𝐵)
5958, 43ffvelcdmd 7072 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) ∈ 𝐵)
6016, 17, 18matbas2i 21853 . . . . 5 ((𝐽‘tpos 𝑀) ∈ 𝐵 → (𝐽‘tpos 𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
6159, 60syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
62 elmapi 8826 . . . 4 ((𝐽‘tpos 𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → (𝐽‘tpos 𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅))
63 ffn 6704 . . . 4 ((𝐽‘tpos 𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅) → (𝐽‘tpos 𝑀) Fn (𝑁 × 𝑁))
6461, 62, 633syl 18 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) Fn (𝑁 × 𝑁))
6557ffvelcdmda 7071 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽𝑀) ∈ 𝐵)
6616, 18mattposcl 21884 . . . . 5 ((𝐽𝑀) ∈ 𝐵 → tpos (𝐽𝑀) ∈ 𝐵)
6716, 17, 18matbas2i 21853 . . . . 5 (tpos (𝐽𝑀) ∈ 𝐵 → tpos (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
6865, 66, 673syl 18 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → tpos (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
69 elmapi 8826 . . . 4 (tpos (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → tpos (𝐽𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅))
70 ffn 6704 . . . 4 (tpos (𝐽𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅) → tpos (𝐽𝑀) Fn (𝑁 × 𝑁))
7168, 69, 703syl 18 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → tpos (𝐽𝑀) Fn (𝑁 × 𝑁))
72 eqfnov2 7522 . . 3 (((𝐽‘tpos 𝑀) Fn (𝑁 × 𝑁) ∧ tpos (𝐽𝑀) Fn (𝑁 × 𝑁)) → ((𝐽‘tpos 𝑀) = tpos (𝐽𝑀) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽𝑀)𝑏)))
7364, 71, 72syl2anc 584 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝐽‘tpos 𝑀) = tpos (𝐽𝑀) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽𝑀)𝑏)))
7456, 73mpbird 256 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) = tpos (𝐽𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3060  Vcvv 3473  ifcif 4522   × cxp 5667   Fn wfn 6527  wf 6528  cfv 6532  (class class class)co 7393  cmpo 7395  tpos ctpos 8192  m cmap 8803  Fincfn 8922  Basecbs 17126  0gc0g 17367  1rcur 19963  Ringcrg 20014  CRingccrg 20015   Mat cmat 21836   maDet cmdat 22015   maAdju cmadu 22063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-addf 11171  ax-mulf 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-ot 4631  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-tpos 8193  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-er 8686  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-sup 9419  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-xnn0 12527  df-z 12541  df-dec 12660  df-uz 12805  df-rp 12957  df-fz 13467  df-fzo 13610  df-seq 13949  df-exp 14010  df-hash 14273  df-word 14447  df-lsw 14495  df-concat 14503  df-s1 14528  df-substr 14573  df-pfx 14603  df-splice 14682  df-reverse 14691  df-s2 14781  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-0g 17369  df-gsum 17370  df-prds 17375  df-pws 17377  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-mhm 18647  df-submnd 18648  df-efmnd 18725  df-grp 18797  df-minusg 18798  df-mulg 18923  df-subg 18975  df-ghm 19056  df-gim 19099  df-cntz 19147  df-oppg 19174  df-symg 19199  df-pmtr 19274  df-psgn 19323  df-evpm 19324  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-cring 20017  df-oppr 20102  df-dvdsr 20123  df-unit 20124  df-invr 20154  df-dvr 20165  df-rnghom 20201  df-drng 20267  df-subrg 20310  df-sra 20734  df-rgmod 20735  df-cnfld 20879  df-zring 20952  df-zrh 20986  df-dsmm 21220  df-frlm 21235  df-mat 21837  df-mdet 22016  df-madu 22065
This theorem is referenced by:  madulid  22076
  Copyright terms: Public domain W3C validator