Step | Hyp | Ref
| Expression |
1 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))) = (𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))) |
2 | 1 | tposmpo 8005 |
. . . . . . . 8
⊢ tpos
(𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))) = (𝑐 ∈ 𝑁, 𝑑 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))) |
3 | | orcom 870 |
. . . . . . . . . . 11
⊢ ((𝑑 = 𝑎 ∨ 𝑐 = 𝑏) ↔ (𝑐 = 𝑏 ∨ 𝑑 = 𝑎)) |
4 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ((𝑑 = 𝑎 ∨ 𝑐 = 𝑏) ↔ (𝑐 = 𝑏 ∨ 𝑑 = 𝑎))) |
5 | | ancom 464 |
. . . . . . . . . . . 12
⊢ ((𝑐 = 𝑏 ∧ 𝑑 = 𝑎) ↔ (𝑑 = 𝑎 ∧ 𝑐 = 𝑏)) |
6 | 5 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ((𝑐 = 𝑏 ∧ 𝑑 = 𝑎) ↔ (𝑑 = 𝑎 ∧ 𝑐 = 𝑏))) |
7 | 6 | ifbid 4462 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)) = if((𝑑 = 𝑎 ∧ 𝑐 = 𝑏), (1r‘𝑅), (0g‘𝑅))) |
8 | | ovtpos 7983 |
. . . . . . . . . . . 12
⊢ (𝑐tpos 𝑀𝑑) = (𝑑𝑀𝑐) |
9 | 8 | eqcomi 2746 |
. . . . . . . . . . 11
⊢ (𝑑𝑀𝑐) = (𝑐tpos 𝑀𝑑) |
10 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑑𝑀𝑐) = (𝑐tpos 𝑀𝑑)) |
11 | 4, 7, 10 | ifbieq12d 4467 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐)) = if((𝑐 = 𝑏 ∨ 𝑑 = 𝑎), if((𝑑 = 𝑎 ∧ 𝑐 = 𝑏), (1r‘𝑅), (0g‘𝑅)), (𝑐tpos 𝑀𝑑))) |
12 | 11 | mpoeq3dv 7290 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑐 ∈ 𝑁, 𝑑 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))) = (𝑐 ∈ 𝑁, 𝑑 ∈ 𝑁 ↦ if((𝑐 = 𝑏 ∨ 𝑑 = 𝑎), if((𝑑 = 𝑎 ∧ 𝑐 = 𝑏), (1r‘𝑅), (0g‘𝑅)), (𝑐tpos 𝑀𝑑)))) |
13 | 2, 12 | syl5eq 2790 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → tpos (𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))) = (𝑐 ∈ 𝑁, 𝑑 ∈ 𝑁 ↦ if((𝑐 = 𝑏 ∨ 𝑑 = 𝑎), if((𝑑 = 𝑎 ∧ 𝑐 = 𝑏), (1r‘𝑅), (0g‘𝑅)), (𝑐tpos 𝑀𝑑)))) |
14 | 13 | fveq2d 6721 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ((𝑁 maDet 𝑅)‘tpos (𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐)))) = ((𝑁 maDet 𝑅)‘(𝑐 ∈ 𝑁, 𝑑 ∈ 𝑁 ↦ if((𝑐 = 𝑏 ∨ 𝑑 = 𝑎), if((𝑑 = 𝑎 ∧ 𝑐 = 𝑏), (1r‘𝑅), (0g‘𝑅)), (𝑐tpos 𝑀𝑑))))) |
15 | | simpll 767 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑅 ∈ CRing) |
16 | | maduf.a |
. . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) |
17 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
18 | | maduf.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐴) |
19 | 16, 18 | matrcl 21309 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
20 | 19 | simpld 498 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
21 | 20 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑁 ∈ Fin) |
22 | | simp1ll 1238 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑑 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → 𝑅 ∈ CRing) |
23 | | crngring 19574 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
24 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(1r‘𝑅) = (1r‘𝑅) |
25 | 17, 24 | ringidcl 19586 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
26 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) = (0g‘𝑅) |
27 | 17, 26 | ring0cl 19587 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ (Base‘𝑅)) |
28 | 25, 27 | ifcld 4485 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
29 | 22, 23, 28 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑑 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
30 | 16, 17, 18 | matbas2i 21319 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
31 | | elmapi 8530 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ 𝐵 → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
33 | 32 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
34 | 33 | fovrnda 7379 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ (𝑑 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁)) → (𝑑𝑀𝑐) ∈ (Base‘𝑅)) |
35 | 34 | 3impb 1117 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑑 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → (𝑑𝑀𝑐) ∈ (Base‘𝑅)) |
36 | 29, 35 | ifcld 4485 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑑 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐)) ∈ (Base‘𝑅)) |
37 | 16, 17, 18, 21, 15, 36 | matbas2d 21320 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))) ∈ 𝐵) |
38 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑁 maDet 𝑅) = (𝑁 maDet 𝑅) |
39 | 38, 16, 18 | mdettpos 21508 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ (𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))) ∈ 𝐵) → ((𝑁 maDet 𝑅)‘tpos (𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐)))) = ((𝑁 maDet 𝑅)‘(𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))))) |
40 | 15, 37, 39 | syl2anc 587 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ((𝑁 maDet 𝑅)‘tpos (𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐)))) = ((𝑁 maDet 𝑅)‘(𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))))) |
41 | 14, 40 | eqtr3d 2779 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ((𝑁 maDet 𝑅)‘(𝑐 ∈ 𝑁, 𝑑 ∈ 𝑁 ↦ if((𝑐 = 𝑏 ∨ 𝑑 = 𝑎), if((𝑑 = 𝑎 ∧ 𝑐 = 𝑏), (1r‘𝑅), (0g‘𝑅)), (𝑐tpos 𝑀𝑑)))) = ((𝑁 maDet 𝑅)‘(𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))))) |
42 | 16, 18 | mattposcl 21350 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵) |
43 | 42 | adantl 485 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → tpos 𝑀 ∈ 𝐵) |
44 | 43 | adantr 484 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → tpos 𝑀 ∈ 𝐵) |
45 | | simprl 771 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑎 ∈ 𝑁) |
46 | | simprr 773 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑏 ∈ 𝑁) |
47 | | maduf.j |
. . . . . . 7
⊢ 𝐽 = (𝑁 maAdju 𝑅) |
48 | 16, 38, 47, 18, 24, 26 | maducoeval2 21537 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ tpos 𝑀 ∈ 𝐵) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎(𝐽‘tpos 𝑀)𝑏) = ((𝑁 maDet 𝑅)‘(𝑐 ∈ 𝑁, 𝑑 ∈ 𝑁 ↦ if((𝑐 = 𝑏 ∨ 𝑑 = 𝑎), if((𝑑 = 𝑎 ∧ 𝑐 = 𝑏), (1r‘𝑅), (0g‘𝑅)), (𝑐tpos 𝑀𝑑))))) |
49 | 15, 44, 45, 46, 48 | syl211anc 1378 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎(𝐽‘tpos 𝑀)𝑏) = ((𝑁 maDet 𝑅)‘(𝑐 ∈ 𝑁, 𝑑 ∈ 𝑁 ↦ if((𝑐 = 𝑏 ∨ 𝑑 = 𝑎), if((𝑑 = 𝑎 ∧ 𝑐 = 𝑏), (1r‘𝑅), (0g‘𝑅)), (𝑐tpos 𝑀𝑑))))) |
50 | | simplr 769 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑀 ∈ 𝐵) |
51 | 16, 38, 47, 18, 24, 26 | maducoeval2 21537 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑏 ∈ 𝑁 ∧ 𝑎 ∈ 𝑁) → (𝑏(𝐽‘𝑀)𝑎) = ((𝑁 maDet 𝑅)‘(𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))))) |
52 | 15, 50, 46, 45, 51 | syl211anc 1378 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑏(𝐽‘𝑀)𝑎) = ((𝑁 maDet 𝑅)‘(𝑑 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑑 = 𝑎 ∨ 𝑐 = 𝑏), if((𝑐 = 𝑏 ∧ 𝑑 = 𝑎), (1r‘𝑅), (0g‘𝑅)), (𝑑𝑀𝑐))))) |
53 | 41, 49, 52 | 3eqtr4d 2787 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑏(𝐽‘𝑀)𝑎)) |
54 | | ovtpos 7983 |
. . . 4
⊢ (𝑎tpos (𝐽‘𝑀)𝑏) = (𝑏(𝐽‘𝑀)𝑎) |
55 | 53, 54 | eqtr4di 2796 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽‘𝑀)𝑏)) |
56 | 55 | ralrimivva 3112 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽‘𝑀)𝑏)) |
57 | 16, 47, 18 | maduf 21538 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝐽:𝐵⟶𝐵) |
58 | 57 | adantr 484 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐽:𝐵⟶𝐵) |
59 | 58, 43 | ffvelrnd 6905 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐽‘tpos 𝑀) ∈ 𝐵) |
60 | 16, 17, 18 | matbas2i 21319 |
. . . . 5
⊢ ((𝐽‘tpos 𝑀) ∈ 𝐵 → (𝐽‘tpos 𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
61 | 59, 60 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐽‘tpos 𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
62 | | elmapi 8530 |
. . . 4
⊢ ((𝐽‘tpos 𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → (𝐽‘tpos 𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅)) |
63 | | ffn 6545 |
. . . 4
⊢ ((𝐽‘tpos 𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅) → (𝐽‘tpos 𝑀) Fn (𝑁 × 𝑁)) |
64 | 61, 62, 63 | 3syl 18 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐽‘tpos 𝑀) Fn (𝑁 × 𝑁)) |
65 | 57 | ffvelrnda 6904 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐽‘𝑀) ∈ 𝐵) |
66 | 16, 18 | mattposcl 21350 |
. . . . 5
⊢ ((𝐽‘𝑀) ∈ 𝐵 → tpos (𝐽‘𝑀) ∈ 𝐵) |
67 | 16, 17, 18 | matbas2i 21319 |
. . . . 5
⊢ (tpos
(𝐽‘𝑀) ∈ 𝐵 → tpos (𝐽‘𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
68 | 65, 66, 67 | 3syl 18 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → tpos (𝐽‘𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
69 | | elmapi 8530 |
. . . 4
⊢ (tpos
(𝐽‘𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → tpos (𝐽‘𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅)) |
70 | | ffn 6545 |
. . . 4
⊢ (tpos
(𝐽‘𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅) → tpos (𝐽‘𝑀) Fn (𝑁 × 𝑁)) |
71 | 68, 69, 70 | 3syl 18 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → tpos (𝐽‘𝑀) Fn (𝑁 × 𝑁)) |
72 | | eqfnov2 7340 |
. . 3
⊢ (((𝐽‘tpos 𝑀) Fn (𝑁 × 𝑁) ∧ tpos (𝐽‘𝑀) Fn (𝑁 × 𝑁)) → ((𝐽‘tpos 𝑀) = tpos (𝐽‘𝑀) ↔ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽‘𝑀)𝑏))) |
73 | 64, 71, 72 | syl2anc 587 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝐽‘tpos 𝑀) = tpos (𝐽‘𝑀) ↔ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽‘𝑀)𝑏))) |
74 | 56, 73 | mpbird 260 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐽‘tpos 𝑀) = tpos (𝐽‘𝑀)) |