MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madutpos Structured version   Visualization version   GIF version

Theorem madutpos 22014
Description: The adjuct of a transposed matrix is the transposition of the adjunct of the matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Hypotheses
Ref Expression
maduf.a 𝐴 = (𝑁 Mat 𝑅)
maduf.j 𝐽 = (𝑁 maAdju 𝑅)
maduf.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
madutpos ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) = tpos (𝐽𝑀))

Proof of Theorem madutpos
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . . . . 9 (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) = (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))
21tposmpo 8198 . . . . . . . 8 tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) = (𝑐𝑁, 𝑑𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))
3 orcom 869 . . . . . . . . . . 11 ((𝑑 = 𝑎𝑐 = 𝑏) ↔ (𝑐 = 𝑏𝑑 = 𝑎))
43a1i 11 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑑 = 𝑎𝑐 = 𝑏) ↔ (𝑐 = 𝑏𝑑 = 𝑎)))
5 ancom 462 . . . . . . . . . . . 12 ((𝑐 = 𝑏𝑑 = 𝑎) ↔ (𝑑 = 𝑎𝑐 = 𝑏))
65a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑐 = 𝑏𝑑 = 𝑎) ↔ (𝑑 = 𝑎𝑐 = 𝑏)))
76ifbid 4513 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)) = if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)))
8 ovtpos 8176 . . . . . . . . . . . 12 (𝑐tpos 𝑀𝑑) = (𝑑𝑀𝑐)
98eqcomi 2742 . . . . . . . . . . 11 (𝑑𝑀𝑐) = (𝑐tpos 𝑀𝑑)
109a1i 11 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑑𝑀𝑐) = (𝑐tpos 𝑀𝑑))
114, 7, 10ifbieq12d 4518 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)) = if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))
1211mpoeq3dv 7440 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑐𝑁, 𝑑𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) = (𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑))))
132, 12eqtrid 2785 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) = (𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑))))
1413fveq2d 6850 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑁 maDet 𝑅)‘tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))) = ((𝑁 maDet 𝑅)‘(𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))))
15 simpll 766 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑅 ∈ CRing)
16 maduf.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
17 eqid 2733 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
18 maduf.b . . . . . . . 8 𝐵 = (Base‘𝐴)
1916, 18matrcl 21782 . . . . . . . . . 10 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2019simpld 496 . . . . . . . . 9 (𝑀𝐵𝑁 ∈ Fin)
2120ad2antlr 726 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑁 ∈ Fin)
22 simp1ll 1237 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑑𝑁𝑐𝑁) → 𝑅 ∈ CRing)
23 crngring 19984 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
24 eqid 2733 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
2517, 24ringidcl 19997 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
26 eqid 2733 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
2717, 26ring0cl 19998 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
2825, 27ifcld 4536 . . . . . . . . . 10 (𝑅 ∈ Ring → if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2922, 23, 283syl 18 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑑𝑁𝑐𝑁) → if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
3016, 17, 18matbas2i 21794 . . . . . . . . . . . . 13 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
31 elmapi 8793 . . . . . . . . . . . . 13 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3230, 31syl 17 . . . . . . . . . . . 12 (𝑀𝐵𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3332ad2antlr 726 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3433fovcdmda 7529 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ (𝑑𝑁𝑐𝑁)) → (𝑑𝑀𝑐) ∈ (Base‘𝑅))
35343impb 1116 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑑𝑁𝑐𝑁) → (𝑑𝑀𝑐) ∈ (Base‘𝑅))
3629, 35ifcld 4536 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑑𝑁𝑐𝑁) → if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)) ∈ (Base‘𝑅))
3716, 17, 18, 21, 15, 36matbas2d 21795 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) ∈ 𝐵)
38 eqid 2733 . . . . . . . 8 (𝑁 maDet 𝑅) = (𝑁 maDet 𝑅)
3938, 16, 18mdettpos 21983 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐))) ∈ 𝐵) → ((𝑁 maDet 𝑅)‘tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
4015, 37, 39syl2anc 585 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑁 maDet 𝑅)‘tpos (𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
4114, 40eqtr3d 2775 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑁 maDet 𝑅)‘(𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
4216, 18mattposcl 21825 . . . . . . . 8 (𝑀𝐵 → tpos 𝑀𝐵)
4342adantl 483 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → tpos 𝑀𝐵)
4443adantr 482 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → tpos 𝑀𝐵)
45 simprl 770 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
46 simprr 772 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
47 maduf.j . . . . . . 7 𝐽 = (𝑁 maAdju 𝑅)
4816, 38, 47, 18, 24, 26maducoeval2 22012 . . . . . 6 (((𝑅 ∈ CRing ∧ tpos 𝑀𝐵) ∧ 𝑎𝑁𝑏𝑁) → (𝑎(𝐽‘tpos 𝑀)𝑏) = ((𝑁 maDet 𝑅)‘(𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))))
4915, 44, 45, 46, 48syl211anc 1377 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝐽‘tpos 𝑀)𝑏) = ((𝑁 maDet 𝑅)‘(𝑐𝑁, 𝑑𝑁 ↦ if((𝑐 = 𝑏𝑑 = 𝑎), if((𝑑 = 𝑎𝑐 = 𝑏), (1r𝑅), (0g𝑅)), (𝑐tpos 𝑀𝑑)))))
50 simplr 768 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → 𝑀𝐵)
5116, 38, 47, 18, 24, 26maducoeval2 22012 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑏𝑁𝑎𝑁) → (𝑏(𝐽𝑀)𝑎) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
5215, 50, 46, 45, 51syl211anc 1377 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑏(𝐽𝑀)𝑎) = ((𝑁 maDet 𝑅)‘(𝑑𝑁, 𝑐𝑁 ↦ if((𝑑 = 𝑎𝑐 = 𝑏), if((𝑐 = 𝑏𝑑 = 𝑎), (1r𝑅), (0g𝑅)), (𝑑𝑀𝑐)))))
5341, 49, 523eqtr4d 2783 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑏(𝐽𝑀)𝑎))
54 ovtpos 8176 . . . 4 (𝑎tpos (𝐽𝑀)𝑏) = (𝑏(𝐽𝑀)𝑎)
5553, 54eqtr4di 2791 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽𝑀)𝑏))
5655ralrimivva 3194 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑎𝑁𝑏𝑁 (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽𝑀)𝑏))
5716, 47, 18maduf 22013 . . . . . . 7 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
5857adantr 482 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐽:𝐵𝐵)
5958, 43ffvelcdmd 7040 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) ∈ 𝐵)
6016, 17, 18matbas2i 21794 . . . . 5 ((𝐽‘tpos 𝑀) ∈ 𝐵 → (𝐽‘tpos 𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
6159, 60syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
62 elmapi 8793 . . . 4 ((𝐽‘tpos 𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → (𝐽‘tpos 𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅))
63 ffn 6672 . . . 4 ((𝐽‘tpos 𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅) → (𝐽‘tpos 𝑀) Fn (𝑁 × 𝑁))
6461, 62, 633syl 18 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) Fn (𝑁 × 𝑁))
6557ffvelcdmda 7039 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽𝑀) ∈ 𝐵)
6616, 18mattposcl 21825 . . . . 5 ((𝐽𝑀) ∈ 𝐵 → tpos (𝐽𝑀) ∈ 𝐵)
6716, 17, 18matbas2i 21794 . . . . 5 (tpos (𝐽𝑀) ∈ 𝐵 → tpos (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
6865, 66, 673syl 18 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → tpos (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
69 elmapi 8793 . . . 4 (tpos (𝐽𝑀) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → tpos (𝐽𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅))
70 ffn 6672 . . . 4 (tpos (𝐽𝑀):(𝑁 × 𝑁)⟶(Base‘𝑅) → tpos (𝐽𝑀) Fn (𝑁 × 𝑁))
7168, 69, 703syl 18 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → tpos (𝐽𝑀) Fn (𝑁 × 𝑁))
72 eqfnov2 7490 . . 3 (((𝐽‘tpos 𝑀) Fn (𝑁 × 𝑁) ∧ tpos (𝐽𝑀) Fn (𝑁 × 𝑁)) → ((𝐽‘tpos 𝑀) = tpos (𝐽𝑀) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽𝑀)𝑏)))
7364, 71, 72syl2anc 585 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝐽‘tpos 𝑀) = tpos (𝐽𝑀) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝐽‘tpos 𝑀)𝑏) = (𝑎tpos (𝐽𝑀)𝑏)))
7456, 73mpbird 257 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽‘tpos 𝑀) = tpos (𝐽𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wral 3061  Vcvv 3447  ifcif 4490   × cxp 5635   Fn wfn 6495  wf 6496  cfv 6500  (class class class)co 7361  cmpo 7363  tpos ctpos 8160  m cmap 8771  Fincfn 8889  Basecbs 17091  0gc0g 17329  1rcur 19921  Ringcrg 19972  CRingccrg 19973   Mat cmat 21777   maDet cmdat 21956   maAdju cmadu 22004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-addf 11138  ax-mulf 11139
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-xor 1511  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-ot 4599  df-uni 4870  df-int 4912  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-tpos 8161  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-er 8654  df-map 8773  df-pm 8774  df-ixp 8842  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fsupp 9312  df-sup 9386  df-oi 9454  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-xnn0 12494  df-z 12508  df-dec 12627  df-uz 12772  df-rp 12924  df-fz 13434  df-fzo 13577  df-seq 13916  df-exp 13977  df-hash 14240  df-word 14412  df-lsw 14460  df-concat 14468  df-s1 14493  df-substr 14538  df-pfx 14568  df-splice 14647  df-reverse 14656  df-s2 14746  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-starv 17156  df-sca 17157  df-vsca 17158  df-ip 17159  df-tset 17160  df-ple 17161  df-ds 17163  df-unif 17164  df-hom 17165  df-cco 17166  df-0g 17331  df-gsum 17332  df-prds 17337  df-pws 17339  df-mre 17474  df-mrc 17475  df-acs 17477  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-mhm 18609  df-submnd 18610  df-efmnd 18687  df-grp 18759  df-minusg 18760  df-mulg 18881  df-subg 18933  df-ghm 19014  df-gim 19057  df-cntz 19105  df-oppg 19132  df-symg 19157  df-pmtr 19232  df-psgn 19281  df-evpm 19282  df-cmn 19572  df-abl 19573  df-mgp 19905  df-ur 19922  df-ring 19974  df-cring 19975  df-oppr 20057  df-dvdsr 20078  df-unit 20079  df-invr 20109  df-dvr 20120  df-rnghom 20156  df-drng 20221  df-subrg 20262  df-sra 20678  df-rgmod 20679  df-cnfld 20820  df-zring 20893  df-zrh 20927  df-dsmm 21161  df-frlm 21176  df-mat 21778  df-mdet 21957  df-madu 22006
This theorem is referenced by:  madulid  22017
  Copyright terms: Public domain W3C validator