Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem49 Structured version   Visualization version   GIF version

Theorem stoweidlem49 45706
Description: There exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 (at the top of page 91): 0 <= qn <= 1 , qn < ε on 𝑇𝑈, and qn > 1 - ε on 𝑉. Here y is used to represent the final qn in the paper (the one with n large enough), 𝑁 represents 𝑛 in the paper, 𝐾 represents 𝑘, 𝐷 represents δ, 𝐸 represents ε, and 𝑃 represents 𝑝. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem49.1 𝑡𝑃
stoweidlem49.2 𝑡𝜑
stoweidlem49.3 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
stoweidlem49.4 (𝜑𝐷 ∈ ℝ+)
stoweidlem49.5 (𝜑𝐷 < 1)
stoweidlem49.6 (𝜑𝑃𝐴)
stoweidlem49.7 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem49.8 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
stoweidlem49.9 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
stoweidlem49.10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem49.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem49.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem49.13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem49.14 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem49 (𝜑 → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸))
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝐷,𝑓,𝑔,𝑡   𝑓,𝐸,𝑔,𝑡   𝑃,𝑓,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑥,𝐷   𝑥,𝐸   𝜑,𝑥   𝑦,𝑡,𝐴   𝑦,𝑈   𝑦,𝑉   𝑥,𝑡,𝐴   𝑥,𝑇   𝑦,𝐸   𝑦,𝑃   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑡)   𝐷(𝑦)   𝑃(𝑥,𝑡)   𝑈(𝑥,𝑡,𝑓,𝑔)   𝑉(𝑥,𝑡,𝑓,𝑔)

Proof of Theorem stoweidlem49
Dummy variables 𝑘 𝑛 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5149 . . . . 5 (𝑗 = 𝑖 → ((1 / 𝐷) < 𝑗 ↔ (1 / 𝐷) < 𝑖))
21cbvrabv 3430 . . . 4 {𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗} = {𝑖 ∈ ℕ ∣ (1 / 𝐷) < 𝑖}
3 stoweidlem49.4 . . . 4 (𝜑𝐷 ∈ ℝ+)
4 stoweidlem49.5 . . . 4 (𝜑𝐷 < 1)
52, 3, 4stoweidlem14 45671 . . 3 (𝜑 → ∃𝑘 ∈ ℕ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1))
6 eqid 2726 . . . . . 6 (𝑖 ∈ ℕ0 ↦ ((1 / (𝑘 · 𝐷))↑𝑖)) = (𝑖 ∈ ℕ0 ↦ ((1 / (𝑘 · 𝐷))↑𝑖))
7 eqid 2726 . . . . . 6 (𝑖 ∈ ℕ0 ↦ (((𝑘 · 𝐷) / 2)↑𝑖)) = (𝑖 ∈ ℕ0 ↦ (((𝑘 · 𝐷) / 2)↑𝑖))
8 nnre 12265 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
98adantl 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
103rpred 13064 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
1110adantr 479 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ ℝ)
129, 11remulcld 11285 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑘 · 𝐷) ∈ ℝ)
1312adantr 479 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → (𝑘 · 𝐷) ∈ ℝ)
14 simprl 769 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → 1 < (𝑘 · 𝐷))
1512rehalfcld 12505 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝑘 · 𝐷) / 2) ∈ ℝ)
16 nngt0 12289 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 0 < 𝑘)
1716adantl 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < 𝑘)
183rpgt0d 13067 . . . . . . . . . . 11 (𝜑 → 0 < 𝐷)
1918adantr 479 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < 𝐷)
209, 11, 17, 19mulgt0d 11410 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 < (𝑘 · 𝐷))
21 2re 12332 . . . . . . . . . . 11 2 ∈ ℝ
22 2pos 12361 . . . . . . . . . . 11 0 < 2
2321, 22pm3.2i 469 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
25 divgt0 12128 . . . . . . . . 9 ((((𝑘 · 𝐷) ∈ ℝ ∧ 0 < (𝑘 · 𝐷)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < ((𝑘 · 𝐷) / 2))
2612, 20, 24, 25syl21anc 836 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 0 < ((𝑘 · 𝐷) / 2))
2715, 26elrpd 13061 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑘 · 𝐷) / 2) ∈ ℝ+)
2827adantr 479 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → ((𝑘 · 𝐷) / 2) ∈ ℝ+)
29 simprr 771 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → ((𝑘 · 𝐷) / 2) < 1)
30 stoweidlem49.14 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
3130ad2antrr 724 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → 𝐸 ∈ ℝ+)
326, 7, 13, 14, 28, 29, 31stoweidlem7 45664 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸))
3332ex 411 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1) → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)))
3433reximdva 3158 . . 3 (𝜑 → (∃𝑘 ∈ ℕ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1) → ∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)))
355, 34mpd 15 . 2 (𝜑 → ∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸))
36 stoweidlem49.1 . . . . 5 𝑡𝑃
37 stoweidlem49.2 . . . . . . 7 𝑡𝜑
38 nfv 1910 . . . . . . 7 𝑡(𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)
3937, 38nfan 1895 . . . . . 6 𝑡(𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ))
40 nfv 1910 . . . . . 6 𝑡((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)
4139, 40nfan 1895 . . . . 5 𝑡((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸))
42 stoweidlem49.3 . . . . 5 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
43 eqid 2726 . . . . 5 (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑛))↑(𝑘𝑛))) = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑛))↑(𝑘𝑛)))
44 simplrr 776 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝑛 ∈ ℕ)
45 simplrl 775 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝑘 ∈ ℕ)
463ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝐷 ∈ ℝ+)
474ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝐷 < 1)
48 stoweidlem49.6 . . . . . 6 (𝜑𝑃𝐴)
4948ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝑃𝐴)
50 stoweidlem49.7 . . . . . 6 (𝜑𝑃:𝑇⟶ℝ)
5150ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝑃:𝑇⟶ℝ)
52 stoweidlem49.8 . . . . . 6 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5352ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
54 stoweidlem49.9 . . . . . 6 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
5554ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
56 stoweidlem49.10 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
5756ad4ant14 750 . . . . 5 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
58 simp1ll 1233 . . . . . 6 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → 𝜑)
59 stoweidlem49.11 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
6058, 59syld3an1 1407 . . . . 5 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
61 stoweidlem49.12 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6258, 61syld3an1 1407 . . . . 5 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
63 stoweidlem49.13 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
6463ad4ant14 750 . . . . 5 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
6530ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝐸 ∈ ℝ+)
66 simprl 769 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → (1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)))
67 simprr 771 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)
6836, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 55, 57, 60, 62, 64, 65, 66, 67stoweidlem45 45702 . . . 4 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸))
6968ex 411 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)))
7069rexlimdvva 3202 . 2 (𝜑 → (∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)))
7135, 70mpd 15 1 (𝜑 → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wnf 1778  wcel 2099  wnfc 2876  wral 3051  wrex 3060  {crab 3419  cdif 3943   class class class wbr 5145  cmpt 5228  wf 6542  cfv 6546  (class class class)co 7416  cr 11148  0cc0 11149  1c1 11150   + caddc 11152   · cmul 11154   < clt 11289  cle 11290  cmin 11485   / cdiv 11912  cn 12258  2c2 12313  0cn0 12518  +crp 13022  cexp 14075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-sup 9478  df-inf 9479  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-fl 13806  df-seq 14016  df-exp 14076  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-clim 15485  df-rlim 15486
This theorem is referenced by:  stoweidlem52  45709
  Copyright terms: Public domain W3C validator