Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem49 Structured version   Visualization version   GIF version

Theorem stoweidlem49 44380
Description: There exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 (at the top of page 91): 0 <= qn <= 1 , qn < Ξ΅ on 𝑇 βˆ– π‘ˆ, and qn > 1 - Ξ΅ on 𝑉. Here y is used to represent the final qn in the paper (the one with n large enough), 𝑁 represents 𝑛 in the paper, 𝐾 represents π‘˜, 𝐷 represents Ξ΄, 𝐸 represents Ξ΅, and 𝑃 represents 𝑝. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem49.1 Ⅎ𝑑𝑃
stoweidlem49.2 β„²π‘‘πœ‘
stoweidlem49.3 𝑉 = {𝑑 ∈ 𝑇 ∣ (π‘ƒβ€˜π‘‘) < (𝐷 / 2)}
stoweidlem49.4 (πœ‘ β†’ 𝐷 ∈ ℝ+)
stoweidlem49.5 (πœ‘ β†’ 𝐷 < 1)
stoweidlem49.6 (πœ‘ β†’ 𝑃 ∈ 𝐴)
stoweidlem49.7 (πœ‘ β†’ 𝑃:π‘‡βŸΆβ„)
stoweidlem49.8 (πœ‘ β†’ βˆ€π‘‘ ∈ 𝑇 (0 ≀ (π‘ƒβ€˜π‘‘) ∧ (π‘ƒβ€˜π‘‘) ≀ 1))
stoweidlem49.9 (πœ‘ β†’ βˆ€π‘‘ ∈ (𝑇 βˆ– π‘ˆ)𝐷 ≀ (π‘ƒβ€˜π‘‘))
stoweidlem49.10 ((πœ‘ ∧ 𝑓 ∈ 𝐴) β†’ 𝑓:π‘‡βŸΆβ„)
stoweidlem49.11 ((πœ‘ ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ ((π‘“β€˜π‘‘) + (π‘”β€˜π‘‘))) ∈ 𝐴)
stoweidlem49.12 ((πœ‘ ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ ((π‘“β€˜π‘‘) Β· (π‘”β€˜π‘‘))) ∈ 𝐴)
stoweidlem49.13 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (𝑑 ∈ 𝑇 ↦ π‘₯) ∈ 𝐴)
stoweidlem49.14 (πœ‘ β†’ 𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem49 (πœ‘ β†’ βˆƒπ‘¦ ∈ 𝐴 (βˆ€π‘‘ ∈ 𝑇 (0 ≀ (π‘¦β€˜π‘‘) ∧ (π‘¦β€˜π‘‘) ≀ 1) ∧ βˆ€π‘‘ ∈ 𝑉 (1 βˆ’ 𝐸) < (π‘¦β€˜π‘‘) ∧ βˆ€π‘‘ ∈ (𝑇 βˆ– π‘ˆ)(π‘¦β€˜π‘‘) < 𝐸))
Distinct variable groups:   𝑓,𝑔,𝑑,𝐴   𝐷,𝑓,𝑔,𝑑   𝑓,𝐸,𝑔,𝑑   𝑃,𝑓,𝑔   𝑇,𝑓,𝑔,𝑑   πœ‘,𝑓,𝑔   π‘₯,𝐷   π‘₯,𝐸   πœ‘,π‘₯   𝑦,𝑑,𝐴   𝑦,π‘ˆ   𝑦,𝑉   π‘₯,𝑑,𝐴   π‘₯,𝑇   𝑦,𝐸   𝑦,𝑃   𝑦,𝑇
Allowed substitution hints:   πœ‘(𝑦,𝑑)   𝐷(𝑦)   𝑃(π‘₯,𝑑)   π‘ˆ(π‘₯,𝑑,𝑓,𝑔)   𝑉(π‘₯,𝑑,𝑓,𝑔)

Proof of Theorem stoweidlem49
Dummy variables π‘˜ 𝑛 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5113 . . . . 5 (𝑗 = 𝑖 β†’ ((1 / 𝐷) < 𝑗 ↔ (1 / 𝐷) < 𝑖))
21cbvrabv 3416 . . . 4 {𝑗 ∈ β„• ∣ (1 / 𝐷) < 𝑗} = {𝑖 ∈ β„• ∣ (1 / 𝐷) < 𝑖}
3 stoweidlem49.4 . . . 4 (πœ‘ β†’ 𝐷 ∈ ℝ+)
4 stoweidlem49.5 . . . 4 (πœ‘ β†’ 𝐷 < 1)
52, 3, 4stoweidlem14 44345 . . 3 (πœ‘ β†’ βˆƒπ‘˜ ∈ β„• (1 < (π‘˜ Β· 𝐷) ∧ ((π‘˜ Β· 𝐷) / 2) < 1))
6 eqid 2733 . . . . . 6 (𝑖 ∈ β„•0 ↦ ((1 / (π‘˜ Β· 𝐷))↑𝑖)) = (𝑖 ∈ β„•0 ↦ ((1 / (π‘˜ Β· 𝐷))↑𝑖))
7 eqid 2733 . . . . . 6 (𝑖 ∈ β„•0 ↦ (((π‘˜ Β· 𝐷) / 2)↑𝑖)) = (𝑖 ∈ β„•0 ↦ (((π‘˜ Β· 𝐷) / 2)↑𝑖))
8 nnre 12168 . . . . . . . . 9 (π‘˜ ∈ β„• β†’ π‘˜ ∈ ℝ)
98adantl 483 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ π‘˜ ∈ ℝ)
103rpred 12965 . . . . . . . . 9 (πœ‘ β†’ 𝐷 ∈ ℝ)
1110adantr 482 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ 𝐷 ∈ ℝ)
129, 11remulcld 11193 . . . . . . 7 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ (π‘˜ Β· 𝐷) ∈ ℝ)
1312adantr 482 . . . . . 6 (((πœ‘ ∧ π‘˜ ∈ β„•) ∧ (1 < (π‘˜ Β· 𝐷) ∧ ((π‘˜ Β· 𝐷) / 2) < 1)) β†’ (π‘˜ Β· 𝐷) ∈ ℝ)
14 simprl 770 . . . . . 6 (((πœ‘ ∧ π‘˜ ∈ β„•) ∧ (1 < (π‘˜ Β· 𝐷) ∧ ((π‘˜ Β· 𝐷) / 2) < 1)) β†’ 1 < (π‘˜ Β· 𝐷))
1512rehalfcld 12408 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ ((π‘˜ Β· 𝐷) / 2) ∈ ℝ)
16 nngt0 12192 . . . . . . . . . . 11 (π‘˜ ∈ β„• β†’ 0 < π‘˜)
1716adantl 483 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ 0 < π‘˜)
183rpgt0d 12968 . . . . . . . . . . 11 (πœ‘ β†’ 0 < 𝐷)
1918adantr 482 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ 0 < 𝐷)
209, 11, 17, 19mulgt0d 11318 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ 0 < (π‘˜ Β· 𝐷))
21 2re 12235 . . . . . . . . . . 11 2 ∈ ℝ
22 2pos 12264 . . . . . . . . . . 11 0 < 2
2321, 22pm3.2i 472 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ (2 ∈ ℝ ∧ 0 < 2))
25 divgt0 12031 . . . . . . . . 9 ((((π‘˜ Β· 𝐷) ∈ ℝ ∧ 0 < (π‘˜ Β· 𝐷)) ∧ (2 ∈ ℝ ∧ 0 < 2)) β†’ 0 < ((π‘˜ Β· 𝐷) / 2))
2612, 20, 24, 25syl21anc 837 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ 0 < ((π‘˜ Β· 𝐷) / 2))
2715, 26elrpd 12962 . . . . . . 7 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ ((π‘˜ Β· 𝐷) / 2) ∈ ℝ+)
2827adantr 482 . . . . . 6 (((πœ‘ ∧ π‘˜ ∈ β„•) ∧ (1 < (π‘˜ Β· 𝐷) ∧ ((π‘˜ Β· 𝐷) / 2) < 1)) β†’ ((π‘˜ Β· 𝐷) / 2) ∈ ℝ+)
29 simprr 772 . . . . . 6 (((πœ‘ ∧ π‘˜ ∈ β„•) ∧ (1 < (π‘˜ Β· 𝐷) ∧ ((π‘˜ Β· 𝐷) / 2) < 1)) β†’ ((π‘˜ Β· 𝐷) / 2) < 1)
30 stoweidlem49.14 . . . . . . 7 (πœ‘ β†’ 𝐸 ∈ ℝ+)
3130ad2antrr 725 . . . . . 6 (((πœ‘ ∧ π‘˜ ∈ β„•) ∧ (1 < (π‘˜ Β· 𝐷) ∧ ((π‘˜ Β· 𝐷) / 2) < 1)) β†’ 𝐸 ∈ ℝ+)
326, 7, 13, 14, 28, 29, 31stoweidlem7 44338 . . . . 5 (((πœ‘ ∧ π‘˜ ∈ β„•) ∧ (1 < (π‘˜ Β· 𝐷) ∧ ((π‘˜ Β· 𝐷) / 2) < 1)) β†’ βˆƒπ‘› ∈ β„• ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸))
3332ex 414 . . . 4 ((πœ‘ ∧ π‘˜ ∈ β„•) β†’ ((1 < (π‘˜ Β· 𝐷) ∧ ((π‘˜ Β· 𝐷) / 2) < 1) β†’ βˆƒπ‘› ∈ β„• ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)))
3433reximdva 3162 . . 3 (πœ‘ β†’ (βˆƒπ‘˜ ∈ β„• (1 < (π‘˜ Β· 𝐷) ∧ ((π‘˜ Β· 𝐷) / 2) < 1) β†’ βˆƒπ‘˜ ∈ β„• βˆƒπ‘› ∈ β„• ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)))
355, 34mpd 15 . 2 (πœ‘ β†’ βˆƒπ‘˜ ∈ β„• βˆƒπ‘› ∈ β„• ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸))
36 stoweidlem49.1 . . . . 5 Ⅎ𝑑𝑃
37 stoweidlem49.2 . . . . . . 7 β„²π‘‘πœ‘
38 nfv 1918 . . . . . . 7 Ⅎ𝑑(π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)
3937, 38nfan 1903 . . . . . 6 Ⅎ𝑑(πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•))
40 nfv 1918 . . . . . 6 Ⅎ𝑑((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)
4139, 40nfan 1903 . . . . 5 Ⅎ𝑑((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸))
42 stoweidlem49.3 . . . . 5 𝑉 = {𝑑 ∈ 𝑇 ∣ (π‘ƒβ€˜π‘‘) < (𝐷 / 2)}
43 eqid 2733 . . . . 5 (𝑑 ∈ 𝑇 ↦ ((1 βˆ’ ((π‘ƒβ€˜π‘‘)↑𝑛))↑(π‘˜β†‘π‘›))) = (𝑑 ∈ 𝑇 ↦ ((1 βˆ’ ((π‘ƒβ€˜π‘‘)↑𝑛))↑(π‘˜β†‘π‘›)))
44 simplrr 777 . . . . 5 (((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) β†’ 𝑛 ∈ β„•)
45 simplrl 776 . . . . 5 (((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) β†’ π‘˜ ∈ β„•)
463ad2antrr 725 . . . . 5 (((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) β†’ 𝐷 ∈ ℝ+)
474ad2antrr 725 . . . . 5 (((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) β†’ 𝐷 < 1)
48 stoweidlem49.6 . . . . . 6 (πœ‘ β†’ 𝑃 ∈ 𝐴)
4948ad2antrr 725 . . . . 5 (((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) β†’ 𝑃 ∈ 𝐴)
50 stoweidlem49.7 . . . . . 6 (πœ‘ β†’ 𝑃:π‘‡βŸΆβ„)
5150ad2antrr 725 . . . . 5 (((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) β†’ 𝑃:π‘‡βŸΆβ„)
52 stoweidlem49.8 . . . . . 6 (πœ‘ β†’ βˆ€π‘‘ ∈ 𝑇 (0 ≀ (π‘ƒβ€˜π‘‘) ∧ (π‘ƒβ€˜π‘‘) ≀ 1))
5352ad2antrr 725 . . . . 5 (((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) β†’ βˆ€π‘‘ ∈ 𝑇 (0 ≀ (π‘ƒβ€˜π‘‘) ∧ (π‘ƒβ€˜π‘‘) ≀ 1))
54 stoweidlem49.9 . . . . . 6 (πœ‘ β†’ βˆ€π‘‘ ∈ (𝑇 βˆ– π‘ˆ)𝐷 ≀ (π‘ƒβ€˜π‘‘))
5554ad2antrr 725 . . . . 5 (((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) β†’ βˆ€π‘‘ ∈ (𝑇 βˆ– π‘ˆ)𝐷 ≀ (π‘ƒβ€˜π‘‘))
56 stoweidlem49.10 . . . . . 6 ((πœ‘ ∧ 𝑓 ∈ 𝐴) β†’ 𝑓:π‘‡βŸΆβ„)
5756ad4ant14 751 . . . . 5 ((((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓 ∈ 𝐴) β†’ 𝑓:π‘‡βŸΆβ„)
58 simp1ll 1237 . . . . . 6 ((((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) β†’ πœ‘)
59 stoweidlem49.11 . . . . . 6 ((πœ‘ ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ ((π‘“β€˜π‘‘) + (π‘”β€˜π‘‘))) ∈ 𝐴)
6058, 59syld3an1 1411 . . . . 5 ((((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ ((π‘“β€˜π‘‘) + (π‘”β€˜π‘‘))) ∈ 𝐴)
61 stoweidlem49.12 . . . . . 6 ((πœ‘ ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ ((π‘“β€˜π‘‘) Β· (π‘”β€˜π‘‘))) ∈ 𝐴)
6258, 61syld3an1 1411 . . . . 5 ((((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ ((π‘“β€˜π‘‘) Β· (π‘”β€˜π‘‘))) ∈ 𝐴)
63 stoweidlem49.13 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (𝑑 ∈ 𝑇 ↦ π‘₯) ∈ 𝐴)
6463ad4ant14 751 . . . . 5 ((((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) ∧ π‘₯ ∈ ℝ) β†’ (𝑑 ∈ 𝑇 ↦ π‘₯) ∈ 𝐴)
6530ad2antrr 725 . . . . 5 (((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) β†’ 𝐸 ∈ ℝ+)
66 simprl 770 . . . . 5 (((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) β†’ (1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)))
67 simprr 772 . . . . 5 (((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) β†’ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)
6836, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 55, 57, 60, 62, 64, 65, 66, 67stoweidlem45 44376 . . . 4 (((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) ∧ ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸)) β†’ βˆƒπ‘¦ ∈ 𝐴 (βˆ€π‘‘ ∈ 𝑇 (0 ≀ (π‘¦β€˜π‘‘) ∧ (π‘¦β€˜π‘‘) ≀ 1) ∧ βˆ€π‘‘ ∈ 𝑉 (1 βˆ’ 𝐸) < (π‘¦β€˜π‘‘) ∧ βˆ€π‘‘ ∈ (𝑇 βˆ– π‘ˆ)(π‘¦β€˜π‘‘) < 𝐸))
6968ex 414 . . 3 ((πœ‘ ∧ (π‘˜ ∈ β„• ∧ 𝑛 ∈ β„•)) β†’ (((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸) β†’ βˆƒπ‘¦ ∈ 𝐴 (βˆ€π‘‘ ∈ 𝑇 (0 ≀ (π‘¦β€˜π‘‘) ∧ (π‘¦β€˜π‘‘) ≀ 1) ∧ βˆ€π‘‘ ∈ 𝑉 (1 βˆ’ 𝐸) < (π‘¦β€˜π‘‘) ∧ βˆ€π‘‘ ∈ (𝑇 βˆ– π‘ˆ)(π‘¦β€˜π‘‘) < 𝐸)))
7069rexlimdvva 3202 . 2 (πœ‘ β†’ (βˆƒπ‘˜ ∈ β„• βˆƒπ‘› ∈ β„• ((1 βˆ’ 𝐸) < (1 βˆ’ (((π‘˜ Β· 𝐷) / 2)↑𝑛)) ∧ (1 / ((π‘˜ Β· 𝐷)↑𝑛)) < 𝐸) β†’ βˆƒπ‘¦ ∈ 𝐴 (βˆ€π‘‘ ∈ 𝑇 (0 ≀ (π‘¦β€˜π‘‘) ∧ (π‘¦β€˜π‘‘) ≀ 1) ∧ βˆ€π‘‘ ∈ 𝑉 (1 βˆ’ 𝐸) < (π‘¦β€˜π‘‘) ∧ βˆ€π‘‘ ∈ (𝑇 βˆ– π‘ˆ)(π‘¦β€˜π‘‘) < 𝐸)))
7135, 70mpd 15 1 (πœ‘ β†’ βˆƒπ‘¦ ∈ 𝐴 (βˆ€π‘‘ ∈ 𝑇 (0 ≀ (π‘¦β€˜π‘‘) ∧ (π‘¦β€˜π‘‘) ≀ 1) ∧ βˆ€π‘‘ ∈ 𝑉 (1 βˆ’ 𝐸) < (π‘¦β€˜π‘‘) ∧ βˆ€π‘‘ ∈ (𝑇 βˆ– π‘ˆ)(π‘¦β€˜π‘‘) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542  β„²wnf 1786   ∈ wcel 2107  β„²wnfc 2884  βˆ€wral 3061  βˆƒwrex 3070  {crab 3406   βˆ– cdif 3911   class class class wbr 5109   ↦ cmpt 5192  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361  β„cr 11058  0cc0 11059  1c1 11060   + caddc 11062   Β· cmul 11064   < clt 11197   ≀ cle 11198   βˆ’ cmin 11393   / cdiv 11820  β„•cn 12161  2c2 12216  β„•0cn0 12421  β„+crp 12923  β†‘cexp 13976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-pm 8774  df-en 8890  df-dom 8891  df-sdom 8892  df-sup 9386  df-inf 9387  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-n0 12422  df-z 12508  df-uz 12772  df-rp 12924  df-fl 13706  df-seq 13916  df-exp 13977  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-clim 15379  df-rlim 15380
This theorem is referenced by:  stoweidlem52  44383
  Copyright terms: Public domain W3C validator