Step | Hyp | Ref
| Expression |
1 | | simpll 763 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ HL) |
2 | | simpr 484 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
3 | | lhpj1.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
4 | | lhpj1.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
5 | 3, 4 | lhpbase 37939 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
6 | 5 | ad2antlr 723 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → 𝑊 ∈ 𝐵) |
7 | | lhpj1.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
8 | | eqid 2738 |
. . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
9 | 3, 7, 8 | hlrelat2 37344 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑊 ↔ ∃𝑝 ∈ (Atoms‘𝐾)(𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊))) |
10 | 1, 2, 6, 9 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑊 ↔ ∃𝑝 ∈ (Atoms‘𝐾)(𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊))) |
11 | | simp1l 1195 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
12 | | simp2 1135 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → 𝑝 ∈ (Atoms‘𝐾)) |
13 | | simp3r 1200 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → ¬ 𝑝 ≤ 𝑊) |
14 | | lhpj1.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
15 | | lhpj1.u |
. . . . . . . 8
⊢ 1 =
(1.‘𝐾) |
16 | 7, 14, 15, 8, 4 | lhpjat1 37961 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑊 ∨ 𝑝) = 1 ) |
17 | 11, 12, 13, 16 | syl12anc 833 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑊 ∨ 𝑝) = 1 ) |
18 | | simp3l 1199 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → 𝑝 ≤ 𝑋) |
19 | | simp1ll 1234 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → 𝐾 ∈ HL) |
20 | 19 | hllatd 37305 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → 𝐾 ∈ Lat) |
21 | 3, 8 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ 𝐵) |
22 | 21 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → 𝑝 ∈ 𝐵) |
23 | | simp1r 1196 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → 𝑋 ∈ 𝐵) |
24 | 6 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
25 | 3, 7, 14 | latjlej2 18087 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑝 ≤ 𝑋 → (𝑊 ∨ 𝑝) ≤ (𝑊 ∨ 𝑋))) |
26 | 20, 22, 23, 24, 25 | syl13anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑝 ≤ 𝑋 → (𝑊 ∨ 𝑝) ≤ (𝑊 ∨ 𝑋))) |
27 | 18, 26 | mpd 15 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑊 ∨ 𝑝) ≤ (𝑊 ∨ 𝑋)) |
28 | 17, 27 | eqbrtrrd 5094 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → 1 ≤ (𝑊 ∨ 𝑋)) |
29 | | hlop 37303 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
30 | 19, 29 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → 𝐾 ∈ OP) |
31 | 3, 14 | latjcl 18072 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑊 ∨ 𝑋) ∈ 𝐵) |
32 | 20, 24, 23, 31 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑊 ∨ 𝑋) ∈ 𝐵) |
33 | 3, 7, 15 | op1le 37133 |
. . . . . 6
⊢ ((𝐾 ∈ OP ∧ (𝑊 ∨ 𝑋) ∈ 𝐵) → ( 1 ≤ (𝑊 ∨ 𝑋) ↔ (𝑊 ∨ 𝑋) = 1 )) |
34 | 30, 32, 33 | syl2anc 583 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → ( 1 ≤ (𝑊 ∨ 𝑋) ↔ (𝑊 ∨ 𝑋) = 1 )) |
35 | 28, 34 | mpbid 231 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑊 ∨ 𝑋) = 1 ) |
36 | 35 | rexlimdv3a 3214 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ (Atoms‘𝐾)(𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊) → (𝑊 ∨ 𝑋) = 1 )) |
37 | 10, 36 | sylbid 239 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑊 → (𝑊 ∨ 𝑋) = 1 )) |
38 | 37 | impr 454 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑊 ∨ 𝑋) = 1 ) |