Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpj1 Structured version   Visualization version   GIF version

Theorem lhpj1 38485
Description: The join of a co-atom (hyperplane) and an element not under it is the lattice unity. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
lhpj1.b 𝐵 = (Base‘𝐾)
lhpj1.l = (le‘𝐾)
lhpj1.j = (join‘𝐾)
lhpj1.u 1 = (1.‘𝐾)
lhpj1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpj1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = 1 )

Proof of Theorem lhpj1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → 𝐾 ∈ HL)
2 simpr 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → 𝑋𝐵)
3 lhpj1.b . . . . . 6 𝐵 = (Base‘𝐾)
4 lhpj1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
53, 4lhpbase 38461 . . . . 5 (𝑊𝐻𝑊𝐵)
65ad2antlr 725 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → 𝑊𝐵)
7 lhpj1.l . . . . 5 = (le‘𝐾)
8 eqid 2736 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
93, 7, 8hlrelat2 37866 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑊𝐵) → (¬ 𝑋 𝑊 ↔ ∃𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋 ∧ ¬ 𝑝 𝑊)))
101, 2, 6, 9syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (¬ 𝑋 𝑊 ↔ ∃𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋 ∧ ¬ 𝑝 𝑊)))
11 simp1l 1197 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑝 ∈ (Atoms‘𝐾))
13 simp3r 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → ¬ 𝑝 𝑊)
14 lhpj1.j . . . . . . . 8 = (join‘𝐾)
15 lhpj1.u . . . . . . . 8 1 = (1.‘𝐾)
167, 14, 15, 8, 4lhpjat1 38483 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑝) = 1 )
1711, 12, 13, 16syl12anc 835 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑝) = 1 )
18 simp3l 1201 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑝 𝑋)
19 simp1ll 1236 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝐾 ∈ HL)
2019hllatd 37826 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝐾 ∈ Lat)
213, 8atbase 37751 . . . . . . . . 9 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
22213ad2ant2 1134 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑝𝐵)
23 simp1r 1198 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑋𝐵)
2463ad2ant1 1133 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑊𝐵)
253, 7, 14latjlej2 18343 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑊𝐵)) → (𝑝 𝑋 → (𝑊 𝑝) (𝑊 𝑋)))
2620, 22, 23, 24, 25syl13anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑝 𝑋 → (𝑊 𝑝) (𝑊 𝑋)))
2718, 26mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑝) (𝑊 𝑋))
2817, 27eqbrtrrd 5129 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 1 (𝑊 𝑋))
29 hlop 37824 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
3019, 29syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝐾 ∈ OP)
313, 14latjcl 18328 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑊𝐵𝑋𝐵) → (𝑊 𝑋) ∈ 𝐵)
3220, 24, 23, 31syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑋) ∈ 𝐵)
333, 7, 15op1le 37654 . . . . . 6 ((𝐾 ∈ OP ∧ (𝑊 𝑋) ∈ 𝐵) → ( 1 (𝑊 𝑋) ↔ (𝑊 𝑋) = 1 ))
3430, 32, 33syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → ( 1 (𝑊 𝑋) ↔ (𝑊 𝑋) = 1 ))
3528, 34mpbid 231 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑋) = 1 )
3635rexlimdv3a 3156 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (∃𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋 ∧ ¬ 𝑝 𝑊) → (𝑊 𝑋) = 1 ))
3710, 36sylbid 239 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (¬ 𝑋 𝑊 → (𝑊 𝑋) = 1 ))
3837impr 455 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = 1 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  1.cp1 18313  Latclat 18320  OPcops 37634  Atomscatm 37725  HLchlt 37812  LHypclh 38447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-lhyp 38451
This theorem is referenced by:  lhpmcvr  38486  cdleme30a  38841
  Copyright terms: Public domain W3C validator