Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpj1 Structured version   Visualization version   GIF version

Theorem lhpj1 39989
Description: The join of a co-atom (hyperplane) and an element not under it is the lattice unity. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
lhpj1.b 𝐵 = (Base‘𝐾)
lhpj1.l = (le‘𝐾)
lhpj1.j = (join‘𝐾)
lhpj1.u 1 = (1.‘𝐾)
lhpj1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpj1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = 1 )

Proof of Theorem lhpj1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → 𝐾 ∈ HL)
2 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → 𝑋𝐵)
3 lhpj1.b . . . . . 6 𝐵 = (Base‘𝐾)
4 lhpj1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
53, 4lhpbase 39965 . . . . 5 (𝑊𝐻𝑊𝐵)
65ad2antlr 727 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → 𝑊𝐵)
7 lhpj1.l . . . . 5 = (le‘𝐾)
8 eqid 2729 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
93, 7, 8hlrelat2 39370 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑊𝐵) → (¬ 𝑋 𝑊 ↔ ∃𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋 ∧ ¬ 𝑝 𝑊)))
101, 2, 6, 9syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (¬ 𝑋 𝑊 ↔ ∃𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋 ∧ ¬ 𝑝 𝑊)))
11 simp1l 1198 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑝 ∈ (Atoms‘𝐾))
13 simp3r 1203 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → ¬ 𝑝 𝑊)
14 lhpj1.j . . . . . . . 8 = (join‘𝐾)
15 lhpj1.u . . . . . . . 8 1 = (1.‘𝐾)
167, 14, 15, 8, 4lhpjat1 39987 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑝) = 1 )
1711, 12, 13, 16syl12anc 836 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑝) = 1 )
18 simp3l 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑝 𝑋)
19 simp1ll 1237 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝐾 ∈ HL)
2019hllatd 39330 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝐾 ∈ Lat)
213, 8atbase 39255 . . . . . . . . 9 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
22213ad2ant2 1134 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑝𝐵)
23 simp1r 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑋𝐵)
2463ad2ant1 1133 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑊𝐵)
253, 7, 14latjlej2 18389 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑊𝐵)) → (𝑝 𝑋 → (𝑊 𝑝) (𝑊 𝑋)))
2620, 22, 23, 24, 25syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑝 𝑋 → (𝑊 𝑝) (𝑊 𝑋)))
2718, 26mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑝) (𝑊 𝑋))
2817, 27eqbrtrrd 5126 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 1 (𝑊 𝑋))
29 hlop 39328 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
3019, 29syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝐾 ∈ OP)
313, 14latjcl 18374 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑊𝐵𝑋𝐵) → (𝑊 𝑋) ∈ 𝐵)
3220, 24, 23, 31syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑋) ∈ 𝐵)
333, 7, 15op1le 39158 . . . . . 6 ((𝐾 ∈ OP ∧ (𝑊 𝑋) ∈ 𝐵) → ( 1 (𝑊 𝑋) ↔ (𝑊 𝑋) = 1 ))
3430, 32, 33syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → ( 1 (𝑊 𝑋) ↔ (𝑊 𝑋) = 1 ))
3528, 34mpbid 232 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑋) = 1 )
3635rexlimdv3a 3138 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (∃𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋 ∧ ¬ 𝑝 𝑊) → (𝑊 𝑋) = 1 ))
3710, 36sylbid 240 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (¬ 𝑋 𝑊 → (𝑊 𝑋) = 1 ))
3837impr 454 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = 1 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  1.cp1 18359  Latclat 18366  OPcops 39138  Atomscatm 39229  HLchlt 39316  LHypclh 39951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-lhyp 39955
This theorem is referenced by:  lhpmcvr  39990  cdleme30a  40345
  Copyright terms: Public domain W3C validator