Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpj1 Structured version   Visualization version   GIF version

Theorem lhpj1 37027
Description: The join of a co-atom (hyperplane) and an element not under it is the lattice unit. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
lhpj1.b 𝐵 = (Base‘𝐾)
lhpj1.l = (le‘𝐾)
lhpj1.j = (join‘𝐾)
lhpj1.u 1 = (1.‘𝐾)
lhpj1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpj1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = 1 )

Proof of Theorem lhpj1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpll 763 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → 𝐾 ∈ HL)
2 simpr 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → 𝑋𝐵)
3 lhpj1.b . . . . . 6 𝐵 = (Base‘𝐾)
4 lhpj1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
53, 4lhpbase 37003 . . . . 5 (𝑊𝐻𝑊𝐵)
65ad2antlr 723 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → 𝑊𝐵)
7 lhpj1.l . . . . 5 = (le‘𝐾)
8 eqid 2825 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
93, 7, 8hlrelat2 36408 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑊𝐵) → (¬ 𝑋 𝑊 ↔ ∃𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋 ∧ ¬ 𝑝 𝑊)))
101, 2, 6, 9syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (¬ 𝑋 𝑊 ↔ ∃𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋 ∧ ¬ 𝑝 𝑊)))
11 simp1l 1191 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simp2 1131 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑝 ∈ (Atoms‘𝐾))
13 simp3r 1196 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → ¬ 𝑝 𝑊)
14 lhpj1.j . . . . . . . 8 = (join‘𝐾)
15 lhpj1.u . . . . . . . 8 1 = (1.‘𝐾)
167, 14, 15, 8, 4lhpjat1 37025 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑝) = 1 )
1711, 12, 13, 16syl12anc 834 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑝) = 1 )
18 simp3l 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑝 𝑋)
19 simp1ll 1230 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝐾 ∈ HL)
2019hllatd 36369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝐾 ∈ Lat)
213, 8atbase 36294 . . . . . . . . 9 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
22213ad2ant2 1128 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑝𝐵)
23 simp1r 1192 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑋𝐵)
2463ad2ant1 1127 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝑊𝐵)
253, 7, 14latjlej2 17668 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑊𝐵)) → (𝑝 𝑋 → (𝑊 𝑝) (𝑊 𝑋)))
2620, 22, 23, 24, 25syl13anc 1366 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑝 𝑋 → (𝑊 𝑝) (𝑊 𝑋)))
2718, 26mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑝) (𝑊 𝑋))
2817, 27eqbrtrrd 5086 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 1 (𝑊 𝑋))
29 hlop 36367 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
3019, 29syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → 𝐾 ∈ OP)
313, 14latjcl 17653 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑊𝐵𝑋𝐵) → (𝑊 𝑋) ∈ 𝐵)
3220, 24, 23, 31syl3anc 1365 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑋) ∈ 𝐵)
333, 7, 15op1le 36197 . . . . . 6 ((𝐾 ∈ OP ∧ (𝑊 𝑋) ∈ 𝐵) → ( 1 (𝑊 𝑋) ↔ (𝑊 𝑋) = 1 ))
3430, 32, 33syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → ( 1 (𝑊 𝑋) ↔ (𝑊 𝑋) = 1 ))
3528, 34mpbid 233 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ (𝑝 𝑋 ∧ ¬ 𝑝 𝑊)) → (𝑊 𝑋) = 1 )
3635rexlimdv3a 3290 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (∃𝑝 ∈ (Atoms‘𝐾)(𝑝 𝑋 ∧ ¬ 𝑝 𝑊) → (𝑊 𝑋) = 1 ))
3710, 36sylbid 241 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (¬ 𝑋 𝑊 → (𝑊 𝑋) = 1 ))
3837impr 455 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = 1 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wrex 3143   class class class wbr 5062  cfv 6351  (class class class)co 7151  Basecbs 16475  lecple 16564  joincjn 17546  1.cp1 17640  Latclat 17647  OPcops 36177  Atomscatm 36268  HLchlt 36355  LHypclh 36989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36181  df-ol 36183  df-oml 36184  df-covers 36271  df-ats 36272  df-atl 36303  df-cvlat 36327  df-hlat 36356  df-lhyp 36993
This theorem is referenced by:  lhpmcvr  37028  cdleme30a  37383
  Copyright terms: Public domain W3C validator