Step | Hyp | Ref
| Expression |
1 | | fzfid 13693 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin) |
2 | | elfznn 13285 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(1...(⌊‘𝑥))
→ 𝑘 ∈
ℕ) |
3 | 2 | adantl 482 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ) |
4 | 3 | nnrpd 12770 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+) |
5 | 4 | relogcld 25778 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (log‘𝑘) ∈
ℝ) |
6 | 5, 3 | nndivred 12027 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((log‘𝑘) / 𝑘) ∈ ℝ) |
7 | 1, 6 | fsumrecl 15446 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) ∈ ℝ) |
8 | 7 | recnd 11003 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) ∈ ℂ) |
9 | | elioore 13109 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ) |
10 | 9 | adantl 482 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ∈ ℝ) |
11 | | 1rp 12734 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
12 | 11 | a1i 11 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ∈ ℝ+) |
13 | | 1red 10976 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ∈ ℝ) |
14 | | eliooord 13138 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1(,)+∞) → (1
< 𝑥 ∧ 𝑥 <
+∞)) |
15 | 14 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) |
16 | 15 | simpld 495 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 < 𝑥) |
17 | 13, 10, 16 | ltled 11123 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ≤ 𝑥) |
18 | 10, 12, 17 | rpgecld 12811 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ∈ ℝ+) |
19 | 18 | relogcld 25778 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ) |
20 | 19 | resqcld 13965 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((log‘𝑥)↑2) ∈ ℝ) |
21 | 20 | rehalfcld 12220 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((log‘𝑥)↑2) / 2) ∈
ℝ) |
22 | 21 | recnd 11003 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((log‘𝑥)↑2) / 2) ∈
ℂ) |
23 | 19 | recnd 11003 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ) |
24 | 10, 16 | rplogcld 25784 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈
ℝ+) |
25 | 24 | rpne0d 12777 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ≠ 0) |
26 | 8, 22, 23, 25 | divsubdird 11790 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) / (log‘𝑥)) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((((log‘𝑥)↑2) / 2) / (log‘𝑥)))) |
27 | 7, 21 | resubcld 11403 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) ∈
ℝ) |
28 | 27 | recnd 11003 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) ∈
ℂ) |
29 | 28, 23, 25 | divrecd 11754 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) / (log‘𝑥)) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) · (1 /
(log‘𝑥)))) |
30 | 20 | recnd 11003 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((log‘𝑥)↑2) ∈ ℂ) |
31 | | 2cnd 12051 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 2 ∈ ℂ) |
32 | | 2ne0 12077 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
33 | 32 | a1i 11 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 2 ≠ 0) |
34 | 30, 31, 23, 33, 25 | divdiv32d 11776 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((log‘𝑥)↑2) / 2) / (log‘𝑥)) = ((((log‘𝑥)↑2) / (log‘𝑥)) / 2)) |
35 | 23 | sqvald 13861 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((log‘𝑥)↑2) = ((log‘𝑥) · (log‘𝑥))) |
36 | 35 | oveq1d 7290 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((log‘𝑥)↑2) / (log‘𝑥)) = (((log‘𝑥) · (log‘𝑥)) / (log‘𝑥))) |
37 | 23, 23, 25 | divcan3d 11756 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((log‘𝑥) · (log‘𝑥)) / (log‘𝑥)) = (log‘𝑥)) |
38 | 36, 37 | eqtrd 2778 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((log‘𝑥)↑2) / (log‘𝑥)) = (log‘𝑥)) |
39 | 38 | oveq1d 7290 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((log‘𝑥)↑2) / (log‘𝑥)) / 2) = ((log‘𝑥) / 2)) |
40 | 34, 39 | eqtrd 2778 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((log‘𝑥)↑2) / 2) / (log‘𝑥)) = ((log‘𝑥) / 2)) |
41 | 40 | oveq2d 7291 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((((log‘𝑥)↑2) / 2) / (log‘𝑥))) = ((Σ𝑘 ∈
(1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2))) |
42 | 26, 29, 41 | 3eqtr3rd 2787 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) · (1 /
(log‘𝑥)))) |
43 | 42 | mpteq2dva 5174 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2))) = (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑘 ∈
(1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) · (1 /
(log‘𝑥))))) |
44 | 24 | rprecred 12783 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ) |
45 | 18 | ex 413 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) → 𝑥
∈ ℝ+)) |
46 | 45 | ssrdv 3927 |
. . . . . 6
⊢ (⊤
→ (1(,)+∞) ⊆ ℝ+) |
47 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑘 ∈
(1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑘 ∈
(1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) |
48 | 47 | logdivsum 26681 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
↦ (Σ𝑘 ∈
(1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) /
2))):ℝ+⟶ℝ ∧ (𝑥 ∈ ℝ+ ↦
(Σ𝑘 ∈
(1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ dom
⇝𝑟 ∧ (((𝑥 ∈ ℝ+ ↦
(Σ𝑘 ∈
(1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ⇝𝑟
1 ∧ 1 ∈ ℝ+ ∧ e ≤ 1) → (abs‘(((𝑥 ∈ ℝ+
↦ (Σ𝑘 ∈
(1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)))‘1) − 1)) ≤
((log‘1) / 1))) |
49 | 48 | simp2i 1139 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑘 ∈
(1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ dom
⇝𝑟 |
50 | | rlimdmo1 15327 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
↦ (Σ𝑘 ∈
(1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ dom
⇝𝑟 → (𝑥 ∈ ℝ+ ↦
(Σ𝑘 ∈
(1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈
𝑂(1)) |
51 | 49, 50 | mp1i 13 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈
𝑂(1)) |
52 | 46, 51 | o1res2 15272 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈
𝑂(1)) |
53 | | divlogrlim 25790 |
. . . . . 6
⊢ (𝑥 ∈ (1(,)+∞) ↦
(1 / (log‘𝑥)))
⇝𝑟 0 |
54 | | rlimo1 15326 |
. . . . . 6
⊢ ((𝑥 ∈ (1(,)+∞) ↦
(1 / (log‘𝑥)))
⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 /
(log‘𝑥))) ∈
𝑂(1)) |
55 | 53, 54 | mp1i 13 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1)) |
56 | 27, 44, 52, 55 | o1mul2 15334 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) · (1 /
(log‘𝑥)))) ∈
𝑂(1)) |
57 | 43, 56 | eqeltrd 2839 |
. . 3
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈
𝑂(1)) |
58 | 8, 23, 25 | divcld 11751 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) ∈ ℂ) |
59 | 23 | halfcld 12218 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((log‘𝑥) / 2) ∈ ℂ) |
60 | 58, 59 | subcld 11332 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) ∈ ℂ) |
61 | | elfznn 13285 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
62 | 61 | adantl 482 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ) |
63 | | vmacl 26267 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
64 | 62, 63 | syl 17 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈
ℝ) |
65 | 64, 62 | nndivred 12027 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛) / 𝑛) ∈
ℝ) |
66 | 18 | adantr 481 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+) |
67 | 62 | nnrpd 12770 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+) |
68 | 66, 67 | rpdivcld 12789 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈
ℝ+) |
69 | 68 | relogcld 25778 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ) |
70 | 65, 69 | remulcld 11005 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛) /
𝑛) ·
(log‘(𝑥 / 𝑛))) ∈
ℝ) |
71 | 1, 70 | fsumrecl 15446 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℝ) |
72 | 71 | recnd 11003 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ) |
73 | 24 | rpcnd 12774 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ) |
74 | 72, 73, 25 | divcld 11751 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) ∈ ℂ) |
75 | 73 | halfcld 12218 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((log‘𝑥) / 2) ∈ ℂ) |
76 | 74, 75 | subcld 11332 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)) ∈ ℂ) |
77 | 58, 74, 59 | nnncan2d 11367 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)))) |
78 | 8, 72, 23, 25 | divsubdird 11790 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)))) |
79 | | fzfid 13693 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(1...(⌊‘(𝑥 /
𝑛))) ∈
Fin) |
80 | 64 | adantr 481 |
. . . . . . . . . . . . 13
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑛) ∈
ℝ) |
81 | 62 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑛 ∈ ℕ) |
82 | | elfznn 13285 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛))) → 𝑚 ∈
ℕ) |
83 | 82 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ) |
84 | 81, 83 | nnmulcld 12026 |
. . . . . . . . . . . . 13
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑛 · 𝑚) ∈ ℕ) |
85 | 80, 84 | nndivred 12027 |
. . . . . . . . . . . 12
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑛) / (𝑛 · 𝑚)) ∈ ℝ) |
86 | 79, 85 | fsumrecl 15446 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) ∈ ℝ) |
87 | 86 | recnd 11003 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) ∈ ℂ) |
88 | 70 | recnd 11003 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛) /
𝑛) ·
(log‘(𝑥 / 𝑛))) ∈
ℂ) |
89 | 1, 87, 88 | fsumsub 15500 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) |
90 | 64 | recnd 11003 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈
ℂ) |
91 | 62 | nncnd 11989 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ) |
92 | 62 | nnne0d 12023 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0) |
93 | 90, 91, 92 | divcld 11751 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛) / 𝑛) ∈
ℂ) |
94 | 83 | nnrecred 12024 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 / 𝑚) ∈ ℝ) |
95 | 79, 94 | fsumrecl 15446 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) ∈ ℝ) |
96 | 95 | recnd 11003 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) ∈ ℂ) |
97 | 69 | recnd 11003 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ) |
98 | 93, 96, 97 | subdid 11431 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛) /
𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = ((((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) |
99 | 90 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑛) ∈
ℂ) |
100 | 91 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑛 ∈ ℂ) |
101 | 83 | nncnd 11989 |
. . . . . . . . . . . . . . . 16
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℂ) |
102 | 92 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑛 ≠ 0) |
103 | 83 | nnne0d 12023 |
. . . . . . . . . . . . . . . 16
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ≠ 0) |
104 | 99, 100, 101, 102, 103 | divdiv1d 11782 |
. . . . . . . . . . . . . . 15
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (((Λ‘𝑛) / 𝑛) / 𝑚) = ((Λ‘𝑛) / (𝑛 · 𝑚))) |
105 | 99, 100, 102 | divcld 11751 |
. . . . . . . . . . . . . . . 16
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ) |
106 | 105, 101,
103 | divrecd 11754 |
. . . . . . . . . . . . . . 15
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (((Λ‘𝑛) / 𝑛) / 𝑚) = (((Λ‘𝑛) / 𝑛) · (1 / 𝑚))) |
107 | 104, 106 | eqtr3d 2780 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑛) / (𝑛 · 𝑚)) = (((Λ‘𝑛) / 𝑛) · (1 / 𝑚))) |
108 | 107 | sumeq2dv 15415 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((Λ‘𝑛) / 𝑛) · (1 / 𝑚))) |
109 | 101, 103 | reccld 11744 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 / 𝑚) ∈ ℂ) |
110 | 79, 93, 109 | fsummulc2 15496 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛) /
𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((Λ‘𝑛) / 𝑛) · (1 / 𝑚))) |
111 | 108, 110 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) = (((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚))) |
112 | 111 | oveq1d 7290 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = ((((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) |
113 | 98, 112 | eqtr4d 2781 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛) /
𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) |
114 | 113 | sumeq2dv 15415 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) |
115 | | vmasum 26364 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ →
Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} (Λ‘𝑛) = (log‘𝑘)) |
116 | 3, 115 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} (Λ‘𝑛) = (log‘𝑘)) |
117 | 116 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} (Λ‘𝑛) / 𝑘) = ((log‘𝑘) / 𝑘)) |
118 | | fzfid 13693 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (1...𝑘) ∈ Fin) |
119 | | dvdsssfz1 16027 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ⊆ (1...𝑘)) |
120 | 3, 119 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ⊆ (1...𝑘)) |
121 | 118, 120 | ssfid 9042 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ∈ Fin) |
122 | 3 | nncnd 11989 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℂ) |
123 | | ssrab2 4013 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ⊆ ℕ |
124 | | simprr 770 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘}) |
125 | 123, 124 | sselid 3919 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → 𝑛 ∈ ℕ) |
126 | 125, 63 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → (Λ‘𝑛) ∈ ℝ) |
127 | 126 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → (Λ‘𝑛) ∈ ℂ) |
128 | 127 | anassrs 468 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘}) → (Λ‘𝑛) ∈ ℂ) |
129 | 3 | nnne0d 12023 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ≠ 0) |
130 | 121, 122,
128, 129 | fsumdivc 15498 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} (Λ‘𝑛) / 𝑘) = Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ((Λ‘𝑛) / 𝑘)) |
131 | 117, 130 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((log‘𝑘) / 𝑘) = Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ((Λ‘𝑛) / 𝑘)) |
132 | 131 | sumeq2dv 15415 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ((Λ‘𝑛) / 𝑘)) |
133 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑛 · 𝑚) → ((Λ‘𝑛) / 𝑘) = ((Λ‘𝑛) / (𝑛 · 𝑚))) |
134 | 2 | ad2antrl 725 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → 𝑘 ∈ ℕ) |
135 | 134 | nncnd 11989 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → 𝑘 ∈ ℂ) |
136 | 134 | nnne0d 12023 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → 𝑘 ≠ 0) |
137 | 127, 135,
136 | divcld 11751 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → ((Λ‘𝑛) / 𝑘) ∈ ℂ) |
138 | 133, 10, 137 | dvdsflsumcom 26337 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ((Λ‘𝑛) / 𝑘) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚))) |
139 | 132, 138 | eqtrd 2778 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚))) |
140 | 139 | oveq1d 7290 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) |
141 | 89, 114, 140 | 3eqtr4rd 2789 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) |
142 | 141 | oveq1d 7290 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) |
143 | 77, 78, 142 | 3eqtr2d 2784 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) |
144 | 143 | mpteq2dva 5174 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)))) = (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)))) |
145 | | 1red 10976 |
. . . . . . 7
⊢ (⊤
→ 1 ∈ ℝ) |
146 | 1, 65 | fsumrecl 15446 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ) |
147 | 146, 24 | rerpdivcld 12803 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) ∈ ℝ) |
148 | | ioossre 13140 |
. . . . . . . . . . 11
⊢
(1(,)+∞) ⊆ ℝ |
149 | | ax-1cn 10929 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
150 | | o1const 15329 |
. . . . . . . . . . 11
⊢
(((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦
1) ∈ 𝑂(1)) |
151 | 148, 149,
150 | mp2an 689 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1(,)+∞) ↦
1) ∈ 𝑂(1) |
152 | 151 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ 1) ∈ 𝑂(1)) |
153 | 147 | recnd 11003 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) ∈ ℂ) |
154 | 12 | rpcnd 12774 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ∈ ℂ) |
155 | 146 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ) |
156 | 155, 23, 23, 25 | divsubdird 11790 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − ((log‘𝑥) / (log‘𝑥)))) |
157 | 155, 23 | subcld 11332 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℂ) |
158 | 157, 23, 25 | divrecd 11754 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥)))) |
159 | 23, 25 | dividd 11749 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((log‘𝑥) / (log‘𝑥)) = 1) |
160 | 159 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − ((log‘𝑥) / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1)) |
161 | 156, 158,
160 | 3eqtr3rd 2787 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥)))) |
162 | 161 | mpteq2dva 5174 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1)) = (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥))))) |
163 | 146, 19 | resubcld 11403 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℝ) |
164 | | vmadivsum 26630 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1) |
165 | 164 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)) |
166 | 46, 165 | o1res2 15272 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)) |
167 | 163, 44, 166, 55 | o1mul2 15334 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥)))) ∈
𝑂(1)) |
168 | 162, 167 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1)) ∈
𝑂(1)) |
169 | 153, 154,
168 | o1dif 15339 |
. . . . . . . . 9
⊢ (⊤
→ ((𝑥 ∈
(1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦
1) ∈ 𝑂(1))) |
170 | 152, 169 | mpbird 256 |
. . . . . . . 8
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) ∈ 𝑂(1)) |
171 | 147, 170 | o1lo1d 15248 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) ∈ ≤𝑂(1)) |
172 | 95, 69 | resubcld 11403 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ∈ ℝ) |
173 | 65, 172 | remulcld 11005 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛) /
𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ) |
174 | 1, 173 | fsumrecl 15446 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ) |
175 | 174, 24 | rerpdivcld 12803 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) ∈ ℝ) |
176 | | 1red 10976 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈
ℝ) |
177 | | vmage0 26270 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 0 ≤
(Λ‘𝑛)) |
178 | 62, 177 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤
(Λ‘𝑛)) |
179 | 64, 67, 178 | divge0d 12812 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤
((Λ‘𝑛) / 𝑛)) |
180 | 68 | rpred 12772 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ) |
181 | 91 | mulid2d 10993 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) = 𝑛) |
182 | | fznnfl 13582 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℝ → (𝑛 ∈
(1...(⌊‘𝑥))
↔ (𝑛 ∈ ℕ
∧ 𝑛 ≤ 𝑥))) |
183 | 10, 182 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑥))) |
184 | 183 | simplbda 500 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≤ 𝑥) |
185 | 181, 184 | eqbrtrd 5096 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) ≤ 𝑥) |
186 | 10 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ) |
187 | 176, 186,
67 | lemuldivd 12821 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛))) |
188 | 185, 187 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑛)) |
189 | | harmonicubnd 26159 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛)) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ≤ ((log‘(𝑥 / 𝑛)) + 1)) |
190 | 180, 188,
189 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) ≤ ((log‘(𝑥 / 𝑛)) + 1)) |
191 | 95, 69, 176 | lesubadd2d 11574 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ≤ 1 ↔ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ≤ ((log‘(𝑥 / 𝑛)) + 1))) |
192 | 190, 191 | mpbird 256 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ≤ 1) |
193 | 172, 176,
65, 179, 192 | lemul2ad 11915 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛) /
𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ≤ (((Λ‘𝑛) / 𝑛) · 1)) |
194 | 93 | mulid1d 10992 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛) /
𝑛) · 1) =
((Λ‘𝑛) / 𝑛)) |
195 | 193, 194 | breqtrd 5100 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛) /
𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ≤ ((Λ‘𝑛) / 𝑛)) |
196 | 1, 173, 65, 195 | fsumle 15511 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛)) |
197 | 174, 146,
24, 196 | lediv1dd 12830 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) |
198 | 197 | adantrr 714 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) |
199 | 145, 171,
147, 175, 198 | lo1le 15363 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈ ≤𝑂(1)) |
200 | | 0red 10978 |
. . . . . . 7
⊢ (⊤
→ 0 ∈ ℝ) |
201 | | harmoniclbnd 26158 |
. . . . . . . . . . . 12
⊢ ((𝑥 / 𝑛) ∈ ℝ+ →
(log‘(𝑥 / 𝑛)) ≤ Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚)) |
202 | 68, 201 | syl 17 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) |
203 | 95, 69 | subge0d 11565 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (0 ≤ (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ↔ (log‘(𝑥 / 𝑛)) ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚))) |
204 | 202, 203 | mpbird 256 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) |
205 | 65, 172, 179, 204 | mulge0d 11552 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤
(((Λ‘𝑛) /
𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) |
206 | 1, 173, 205 | fsumge0 15507 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) |
207 | 174, 24, 206 | divge0d 12812 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) |
208 | 175, 200,
207 | o1lo12 15247 |
. . . . . 6
⊢ (⊤
→ ((𝑥 ∈
(1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈
≤𝑂(1))) |
209 | 199, 208 | mpbird 256 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈ 𝑂(1)) |
210 | 144, 209 | eqeltrd 2839 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)))) ∈
𝑂(1)) |
211 | 60, 76, 210 | o1dif 15339 |
. . 3
⊢ (⊤
→ ((𝑥 ∈
(1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈
𝑂(1))) |
212 | 57, 211 | mpbid 231 |
. 2
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈
𝑂(1)) |
213 | 212 | mptru 1546 |
1
⊢ (𝑥 ∈ (1(,)+∞) ↦
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1) |