MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmalogdivsum2 Structured version   Visualization version   GIF version

Theorem vmalogdivsum2 26686
Description: The sum Σ𝑛𝑥, Λ(𝑛)log(𝑥 / 𝑛) / 𝑛 is asymptotic to log↑2(𝑥) / 2 + 𝑂(log𝑥). Exercise 9.1.7 of [Shapiro], p. 336. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
vmalogdivsum2 (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem vmalogdivsum2
Dummy variables 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13693 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
2 elfznn 13285 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
32adantl 482 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
43nnrpd 12770 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+)
54relogcld 25778 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (log‘𝑘) ∈ ℝ)
65, 3nndivred 12027 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((log‘𝑘) / 𝑘) ∈ ℝ)
71, 6fsumrecl 15446 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) ∈ ℝ)
87recnd 11003 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) ∈ ℂ)
9 elioore 13109 . . . . . . . . . . . . 13 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
109adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
11 1rp 12734 . . . . . . . . . . . . 13 1 ∈ ℝ+
1211a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
13 1red 10976 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
14 eliooord 13138 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
1514adantl 482 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
1615simpld 495 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
1713, 10, 16ltled 11123 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
1810, 12, 17rpgecld 12811 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
1918relogcld 25778 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
2019resqcld 13965 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥)↑2) ∈ ℝ)
2120rehalfcld 12220 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((log‘𝑥)↑2) / 2) ∈ ℝ)
2221recnd 11003 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((log‘𝑥)↑2) / 2) ∈ ℂ)
2319recnd 11003 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
2410, 16rplogcld 25784 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2524rpne0d 12777 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
268, 22, 23, 25divsubdird 11790 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) / (log‘𝑥)) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((((log‘𝑥)↑2) / 2) / (log‘𝑥))))
277, 21resubcld 11403 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) ∈ ℝ)
2827recnd 11003 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) ∈ ℂ)
2928, 23, 25divrecd 11754 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) / (log‘𝑥)) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) · (1 / (log‘𝑥))))
3020recnd 11003 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥)↑2) ∈ ℂ)
31 2cnd 12051 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
32 2ne0 12077 . . . . . . . . . 10 2 ≠ 0
3332a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ≠ 0)
3430, 31, 23, 33, 25divdiv32d 11776 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((log‘𝑥)↑2) / 2) / (log‘𝑥)) = ((((log‘𝑥)↑2) / (log‘𝑥)) / 2))
3523sqvald 13861 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥)↑2) = ((log‘𝑥) · (log‘𝑥)))
3635oveq1d 7290 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((log‘𝑥)↑2) / (log‘𝑥)) = (((log‘𝑥) · (log‘𝑥)) / (log‘𝑥)))
3723, 23, 25divcan3d 11756 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) · (log‘𝑥)) / (log‘𝑥)) = (log‘𝑥))
3836, 37eqtrd 2778 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((log‘𝑥)↑2) / (log‘𝑥)) = (log‘𝑥))
3938oveq1d 7290 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((log‘𝑥)↑2) / (log‘𝑥)) / 2) = ((log‘𝑥) / 2))
4034, 39eqtrd 2778 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((log‘𝑥)↑2) / 2) / (log‘𝑥)) = ((log‘𝑥) / 2))
4140oveq2d 7291 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((((log‘𝑥)↑2) / 2) / (log‘𝑥))) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)))
4226, 29, 413eqtr3rd 2787 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) · (1 / (log‘𝑥))))
4342mpteq2dva 5174 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2))) = (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) · (1 / (log‘𝑥)))))
4424rprecred 12783 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
4518ex 413 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
4645ssrdv 3927 . . . . . 6 (⊤ → (1(,)+∞) ⊆ ℝ+)
47 eqid 2738 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)))
4847logdivsum 26681 . . . . . . . 8 ((𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))):ℝ+⟶ℝ ∧ (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ dom ⇝𝑟 ∧ (((𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ⇝𝑟 1 ∧ 1 ∈ ℝ+ ∧ e ≤ 1) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)))‘1) − 1)) ≤ ((log‘1) / 1)))
4948simp2i 1139 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ dom ⇝𝑟
50 rlimdmo1 15327 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ dom ⇝𝑟 → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ 𝑂(1))
5149, 50mp1i 13 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ 𝑂(1))
5246, 51o1res2 15272 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ 𝑂(1))
53 divlogrlim 25790 . . . . . 6 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
54 rlimo1 15326 . . . . . 6 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
5553, 54mp1i 13 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
5627, 44, 52, 55o1mul2 15334 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) · (1 / (log‘𝑥)))) ∈ 𝑂(1))
5743, 56eqeltrd 2839 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1))
588, 23, 25divcld 11751 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) ∈ ℂ)
5923halfcld 12218 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / 2) ∈ ℂ)
6058, 59subcld 11332 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) ∈ ℂ)
61 elfznn 13285 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
6261adantl 482 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
63 vmacl 26267 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
6462, 63syl 17 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
6564, 62nndivred 12027 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
6618adantr 481 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
6762nnrpd 12770 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
6866, 67rpdivcld 12789 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
6968relogcld 25778 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
7065, 69remulcld 11005 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℝ)
711, 70fsumrecl 15446 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℝ)
7271recnd 11003 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
7324rpcnd 12774 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
7472, 73, 25divcld 11751 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) ∈ ℂ)
7573halfcld 12218 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / 2) ∈ ℂ)
7674, 75subcld 11332 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)) ∈ ℂ)
7758, 74, 59nnncan2d 11367 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥))))
788, 72, 23, 25divsubdird 11790 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥))))
79 fzfid 13693 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
8064adantr 481 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑛) ∈ ℝ)
8162adantr 481 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑛 ∈ ℕ)
82 elfznn 13285 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
8382adantl 482 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
8481, 83nnmulcld 12026 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑛 · 𝑚) ∈ ℕ)
8580, 84nndivred 12027 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑛) / (𝑛 · 𝑚)) ∈ ℝ)
8679, 85fsumrecl 15446 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) ∈ ℝ)
8786recnd 11003 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) ∈ ℂ)
8870recnd 11003 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
891, 87, 88fsumsub 15500 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
9064recnd 11003 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
9162nncnd 11989 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
9262nnne0d 12023 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
9390, 91, 92divcld 11751 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
9483nnrecred 12024 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 / 𝑚) ∈ ℝ)
9579, 94fsumrecl 15446 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ∈ ℝ)
9695recnd 11003 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ∈ ℂ)
9769recnd 11003 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
9893, 96, 97subdid 11431 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = ((((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
9990adantr 481 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑛) ∈ ℂ)
10091adantr 481 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑛 ∈ ℂ)
10183nncnd 11989 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℂ)
10292adantr 481 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑛 ≠ 0)
10383nnne0d 12023 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ≠ 0)
10499, 100, 101, 102, 103divdiv1d 11782 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (((Λ‘𝑛) / 𝑛) / 𝑚) = ((Λ‘𝑛) / (𝑛 · 𝑚)))
10599, 100, 102divcld 11751 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
106105, 101, 103divrecd 11754 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (((Λ‘𝑛) / 𝑛) / 𝑚) = (((Λ‘𝑛) / 𝑛) · (1 / 𝑚)))
107104, 106eqtr3d 2780 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑛) / (𝑛 · 𝑚)) = (((Λ‘𝑛) / 𝑛) · (1 / 𝑚)))
108107sumeq2dv 15415 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((Λ‘𝑛) / 𝑛) · (1 / 𝑚)))
109101, 103reccld 11744 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 / 𝑚) ∈ ℂ)
11079, 93, 109fsummulc2 15496 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((Λ‘𝑛) / 𝑛) · (1 / 𝑚)))
111108, 110eqtr4d 2781 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) = (((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)))
112111oveq1d 7290 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = ((((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
11398, 112eqtr4d 2781 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
114113sumeq2dv 15415 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
115 vmasum 26364 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (Λ‘𝑛) = (log‘𝑘))
1163, 115syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (Λ‘𝑛) = (log‘𝑘))
117116oveq1d 7290 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (Λ‘𝑛) / 𝑘) = ((log‘𝑘) / 𝑘))
118 fzfid 13693 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (1...𝑘) ∈ Fin)
119 dvdsssfz1 16027 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ (1...𝑘))
1203, 119syl 17 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ (1...𝑘))
121118, 120ssfid 9042 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑘} ∈ Fin)
1223nncnd 11989 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℂ)
123 ssrab2 4013 . . . . . . . . . . . . . . . . . 18 {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ ℕ
124 simprr 770 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
125123, 124sselid 3919 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ ℕ)
126125, 63syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (Λ‘𝑛) ∈ ℝ)
127126recnd 11003 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (Λ‘𝑛) ∈ ℂ)
128127anassrs 468 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (Λ‘𝑛) ∈ ℂ)
1293nnne0d 12023 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ≠ 0)
130121, 122, 128, 129fsumdivc 15498 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (Λ‘𝑛) / 𝑘) = Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑛) / 𝑘))
131117, 130eqtr3d 2780 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((log‘𝑘) / 𝑘) = Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑛) / 𝑘))
132131sumeq2dv 15415 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑛) / 𝑘))
133 oveq2 7283 . . . . . . . . . . . 12 (𝑘 = (𝑛 · 𝑚) → ((Λ‘𝑛) / 𝑘) = ((Λ‘𝑛) / (𝑛 · 𝑚)))
1342ad2antrl 725 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑘 ∈ ℕ)
135134nncnd 11989 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑘 ∈ ℂ)
136134nnne0d 12023 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑘 ≠ 0)
137127, 135, 136divcld 11751 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → ((Λ‘𝑛) / 𝑘) ∈ ℂ)
138133, 10, 137dvdsflsumcom 26337 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑛) / 𝑘) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)))
139132, 138eqtrd 2778 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)))
140139oveq1d 7290 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
14189, 114, 1403eqtr4rd 2789 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))))
142141oveq1d 7290 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)))
14377, 78, 1423eqtr2d 2784 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)))
144143mpteq2dva 5174 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)))) = (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))))
145 1red 10976 . . . . . . 7 (⊤ → 1 ∈ ℝ)
1461, 65fsumrecl 15446 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ)
147146, 24rerpdivcld 12803 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) ∈ ℝ)
148 ioossre 13140 . . . . . . . . . . 11 (1(,)+∞) ⊆ ℝ
149 ax-1cn 10929 . . . . . . . . . . 11 1 ∈ ℂ
150 o1const 15329 . . . . . . . . . . 11 (((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
151148, 149, 150mp2an 689 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1)
152151a1i 11 . . . . . . . . 9 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
153147recnd 11003 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) ∈ ℂ)
15412rpcnd 12774 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
155146recnd 11003 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
156155, 23, 23, 25divsubdird 11790 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − ((log‘𝑥) / (log‘𝑥))))
157155, 23subcld 11332 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℂ)
158157, 23, 25divrecd 11754 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥))))
15923, 25dividd 11749 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / (log‘𝑥)) = 1)
160159oveq2d 7291 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − ((log‘𝑥) / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1))
161156, 158, 1603eqtr3rd 2787 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥))))
162161mpteq2dva 5174 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1)) = (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥)))))
163146, 19resubcld 11403 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℝ)
164 vmadivsum 26630 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
165164a1i 11 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
16646, 165o1res2 15272 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
167163, 44, 166, 55o1mul2 15334 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥)))) ∈ 𝑂(1))
168162, 167eqeltrd 2839 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1)) ∈ 𝑂(1))
169153, 154, 168o1dif 15339 . . . . . . . . 9 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1)))
170152, 169mpbird 256 . . . . . . . 8 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) ∈ 𝑂(1))
171147, 170o1lo1d 15248 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) ∈ ≤𝑂(1))
17295, 69resubcld 11403 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ∈ ℝ)
17365, 172remulcld 11005 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ)
1741, 173fsumrecl 15446 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ)
175174, 24rerpdivcld 12803 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) ∈ ℝ)
176 1red 10976 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
177 vmage0 26270 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
17862, 177syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
17964, 67, 178divge0d 12812 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
18068rpred 12772 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
18191mulid2d 10993 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) = 𝑛)
182 fznnfl 13582 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
18310, 182syl 17 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
184183simplbda 500 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛𝑥)
185181, 184eqbrtrd 5096 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) ≤ 𝑥)
18610adantr 481 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
187176, 186, 67lemuldivd 12821 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
188185, 187mpbid 231 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑛))
189 harmonicubnd 26159 . . . . . . . . . . . . . 14 (((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛)) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ≤ ((log‘(𝑥 / 𝑛)) + 1))
190180, 188, 189syl2anc 584 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ≤ ((log‘(𝑥 / 𝑛)) + 1))
19195, 69, 176lesubadd2d 11574 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ≤ 1 ↔ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ≤ ((log‘(𝑥 / 𝑛)) + 1)))
192190, 191mpbird 256 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ≤ 1)
193172, 176, 65, 179, 192lemul2ad 11915 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ≤ (((Λ‘𝑛) / 𝑛) · 1))
19493mulid1d 10992 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 1) = ((Λ‘𝑛) / 𝑛))
195193, 194breqtrd 5100 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ≤ ((Λ‘𝑛) / 𝑛))
1961, 173, 65, 195fsumle 15511 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛))
197174, 146, 24, 196lediv1dd 12830 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)))
198197adantrr 714 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)))
199145, 171, 147, 175, 198lo1le 15363 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈ ≤𝑂(1))
200 0red 10978 . . . . . . 7 (⊤ → 0 ∈ ℝ)
201 harmoniclbnd 26158 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ+ → (log‘(𝑥 / 𝑛)) ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚))
20268, 201syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚))
20395, 69subge0d 11565 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (0 ≤ (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ↔ (log‘(𝑥 / 𝑛)) ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)))
204202, 203mpbird 256 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))
20565, 172, 179, 204mulge0d 11552 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))))
2061, 173, 205fsumge0 15507 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))))
207174, 24, 206divge0d 12812 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)))
208175, 200, 207o1lo12 15247 . . . . . 6 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈ ≤𝑂(1)))
209199, 208mpbird 256 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈ 𝑂(1))
210144, 209eqeltrd 2839 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)))) ∈ 𝑂(1))
21160, 76, 210o1dif 15339 . . 3 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1)))
21257, 211mpbid 231 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1))
213212mptru 1546 1 (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wtru 1540  wcel 2106  wne 2943  {crab 3068  wss 3887   class class class wbr 5074  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  +crp 12730  (,)cioo 13079  ...cfz 13239  cfl 13510  cexp 13782  abscabs 14945  𝑟 crli 15194  𝑂(1)co1 15195  ≤𝑂(1)clo1 15196  Σcsu 15397  eceu 15772  cdvds 15963  logclog 25710  Λcvma 26241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-o1 15199  df-lo1 15200  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-ulm 25536  df-log 25712  df-cxp 25713  df-atan 26017  df-em 26142  df-cht 26246  df-vma 26247  df-chp 26248  df-ppi 26249
This theorem is referenced by:  vmalogdivsum  26687  2vmadivsumlem  26688  selberg4lem1  26708
  Copyright terms: Public domain W3C validator