MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmalogdivsum2 Structured version   Visualization version   GIF version

Theorem vmalogdivsum2 27030
Description: The sum Σ𝑛 ≀ π‘₯, Ξ›(𝑛)log(π‘₯ / 𝑛) / 𝑛 is asymptotic to log↑2(π‘₯) / 2 + 𝑂(logπ‘₯). Exercise 9.1.7 of [Shapiro], p. 336. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
vmalogdivsum2 (π‘₯ ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2))) ∈ 𝑂(1)
Distinct variable group:   π‘₯,𝑛

Proof of Theorem vmalogdivsum2
Dummy variables π‘˜ π‘š 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13934 . . . . . . . . 9 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (1...(βŒŠβ€˜π‘₯)) ∈ Fin)
2 elfznn 13526 . . . . . . . . . . . . 13 (π‘˜ ∈ (1...(βŒŠβ€˜π‘₯)) β†’ π‘˜ ∈ β„•)
32adantl 482 . . . . . . . . . . . 12 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ π‘˜ ∈ β„•)
43nnrpd 13010 . . . . . . . . . . 11 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ π‘˜ ∈ ℝ+)
54relogcld 26122 . . . . . . . . . 10 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (logβ€˜π‘˜) ∈ ℝ)
65, 3nndivred 12262 . . . . . . . . 9 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((logβ€˜π‘˜) / π‘˜) ∈ ℝ)
71, 6fsumrecl 15676 . . . . . . . 8 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) ∈ ℝ)
87recnd 11238 . . . . . . 7 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) ∈ β„‚)
9 elioore 13350 . . . . . . . . . . . . 13 (π‘₯ ∈ (1(,)+∞) β†’ π‘₯ ∈ ℝ)
109adantl 482 . . . . . . . . . . . 12 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ π‘₯ ∈ ℝ)
11 1rp 12974 . . . . . . . . . . . . 13 1 ∈ ℝ+
1211a1i 11 . . . . . . . . . . . 12 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ 1 ∈ ℝ+)
13 1red 11211 . . . . . . . . . . . . 13 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ 1 ∈ ℝ)
14 eliooord 13379 . . . . . . . . . . . . . . 15 (π‘₯ ∈ (1(,)+∞) β†’ (1 < π‘₯ ∧ π‘₯ < +∞))
1514adantl 482 . . . . . . . . . . . . . 14 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (1 < π‘₯ ∧ π‘₯ < +∞))
1615simpld 495 . . . . . . . . . . . . 13 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ 1 < π‘₯)
1713, 10, 16ltled 11358 . . . . . . . . . . . 12 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ 1 ≀ π‘₯)
1810, 12, 17rpgecld 13051 . . . . . . . . . . 11 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ π‘₯ ∈ ℝ+)
1918relogcld 26122 . . . . . . . . . 10 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (logβ€˜π‘₯) ∈ ℝ)
2019resqcld 14086 . . . . . . . . 9 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((logβ€˜π‘₯)↑2) ∈ ℝ)
2120rehalfcld 12455 . . . . . . . 8 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (((logβ€˜π‘₯)↑2) / 2) ∈ ℝ)
2221recnd 11238 . . . . . . 7 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (((logβ€˜π‘₯)↑2) / 2) ∈ β„‚)
2319recnd 11238 . . . . . . 7 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (logβ€˜π‘₯) ∈ β„‚)
2410, 16rplogcld 26128 . . . . . . . 8 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (logβ€˜π‘₯) ∈ ℝ+)
2524rpne0d 13017 . . . . . . 7 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (logβ€˜π‘₯) β‰  0)
268, 22, 23, 25divsubdird 12025 . . . . . 6 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2)) / (logβ€˜π‘₯)) = ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ ((((logβ€˜π‘₯)↑2) / 2) / (logβ€˜π‘₯))))
277, 21resubcld 11638 . . . . . . . 8 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2)) ∈ ℝ)
2827recnd 11238 . . . . . . 7 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2)) ∈ β„‚)
2928, 23, 25divrecd 11989 . . . . . 6 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2)) / (logβ€˜π‘₯)) = ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2)) Β· (1 / (logβ€˜π‘₯))))
3020recnd 11238 . . . . . . . . 9 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((logβ€˜π‘₯)↑2) ∈ β„‚)
31 2cnd 12286 . . . . . . . . 9 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ 2 ∈ β„‚)
32 2ne0 12312 . . . . . . . . . 10 2 β‰  0
3332a1i 11 . . . . . . . . 9 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ 2 β‰  0)
3430, 31, 23, 33, 25divdiv32d 12011 . . . . . . . 8 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((((logβ€˜π‘₯)↑2) / 2) / (logβ€˜π‘₯)) = ((((logβ€˜π‘₯)↑2) / (logβ€˜π‘₯)) / 2))
3523sqvald 14104 . . . . . . . . . . 11 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((logβ€˜π‘₯)↑2) = ((logβ€˜π‘₯) Β· (logβ€˜π‘₯)))
3635oveq1d 7420 . . . . . . . . . 10 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (((logβ€˜π‘₯)↑2) / (logβ€˜π‘₯)) = (((logβ€˜π‘₯) Β· (logβ€˜π‘₯)) / (logβ€˜π‘₯)))
3723, 23, 25divcan3d 11991 . . . . . . . . . 10 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (((logβ€˜π‘₯) Β· (logβ€˜π‘₯)) / (logβ€˜π‘₯)) = (logβ€˜π‘₯))
3836, 37eqtrd 2772 . . . . . . . . 9 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (((logβ€˜π‘₯)↑2) / (logβ€˜π‘₯)) = (logβ€˜π‘₯))
3938oveq1d 7420 . . . . . . . 8 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((((logβ€˜π‘₯)↑2) / (logβ€˜π‘₯)) / 2) = ((logβ€˜π‘₯) / 2))
4034, 39eqtrd 2772 . . . . . . 7 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((((logβ€˜π‘₯)↑2) / 2) / (logβ€˜π‘₯)) = ((logβ€˜π‘₯) / 2))
4140oveq2d 7421 . . . . . 6 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ ((((logβ€˜π‘₯)↑2) / 2) / (logβ€˜π‘₯))) = ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2)))
4226, 29, 413eqtr3rd 2781 . . . . 5 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2)) = ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2)) Β· (1 / (logβ€˜π‘₯))))
4342mpteq2dva 5247 . . . 4 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2))) = (π‘₯ ∈ (1(,)+∞) ↦ ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2)) Β· (1 / (logβ€˜π‘₯)))))
4424rprecred 13023 . . . . 5 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (1 / (logβ€˜π‘₯)) ∈ ℝ)
4518ex 413 . . . . . . 7 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) β†’ π‘₯ ∈ ℝ+))
4645ssrdv 3987 . . . . . 6 (⊀ β†’ (1(,)+∞) βŠ† ℝ+)
47 eqid 2732 . . . . . . . . 9 (π‘₯ ∈ ℝ+ ↦ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2))) = (π‘₯ ∈ ℝ+ ↦ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2)))
4847logdivsum 27025 . . . . . . . 8 ((π‘₯ ∈ ℝ+ ↦ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2))):ℝ+βŸΆβ„ ∧ (π‘₯ ∈ ℝ+ ↦ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2))) ∈ dom β‡π‘Ÿ ∧ (((π‘₯ ∈ ℝ+ ↦ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2))) β‡π‘Ÿ 1 ∧ 1 ∈ ℝ+ ∧ e ≀ 1) β†’ (absβ€˜(((π‘₯ ∈ ℝ+ ↦ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2)))β€˜1) βˆ’ 1)) ≀ ((logβ€˜1) / 1)))
4948simp2i 1140 . . . . . . 7 (π‘₯ ∈ ℝ+ ↦ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2))) ∈ dom β‡π‘Ÿ
50 rlimdmo1 15558 . . . . . . 7 ((π‘₯ ∈ ℝ+ ↦ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2))) ∈ dom β‡π‘Ÿ β†’ (π‘₯ ∈ ℝ+ ↦ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2))) ∈ 𝑂(1))
5149, 50mp1i 13 . . . . . 6 (⊀ β†’ (π‘₯ ∈ ℝ+ ↦ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2))) ∈ 𝑂(1))
5246, 51o1res2 15503 . . . . 5 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2))) ∈ 𝑂(1))
53 divlogrlim 26134 . . . . . 6 (π‘₯ ∈ (1(,)+∞) ↦ (1 / (logβ€˜π‘₯))) β‡π‘Ÿ 0
54 rlimo1 15557 . . . . . 6 ((π‘₯ ∈ (1(,)+∞) ↦ (1 / (logβ€˜π‘₯))) β‡π‘Ÿ 0 β†’ (π‘₯ ∈ (1(,)+∞) ↦ (1 / (logβ€˜π‘₯))) ∈ 𝑂(1))
5553, 54mp1i 13 . . . . 5 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ (1 / (logβ€˜π‘₯))) ∈ 𝑂(1))
5627, 44, 52, 55o1mul2 15565 . . . 4 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ (((logβ€˜π‘₯)↑2) / 2)) Β· (1 / (logβ€˜π‘₯)))) ∈ 𝑂(1))
5743, 56eqeltrd 2833 . . 3 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2))) ∈ 𝑂(1))
588, 23, 25divcld 11986 . . . . 5 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) ∈ β„‚)
5923halfcld 12453 . . . . 5 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((logβ€˜π‘₯) / 2) ∈ β„‚)
6058, 59subcld 11567 . . . 4 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2)) ∈ β„‚)
61 elfznn 13526 . . . . . . . . . . . 12 (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑛 ∈ β„•)
6261adantl 482 . . . . . . . . . . 11 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑛 ∈ β„•)
63 vmacl 26611 . . . . . . . . . . 11 (𝑛 ∈ β„• β†’ (Ξ›β€˜π‘›) ∈ ℝ)
6462, 63syl 17 . . . . . . . . . 10 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Ξ›β€˜π‘›) ∈ ℝ)
6564, 62nndivred 12262 . . . . . . . . 9 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘›) / 𝑛) ∈ ℝ)
6618adantr 481 . . . . . . . . . . 11 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ π‘₯ ∈ ℝ+)
6762nnrpd 13010 . . . . . . . . . . 11 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑛 ∈ ℝ+)
6866, 67rpdivcld 13029 . . . . . . . . . 10 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘₯ / 𝑛) ∈ ℝ+)
6968relogcld 26122 . . . . . . . . 9 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (logβ€˜(π‘₯ / 𝑛)) ∈ ℝ)
7065, 69remulcld 11240 . . . . . . . 8 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) ∈ ℝ)
711, 70fsumrecl 15676 . . . . . . 7 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) ∈ ℝ)
7271recnd 11238 . . . . . 6 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) ∈ β„‚)
7324rpcnd 13014 . . . . . 6 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (logβ€˜π‘₯) ∈ β„‚)
7472, 73, 25divcld 11986 . . . . 5 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) / (logβ€˜π‘₯)) ∈ β„‚)
7573halfcld 12453 . . . . 5 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((logβ€˜π‘₯) / 2) ∈ β„‚)
7674, 75subcld 11567 . . . 4 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2)) ∈ β„‚)
7758, 74, 59nnncan2d 11602 . . . . . . 7 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2)) βˆ’ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2))) = ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) / (logβ€˜π‘₯))))
788, 72, 23, 25divsubdird 12025 . . . . . . 7 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯)) = ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) / (logβ€˜π‘₯))))
79 fzfid 13934 . . . . . . . . . . . 12 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1...(βŒŠβ€˜(π‘₯ / 𝑛))) ∈ Fin)
8064adantr 481 . . . . . . . . . . . . 13 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ (Ξ›β€˜π‘›) ∈ ℝ)
8162adantr 481 . . . . . . . . . . . . . 14 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ 𝑛 ∈ β„•)
82 elfznn 13526 . . . . . . . . . . . . . . 15 (π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛))) β†’ π‘š ∈ β„•)
8382adantl 482 . . . . . . . . . . . . . 14 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ π‘š ∈ β„•)
8481, 83nnmulcld 12261 . . . . . . . . . . . . 13 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ (𝑛 Β· π‘š) ∈ β„•)
8580, 84nndivred 12262 . . . . . . . . . . . 12 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ ((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)) ∈ ℝ)
8679, 85fsumrecl 15676 . . . . . . . . . . 11 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)) ∈ ℝ)
8786recnd 11238 . . . . . . . . . 10 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)) ∈ β„‚)
8870recnd 11238 . . . . . . . . . 10 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) ∈ β„‚)
891, 87, 88fsumsub 15730 . . . . . . . . 9 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)) βˆ’ (((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛)))) = (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)) βˆ’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛)))))
9064recnd 11238 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Ξ›β€˜π‘›) ∈ β„‚)
9162nncnd 12224 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑛 ∈ β„‚)
9262nnne0d 12258 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑛 β‰  0)
9390, 91, 92divcld 11986 . . . . . . . . . . . 12 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘›) / 𝑛) ∈ β„‚)
9483nnrecred 12259 . . . . . . . . . . . . . 14 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ (1 / π‘š) ∈ ℝ)
9579, 94fsumrecl 15676 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) ∈ ℝ)
9695recnd 11238 . . . . . . . . . . . 12 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) ∈ β„‚)
9769recnd 11238 . . . . . . . . . . . 12 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (logβ€˜(π‘₯ / 𝑛)) ∈ β„‚)
9893, 96, 97subdid 11666 . . . . . . . . . . 11 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) = ((((Ξ›β€˜π‘›) / 𝑛) Β· Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š)) βˆ’ (((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛)))))
9990adantr 481 . . . . . . . . . . . . . . . 16 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ (Ξ›β€˜π‘›) ∈ β„‚)
10091adantr 481 . . . . . . . . . . . . . . . 16 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ 𝑛 ∈ β„‚)
10183nncnd 12224 . . . . . . . . . . . . . . . 16 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ π‘š ∈ β„‚)
10292adantr 481 . . . . . . . . . . . . . . . 16 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ 𝑛 β‰  0)
10383nnne0d 12258 . . . . . . . . . . . . . . . 16 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ π‘š β‰  0)
10499, 100, 101, 102, 103divdiv1d 12017 . . . . . . . . . . . . . . 15 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ (((Ξ›β€˜π‘›) / 𝑛) / π‘š) = ((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)))
10599, 100, 102divcld 11986 . . . . . . . . . . . . . . . 16 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ ((Ξ›β€˜π‘›) / 𝑛) ∈ β„‚)
106105, 101, 103divrecd 11989 . . . . . . . . . . . . . . 15 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ (((Ξ›β€˜π‘›) / 𝑛) / π‘š) = (((Ξ›β€˜π‘›) / 𝑛) Β· (1 / π‘š)))
107104, 106eqtr3d 2774 . . . . . . . . . . . . . 14 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ ((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)) = (((Ξ›β€˜π‘›) / 𝑛) Β· (1 / π‘š)))
108107sumeq2dv 15645 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)) = Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(((Ξ›β€˜π‘›) / 𝑛) Β· (1 / π‘š)))
109101, 103reccld 11979 . . . . . . . . . . . . . 14 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))) β†’ (1 / π‘š) ∈ β„‚)
11079, 93, 109fsummulc2 15726 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((Ξ›β€˜π‘›) / 𝑛) Β· Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š)) = Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(((Ξ›β€˜π‘›) / 𝑛) Β· (1 / π‘š)))
111108, 110eqtr4d 2775 . . . . . . . . . . . 12 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)) = (((Ξ›β€˜π‘›) / 𝑛) Β· Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š)))
112111oveq1d 7420 . . . . . . . . . . 11 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)) βˆ’ (((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛)))) = ((((Ξ›β€˜π‘›) / 𝑛) Β· Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š)) βˆ’ (((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛)))))
11398, 112eqtr4d 2775 . . . . . . . . . 10 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) = (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)) βˆ’ (((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛)))))
114113sumeq2dv 15645 . . . . . . . . 9 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) = Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)) βˆ’ (((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛)))))
115 vmasum 26708 . . . . . . . . . . . . . . 15 (π‘˜ ∈ β„• β†’ Σ𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜} (Ξ›β€˜π‘›) = (logβ€˜π‘˜))
1163, 115syl 17 . . . . . . . . . . . . . 14 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Σ𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜} (Ξ›β€˜π‘›) = (logβ€˜π‘˜))
117116oveq1d 7420 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Σ𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜} (Ξ›β€˜π‘›) / π‘˜) = ((logβ€˜π‘˜) / π‘˜))
118 fzfid 13934 . . . . . . . . . . . . . . 15 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1...π‘˜) ∈ Fin)
119 dvdsssfz1 16257 . . . . . . . . . . . . . . . 16 (π‘˜ ∈ β„• β†’ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜} βŠ† (1...π‘˜))
1203, 119syl 17 . . . . . . . . . . . . . . 15 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜} βŠ† (1...π‘˜))
121118, 120ssfid 9263 . . . . . . . . . . . . . 14 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜} ∈ Fin)
1223nncnd 12224 . . . . . . . . . . . . . 14 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ π‘˜ ∈ β„‚)
123 ssrab2 4076 . . . . . . . . . . . . . . . . . 18 {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜} βŠ† β„•
124 simprr 771 . . . . . . . . . . . . . . . . . 18 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ (π‘˜ ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜})) β†’ 𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜})
125123, 124sselid 3979 . . . . . . . . . . . . . . . . 17 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ (π‘˜ ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜})) β†’ 𝑛 ∈ β„•)
126125, 63syl 17 . . . . . . . . . . . . . . . 16 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ (π‘˜ ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜})) β†’ (Ξ›β€˜π‘›) ∈ ℝ)
127126recnd 11238 . . . . . . . . . . . . . . 15 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ (π‘˜ ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜})) β†’ (Ξ›β€˜π‘›) ∈ β„‚)
128127anassrs 468 . . . . . . . . . . . . . 14 ((((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) ∧ 𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜}) β†’ (Ξ›β€˜π‘›) ∈ β„‚)
1293nnne0d 12258 . . . . . . . . . . . . . 14 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ π‘˜ β‰  0)
130121, 122, 128, 129fsumdivc 15728 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Σ𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜} (Ξ›β€˜π‘›) / π‘˜) = Σ𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜} ((Ξ›β€˜π‘›) / π‘˜))
131117, 130eqtr3d 2774 . . . . . . . . . . . 12 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((logβ€˜π‘˜) / π‘˜) = Σ𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜} ((Ξ›β€˜π‘›) / π‘˜))
132131sumeq2dv 15645 . . . . . . . . . . 11 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) = Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜} ((Ξ›β€˜π‘›) / π‘˜))
133 oveq2 7413 . . . . . . . . . . . 12 (π‘˜ = (𝑛 Β· π‘š) β†’ ((Ξ›β€˜π‘›) / π‘˜) = ((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)))
1342ad2antrl 726 . . . . . . . . . . . . . 14 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ (π‘˜ ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜})) β†’ π‘˜ ∈ β„•)
135134nncnd 12224 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ (π‘˜ ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜})) β†’ π‘˜ ∈ β„‚)
136134nnne0d 12258 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ (π‘˜ ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜})) β†’ π‘˜ β‰  0)
137127, 135, 136divcld 11986 . . . . . . . . . . . 12 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ (π‘˜ ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜})) β†’ ((Ξ›β€˜π‘›) / π‘˜) ∈ β„‚)
138133, 10, 137dvdsflsumcom 26681 . . . . . . . . . . 11 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑛 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ π‘˜} ((Ξ›β€˜π‘›) / π‘˜) = Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)))
139132, 138eqtrd 2772 . . . . . . . . . 10 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) = Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)))
140139oveq1d 7420 . . . . . . . . 9 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛)))) = (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))((Ξ›β€˜π‘›) / (𝑛 Β· π‘š)) βˆ’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛)))))
14189, 114, 1403eqtr4rd 2783 . . . . . . . 8 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛)))) = Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))))
142141oveq1d 7420 . . . . . . 7 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) βˆ’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯)) = (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯)))
14377, 78, 1423eqtr2d 2778 . . . . . 6 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2)) βˆ’ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2))) = (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯)))
144143mpteq2dva 5247 . . . . 5 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ (((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2)) βˆ’ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2)))) = (π‘₯ ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯))))
145 1red 11211 . . . . . . 7 (⊀ β†’ 1 ∈ ℝ)
1461, 65fsumrecl 15676 . . . . . . . . 9 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) ∈ ℝ)
147146, 24rerpdivcld 13043 . . . . . . . 8 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯)) ∈ ℝ)
148 ioossre 13381 . . . . . . . . . . 11 (1(,)+∞) βŠ† ℝ
149 ax-1cn 11164 . . . . . . . . . . 11 1 ∈ β„‚
150 o1const 15560 . . . . . . . . . . 11 (((1(,)+∞) βŠ† ℝ ∧ 1 ∈ β„‚) β†’ (π‘₯ ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
151148, 149, 150mp2an 690 . . . . . . . . . 10 (π‘₯ ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1)
152151a1i 11 . . . . . . . . 9 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
153147recnd 11238 . . . . . . . . . 10 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯)) ∈ β„‚)
15412rpcnd 13014 . . . . . . . . . 10 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ 1 ∈ β„‚)
155146recnd 11238 . . . . . . . . . . . . . 14 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) ∈ β„‚)
156155, 23, 23, 25divsubdird 12025 . . . . . . . . . . . . 13 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) βˆ’ (logβ€˜π‘₯)) / (logβ€˜π‘₯)) = ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / (logβ€˜π‘₯))))
157155, 23subcld 11567 . . . . . . . . . . . . . 14 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) βˆ’ (logβ€˜π‘₯)) ∈ β„‚)
158157, 23, 25divrecd 11989 . . . . . . . . . . . . 13 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) βˆ’ (logβ€˜π‘₯)) / (logβ€˜π‘₯)) = ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) βˆ’ (logβ€˜π‘₯)) Β· (1 / (logβ€˜π‘₯))))
15923, 25dividd 11984 . . . . . . . . . . . . . 14 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((logβ€˜π‘₯) / (logβ€˜π‘₯)) = 1)
160159oveq2d 7421 . . . . . . . . . . . . 13 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / (logβ€˜π‘₯))) = ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯)) βˆ’ 1))
161156, 158, 1603eqtr3rd 2781 . . . . . . . . . . . 12 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯)) βˆ’ 1) = ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) βˆ’ (logβ€˜π‘₯)) Β· (1 / (logβ€˜π‘₯))))
162161mpteq2dva 5247 . . . . . . . . . . 11 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯)) βˆ’ 1)) = (π‘₯ ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) βˆ’ (logβ€˜π‘₯)) Β· (1 / (logβ€˜π‘₯)))))
163146, 19resubcld 11638 . . . . . . . . . . . 12 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) βˆ’ (logβ€˜π‘₯)) ∈ ℝ)
164 vmadivsum 26974 . . . . . . . . . . . . . 14 (π‘₯ ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) βˆ’ (logβ€˜π‘₯))) ∈ 𝑂(1)
165164a1i 11 . . . . . . . . . . . . 13 (⊀ β†’ (π‘₯ ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) βˆ’ (logβ€˜π‘₯))) ∈ 𝑂(1))
16646, 165o1res2 15503 . . . . . . . . . . . 12 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) βˆ’ (logβ€˜π‘₯))) ∈ 𝑂(1))
167163, 44, 166, 55o1mul2 15565 . . . . . . . . . . 11 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) βˆ’ (logβ€˜π‘₯)) Β· (1 / (logβ€˜π‘₯)))) ∈ 𝑂(1))
168162, 167eqeltrd 2833 . . . . . . . . . 10 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯)) βˆ’ 1)) ∈ 𝑂(1))
169153, 154, 168o1dif 15570 . . . . . . . . 9 (⊀ β†’ ((π‘₯ ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯))) ∈ 𝑂(1) ↔ (π‘₯ ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1)))
170152, 169mpbird 256 . . . . . . . 8 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯))) ∈ 𝑂(1))
171147, 170o1lo1d 15479 . . . . . . 7 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯))) ∈ ≀𝑂(1))
17295, 69resubcld 11638 . . . . . . . . . 10 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛))) ∈ ℝ)
17365, 172remulcld 11240 . . . . . . . . 9 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) ∈ ℝ)
1741, 173fsumrecl 15676 . . . . . . . 8 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) ∈ ℝ)
175174, 24rerpdivcld 13043 . . . . . . 7 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯)) ∈ ℝ)
176 1red 11211 . . . . . . . . . . . 12 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 1 ∈ ℝ)
177 vmage0 26614 . . . . . . . . . . . . . 14 (𝑛 ∈ β„• β†’ 0 ≀ (Ξ›β€˜π‘›))
17862, 177syl 17 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 0 ≀ (Ξ›β€˜π‘›))
17964, 67, 178divge0d 13052 . . . . . . . . . . . 12 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 0 ≀ ((Ξ›β€˜π‘›) / 𝑛))
18068rpred 13012 . . . . . . . . . . . . . 14 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘₯ / 𝑛) ∈ ℝ)
18191mullidd 11228 . . . . . . . . . . . . . . . 16 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1 Β· 𝑛) = 𝑛)
182 fznnfl 13823 . . . . . . . . . . . . . . . . . 18 (π‘₯ ∈ ℝ β†’ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ↔ (𝑛 ∈ β„• ∧ 𝑛 ≀ π‘₯)))
18310, 182syl 17 . . . . . . . . . . . . . . . . 17 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ↔ (𝑛 ∈ β„• ∧ 𝑛 ≀ π‘₯)))
184183simplbda 500 . . . . . . . . . . . . . . . 16 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑛 ≀ π‘₯)
185181, 184eqbrtrd 5169 . . . . . . . . . . . . . . 15 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1 Β· 𝑛) ≀ π‘₯)
18610adantr 481 . . . . . . . . . . . . . . . 16 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ π‘₯ ∈ ℝ)
187176, 186, 67lemuldivd 13061 . . . . . . . . . . . . . . 15 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((1 Β· 𝑛) ≀ π‘₯ ↔ 1 ≀ (π‘₯ / 𝑛)))
188185, 187mpbid 231 . . . . . . . . . . . . . 14 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 1 ≀ (π‘₯ / 𝑛))
189 harmonicubnd 26503 . . . . . . . . . . . . . 14 (((π‘₯ / 𝑛) ∈ ℝ ∧ 1 ≀ (π‘₯ / 𝑛)) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) ≀ ((logβ€˜(π‘₯ / 𝑛)) + 1))
190180, 188, 189syl2anc 584 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) ≀ ((logβ€˜(π‘₯ / 𝑛)) + 1))
19195, 69, 176lesubadd2d 11809 . . . . . . . . . . . . 13 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛))) ≀ 1 ↔ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) ≀ ((logβ€˜(π‘₯ / 𝑛)) + 1)))
192190, 191mpbird 256 . . . . . . . . . . . 12 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛))) ≀ 1)
193172, 176, 65, 179, 192lemul2ad 12150 . . . . . . . . . . 11 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) ≀ (((Ξ›β€˜π‘›) / 𝑛) Β· 1))
19493mulridd 11227 . . . . . . . . . . 11 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((Ξ›β€˜π‘›) / 𝑛) Β· 1) = ((Ξ›β€˜π‘›) / 𝑛))
195193, 194breqtrd 5173 . . . . . . . . . 10 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) ≀ ((Ξ›β€˜π‘›) / 𝑛))
1961, 173, 65, 195fsumle 15741 . . . . . . . . 9 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) ≀ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛))
197174, 146, 24, 196lediv1dd 13070 . . . . . . . 8 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯)) ≀ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯)))
198197adantrr 715 . . . . . . 7 ((⊀ ∧ (π‘₯ ∈ (1(,)+∞) ∧ 1 ≀ π‘₯)) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯)) ≀ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) / 𝑛) / (logβ€˜π‘₯)))
199145, 171, 147, 175, 198lo1le 15594 . . . . . 6 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯))) ∈ ≀𝑂(1))
200 0red 11213 . . . . . . 7 (⊀ β†’ 0 ∈ ℝ)
201 harmoniclbnd 26502 . . . . . . . . . . . 12 ((π‘₯ / 𝑛) ∈ ℝ+ β†’ (logβ€˜(π‘₯ / 𝑛)) ≀ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š))
20268, 201syl 17 . . . . . . . . . . 11 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (logβ€˜(π‘₯ / 𝑛)) ≀ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š))
20395, 69subge0d 11800 . . . . . . . . . . 11 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (0 ≀ (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛))) ↔ (logβ€˜(π‘₯ / 𝑛)) ≀ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š)))
204202, 203mpbird 256 . . . . . . . . . 10 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 0 ≀ (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛))))
20565, 172, 179, 204mulge0d 11787 . . . . . . . . 9 (((⊀ ∧ π‘₯ ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 0 ≀ (((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))))
2061, 173, 205fsumge0 15737 . . . . . . . 8 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ 0 ≀ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))))
207174, 24, 206divge0d 13052 . . . . . . 7 ((⊀ ∧ π‘₯ ∈ (1(,)+∞)) β†’ 0 ≀ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯)))
208175, 200, 207o1lo12 15478 . . . . . 6 (⊀ β†’ ((π‘₯ ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯))) ∈ 𝑂(1) ↔ (π‘₯ ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯))) ∈ ≀𝑂(1)))
209199, 208mpbird 256 . . . . 5 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑛)))(1 / π‘š) βˆ’ (logβ€˜(π‘₯ / 𝑛)))) / (logβ€˜π‘₯))) ∈ 𝑂(1))
210144, 209eqeltrd 2833 . . . 4 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ (((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2)) βˆ’ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2)))) ∈ 𝑂(1))
21160, 76, 210o1dif 15570 . . 3 (⊀ β†’ ((π‘₯ ∈ (1(,)+∞) ↦ ((Ξ£π‘˜ ∈ (1...(βŒŠβ€˜π‘₯))((logβ€˜π‘˜) / π‘˜) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2))) ∈ 𝑂(1) ↔ (π‘₯ ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2))) ∈ 𝑂(1)))
21257, 211mpbid 231 . 2 (⊀ β†’ (π‘₯ ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2))) ∈ 𝑂(1))
213212mptru 1548 1 (π‘₯ ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) / 𝑛) Β· (logβ€˜(π‘₯ / 𝑛))) / (logβ€˜π‘₯)) βˆ’ ((logβ€˜π‘₯) / 2))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βŠ€wtru 1542   ∈ wcel 2106   β‰  wne 2940  {crab 3432   βŠ† wss 3947   class class class wbr 5147   ↦ cmpt 5230  dom cdm 5675  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   Β· cmul 11111  +∞cpnf 11241   < clt 11244   ≀ cle 11245   βˆ’ cmin 11440   / cdiv 11867  β„•cn 12208  2c2 12263  β„+crp 12970  (,)cioo 13320  ...cfz 13480  βŒŠcfl 13751  β†‘cexp 14023  abscabs 15177   β‡π‘Ÿ crli 15425  π‘‚(1)co1 15426  β‰€π‘‚(1)clo1 15427  Ξ£csu 15628  eceu 16002   βˆ₯ cdvds 16193  logclog 26054  Ξ›cvma 26585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-o1 15430  df-lo1 15431  df-sum 15629  df-ef 16007  df-e 16008  df-sin 16009  df-cos 16010  df-tan 16011  df-pi 16012  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-fbas 20933  df-fg 20934  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-nei 22593  df-lp 22631  df-perf 22632  df-cn 22722  df-cnp 22723  df-haus 22810  df-cmp 22882  df-tx 23057  df-hmeo 23250  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-xms 23817  df-ms 23818  df-tms 23819  df-cncf 24385  df-limc 25374  df-dv 25375  df-ulm 25880  df-log 26056  df-cxp 26057  df-atan 26361  df-em 26486  df-cht 26590  df-vma 26591  df-chp 26592  df-ppi 26593
This theorem is referenced by:  vmalogdivsum  27031  2vmadivsumlem  27032  selberg4lem1  27052
  Copyright terms: Public domain W3C validator