Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmalogdivsum2 Structured version   Visualization version   GIF version

Theorem vmalogdivsum2 26166
 Description: The sum Σ𝑛 ≤ 𝑥, Λ(𝑛)log(𝑥 / 𝑛) / 𝑛 is asymptotic to log↑2(𝑥) / 2 + 𝑂(log𝑥). Exercise 9.1.7 of [Shapiro], p. 336. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
vmalogdivsum2 (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem vmalogdivsum2
Dummy variables 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13356 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
2 elfznn 12951 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
32adantl 485 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
43nnrpd 12437 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+)
54relogcld 25258 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (log‘𝑘) ∈ ℝ)
65, 3nndivred 11697 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((log‘𝑘) / 𝑘) ∈ ℝ)
71, 6fsumrecl 15103 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) ∈ ℝ)
87recnd 10676 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) ∈ ℂ)
9 elioore 12776 . . . . . . . . . . . . 13 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
109adantl 485 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
11 1rp 12401 . . . . . . . . . . . . 13 1 ∈ ℝ+
1211a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
13 1red 10649 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
14 eliooord 12804 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
1514adantl 485 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
1615simpld 498 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
1713, 10, 16ltled 10795 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
1810, 12, 17rpgecld 12478 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
1918relogcld 25258 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
2019resqcld 13627 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥)↑2) ∈ ℝ)
2120rehalfcld 11890 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((log‘𝑥)↑2) / 2) ∈ ℝ)
2221recnd 10676 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((log‘𝑥)↑2) / 2) ∈ ℂ)
2319recnd 10676 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
2410, 16rplogcld 25264 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2524rpne0d 12444 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
268, 22, 23, 25divsubdird 11462 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) / (log‘𝑥)) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((((log‘𝑥)↑2) / 2) / (log‘𝑥))))
277, 21resubcld 11075 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) ∈ ℝ)
2827recnd 10676 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) ∈ ℂ)
2928, 23, 25divrecd 11426 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) / (log‘𝑥)) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) · (1 / (log‘𝑥))))
3020recnd 10676 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥)↑2) ∈ ℂ)
31 2cnd 11721 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
32 2ne0 11747 . . . . . . . . . 10 2 ≠ 0
3332a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ≠ 0)
3430, 31, 23, 33, 25divdiv32d 11448 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((log‘𝑥)↑2) / 2) / (log‘𝑥)) = ((((log‘𝑥)↑2) / (log‘𝑥)) / 2))
3523sqvald 13523 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥)↑2) = ((log‘𝑥) · (log‘𝑥)))
3635oveq1d 7160 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((log‘𝑥)↑2) / (log‘𝑥)) = (((log‘𝑥) · (log‘𝑥)) / (log‘𝑥)))
3723, 23, 25divcan3d 11428 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) · (log‘𝑥)) / (log‘𝑥)) = (log‘𝑥))
3836, 37eqtrd 2833 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((log‘𝑥)↑2) / (log‘𝑥)) = (log‘𝑥))
3938oveq1d 7160 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((log‘𝑥)↑2) / (log‘𝑥)) / 2) = ((log‘𝑥) / 2))
4034, 39eqtrd 2833 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((log‘𝑥)↑2) / 2) / (log‘𝑥)) = ((log‘𝑥) / 2))
4140oveq2d 7161 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((((log‘𝑥)↑2) / 2) / (log‘𝑥))) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)))
4226, 29, 413eqtr3rd 2842 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) · (1 / (log‘𝑥))))
4342mpteq2dva 5129 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2))) = (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) · (1 / (log‘𝑥)))))
4424rprecred 12450 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
4518ex 416 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
4645ssrdv 3923 . . . . . 6 (⊤ → (1(,)+∞) ⊆ ℝ+)
47 eqid 2798 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)))
4847logdivsum 26161 . . . . . . . 8 ((𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))):ℝ+⟶ℝ ∧ (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ dom ⇝𝑟 ∧ (((𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ⇝𝑟 1 ∧ 1 ∈ ℝ+ ∧ e ≤ 1) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)))‘1) − 1)) ≤ ((log‘1) / 1)))
4948simp2i 1137 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ dom ⇝𝑟
50 rlimdmo1 14986 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ dom ⇝𝑟 → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ 𝑂(1))
5149, 50mp1i 13 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ 𝑂(1))
5246, 51o1res2 14932 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2))) ∈ 𝑂(1))
53 divlogrlim 25270 . . . . . 6 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
54 rlimo1 14985 . . . . . 6 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
5553, 54mp1i 13 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
5627, 44, 52, 55o1mul2 14993 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − (((log‘𝑥)↑2) / 2)) · (1 / (log‘𝑥)))) ∈ 𝑂(1))
5743, 56eqeltrd 2890 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1))
588, 23, 25divcld 11423 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) ∈ ℂ)
5923halfcld 11888 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / 2) ∈ ℂ)
6058, 59subcld 11004 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) ∈ ℂ)
61 elfznn 12951 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
6261adantl 485 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
63 vmacl 25747 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
6462, 63syl 17 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
6564, 62nndivred 11697 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
6618adantr 484 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
6762nnrpd 12437 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
6866, 67rpdivcld 12456 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
6968relogcld 25258 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
7065, 69remulcld 10678 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℝ)
711, 70fsumrecl 15103 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℝ)
7271recnd 10676 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
7324rpcnd 12441 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
7472, 73, 25divcld 11423 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) ∈ ℂ)
7573halfcld 11888 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / 2) ∈ ℂ)
7674, 75subcld 11004 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)) ∈ ℂ)
7758, 74, 59nnncan2d 11039 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥))))
788, 72, 23, 25divsubdird 11462 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) = ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥))))
79 fzfid 13356 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
8064adantr 484 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑛) ∈ ℝ)
8162adantr 484 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑛 ∈ ℕ)
82 elfznn 12951 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
8382adantl 485 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
8481, 83nnmulcld 11696 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑛 · 𝑚) ∈ ℕ)
8580, 84nndivred 11697 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑛) / (𝑛 · 𝑚)) ∈ ℝ)
8679, 85fsumrecl 15103 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) ∈ ℝ)
8786recnd 10676 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) ∈ ℂ)
8870recnd 10676 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
891, 87, 88fsumsub 15155 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
9064recnd 10676 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
9162nncnd 11659 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
9262nnne0d 11693 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
9390, 91, 92divcld 11423 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
9483nnrecred 11694 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 / 𝑚) ∈ ℝ)
9579, 94fsumrecl 15103 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ∈ ℝ)
9695recnd 10676 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ∈ ℂ)
9769recnd 10676 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
9893, 96, 97subdid 11103 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = ((((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
9990adantr 484 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑛) ∈ ℂ)
10091adantr 484 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑛 ∈ ℂ)
10183nncnd 11659 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℂ)
10292adantr 484 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑛 ≠ 0)
10383nnne0d 11693 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ≠ 0)
10499, 100, 101, 102, 103divdiv1d 11454 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (((Λ‘𝑛) / 𝑛) / 𝑚) = ((Λ‘𝑛) / (𝑛 · 𝑚)))
10599, 100, 102divcld 11423 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
106105, 101, 103divrecd 11426 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (((Λ‘𝑛) / 𝑛) / 𝑚) = (((Λ‘𝑛) / 𝑛) · (1 / 𝑚)))
107104, 106eqtr3d 2835 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑛) / (𝑛 · 𝑚)) = (((Λ‘𝑛) / 𝑛) · (1 / 𝑚)))
108107sumeq2dv 15072 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((Λ‘𝑛) / 𝑛) · (1 / 𝑚)))
109101, 103reccld 11416 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 / 𝑚) ∈ ℂ)
11079, 93, 109fsummulc2 15151 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((Λ‘𝑛) / 𝑛) · (1 / 𝑚)))
111108, 110eqtr4d 2836 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) = (((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)))
112111oveq1d 7160 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = ((((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
11398, 112eqtr4d 2836 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
114113sumeq2dv 15072 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
115 vmasum 25844 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (Λ‘𝑛) = (log‘𝑘))
1163, 115syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (Λ‘𝑛) = (log‘𝑘))
117116oveq1d 7160 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (Λ‘𝑛) / 𝑘) = ((log‘𝑘) / 𝑘))
118 fzfid 13356 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (1...𝑘) ∈ Fin)
119 dvdsssfz1 15680 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ (1...𝑘))
1203, 119syl 17 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ (1...𝑘))
121118, 120ssfid 8743 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑘} ∈ Fin)
1223nncnd 11659 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℂ)
123 ssrab2 4009 . . . . . . . . . . . . . . . . . 18 {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ ℕ
124 simprr 772 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
125123, 124sseldi 3915 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ ℕ)
126125, 63syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (Λ‘𝑛) ∈ ℝ)
127126recnd 10676 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (Λ‘𝑛) ∈ ℂ)
128127anassrs 471 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (Λ‘𝑛) ∈ ℂ)
1293nnne0d 11693 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ≠ 0)
130121, 122, 128, 129fsumdivc 15153 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} (Λ‘𝑛) / 𝑘) = Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑛) / 𝑘))
131117, 130eqtr3d 2835 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((log‘𝑘) / 𝑘) = Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑛) / 𝑘))
132131sumeq2dv 15072 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑛) / 𝑘))
133 oveq2 7153 . . . . . . . . . . . 12 (𝑘 = (𝑛 · 𝑚) → ((Λ‘𝑛) / 𝑘) = ((Λ‘𝑛) / (𝑛 · 𝑚)))
1342ad2antrl 727 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑘 ∈ ℕ)
135134nncnd 11659 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑘 ∈ ℂ)
136134nnne0d 11693 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑘 ≠ 0)
137127, 135, 136divcld 11423 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → ((Λ‘𝑛) / 𝑘) ∈ ℂ)
138133, 10, 137dvdsflsumcom 25817 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑛) / 𝑘) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)))
139132, 138eqtrd 2833 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)))
140139oveq1d 7160 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) / (𝑛 · 𝑚)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
14189, 114, 1403eqtr4rd 2844 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))))
142141oveq1d 7160 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)))
14377, 78, 1423eqtr2d 2839 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)))
144143mpteq2dva 5129 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)))) = (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))))
145 1red 10649 . . . . . . 7 (⊤ → 1 ∈ ℝ)
1461, 65fsumrecl 15103 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ)
147146, 24rerpdivcld 12470 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) ∈ ℝ)
148 ioossre 12806 . . . . . . . . . . 11 (1(,)+∞) ⊆ ℝ
149 ax-1cn 10602 . . . . . . . . . . 11 1 ∈ ℂ
150 o1const 14988 . . . . . . . . . . 11 (((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
151148, 149, 150mp2an 691 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1)
152151a1i 11 . . . . . . . . 9 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
153147recnd 10676 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) ∈ ℂ)
15412rpcnd 12441 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
155146recnd 10676 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
156155, 23, 23, 25divsubdird 11462 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − ((log‘𝑥) / (log‘𝑥))))
157155, 23subcld 11004 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℂ)
158157, 23, 25divrecd 11426 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥))))
15923, 25dividd 11421 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / (log‘𝑥)) = 1)
160159oveq2d 7161 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − ((log‘𝑥) / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1))
161156, 158, 1603eqtr3rd 2842 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥))))
162161mpteq2dva 5129 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1)) = (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥)))))
163146, 19resubcld 11075 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℝ)
164 vmadivsum 26110 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
165164a1i 11 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
16646, 165o1res2 14932 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
167163, 44, 166, 55o1mul2 14993 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥)))) ∈ 𝑂(1))
168162, 167eqeltrd 2890 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1)) ∈ 𝑂(1))
169153, 154, 168o1dif 14998 . . . . . . . . 9 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1)))
170152, 169mpbird 260 . . . . . . . 8 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) ∈ 𝑂(1))
171147, 170o1lo1d 14908 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) ∈ ≤𝑂(1))
17295, 69resubcld 11075 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ∈ ℝ)
17365, 172remulcld 10678 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ)
1741, 173fsumrecl 15103 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ)
175174, 24rerpdivcld 12470 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) ∈ ℝ)
176 1red 10649 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
177 vmage0 25750 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
17862, 177syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
17964, 67, 178divge0d 12479 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
18068rpred 12439 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
18191mulid2d 10666 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) = 𝑛)
182 fznnfl 13245 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
18310, 182syl 17 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
184183simplbda 503 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛𝑥)
185181, 184eqbrtrd 5056 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) ≤ 𝑥)
18610adantr 484 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
187176, 186, 67lemuldivd 12488 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
188185, 187mpbid 235 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑛))
189 harmonicubnd 25639 . . . . . . . . . . . . . 14 (((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛)) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ≤ ((log‘(𝑥 / 𝑛)) + 1))
190180, 188, 189syl2anc 587 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ≤ ((log‘(𝑥 / 𝑛)) + 1))
19195, 69, 176lesubadd2d 11246 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ≤ 1 ↔ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ≤ ((log‘(𝑥 / 𝑛)) + 1)))
192190, 191mpbird 260 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ≤ 1)
193172, 176, 65, 179, 192lemul2ad 11587 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ≤ (((Λ‘𝑛) / 𝑛) · 1))
19493mulid1d 10665 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 1) = ((Λ‘𝑛) / 𝑛))
195193, 194breqtrd 5060 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ≤ ((Λ‘𝑛) / 𝑛))
1961, 173, 65, 195fsumle 15166 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛))
197174, 146, 24, 196lediv1dd 12497 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)))
198197adantrr 716 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)))
199145, 171, 147, 175, 198lo1le 15020 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈ ≤𝑂(1))
200 0red 10651 . . . . . . 7 (⊤ → 0 ∈ ℝ)
201 harmoniclbnd 25638 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ+ → (log‘(𝑥 / 𝑛)) ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚))
20268, 201syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚))
20395, 69subge0d 11237 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (0 ≤ (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ↔ (log‘(𝑥 / 𝑛)) ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚)))
204202, 203mpbird 260 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))
20565, 172, 179, 204mulge0d 11224 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))))
2061, 173, 205fsumge0 15162 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))))
207174, 24, 206divge0d 12479 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)))
208175, 200, 207o1lo12 14907 . . . . . 6 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈ ≤𝑂(1)))
209199, 208mpbird 260 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈ 𝑂(1))
210144, 209eqeltrd 2890 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)))) ∈ 𝑂(1))
21160, 76, 210o1dif 14998 . . 3 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑘 ∈ (1...(⌊‘𝑥))((log‘𝑘) / 𝑘) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1)))
21257, 211mpbid 235 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1))
213212mptru 1545 1 (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ⊤wtru 1539   ∈ wcel 2111   ≠ wne 2987  {crab 3110   ⊆ wss 3883   class class class wbr 5034   ↦ cmpt 5114  dom cdm 5523  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  ℂcc 10542  ℝcr 10543  0cc0 10544  1c1 10545   + caddc 10547   · cmul 10549  +∞cpnf 10679   < clt 10682   ≤ cle 10683   − cmin 10877   / cdiv 11304  ℕcn 11643  2c2 11698  ℝ+crp 12397  (,)cioo 12746  ...cfz 12905  ⌊cfl 13175  ↑cexp 13445  abscabs 14605   ⇝𝑟 crli 14854  𝑂(1)co1 14855  ≤𝑂(1)clo1 14856  Σcsu 15054  eceu 15428   ∥ cdvds 15619  logclog 25190  Λcvma 25721 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-inf2 9106  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622  ax-addf 10623  ax-mulf 10624 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7400  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-oadd 8107  df-er 8290  df-map 8409  df-pm 8410  df-ixp 8463  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-xnn0 11976  df-z 11990  df-dec 12107  df-uz 12252  df-q 12357  df-rp 12398  df-xneg 12515  df-xadd 12516  df-xmul 12517  df-ioo 12750  df-ioc 12751  df-ico 12752  df-icc 12753  df-fz 12906  df-fzo 13049  df-fl 13177  df-mod 13253  df-seq 13385  df-exp 13446  df-fac 13650  df-bc 13679  df-hash 13707  df-shft 14438  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-limsup 14840  df-clim 14857  df-rlim 14858  df-o1 14859  df-lo1 14860  df-sum 15055  df-ef 15433  df-e 15434  df-sin 15435  df-cos 15436  df-tan 15437  df-pi 15438  df-dvds 15620  df-gcd 15854  df-prm 16026  df-pc 16184  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-starv 16592  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ple 16597  df-ds 16599  df-unif 16600  df-hom 16601  df-cco 16602  df-rest 16708  df-topn 16709  df-0g 16727  df-gsum 16728  df-topgen 16729  df-pt 16730  df-prds 16733  df-xrs 16787  df-qtop 16792  df-imas 16793  df-xps 16795  df-mre 16869  df-mrc 16870  df-acs 16872  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-submnd 17969  df-mulg 18238  df-cntz 18460  df-cmn 18921  df-psmet 20104  df-xmet 20105  df-met 20106  df-bl 20107  df-mopn 20108  df-fbas 20109  df-fg 20110  df-cnfld 20113  df-top 21540  df-topon 21557  df-topsp 21579  df-bases 21592  df-cld 21665  df-ntr 21666  df-cls 21667  df-nei 21744  df-lp 21782  df-perf 21783  df-cn 21873  df-cnp 21874  df-haus 21961  df-cmp 22033  df-tx 22208  df-hmeo 22401  df-fil 22492  df-fm 22584  df-flim 22585  df-flf 22586  df-xms 22968  df-ms 22969  df-tms 22970  df-cncf 23524  df-limc 24510  df-dv 24511  df-ulm 25016  df-log 25192  df-cxp 25193  df-atan 25497  df-em 25622  df-cht 25726  df-vma 25727  df-chp 25728  df-ppi 25729 This theorem is referenced by:  vmalogdivsum  26167  2vmadivsumlem  26168  selberg4lem1  26188
 Copyright terms: Public domain W3C validator