Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1fldgenq Structured version   Visualization version   GIF version

Theorem 1fldgenq 32089
Description: The field of rational numbers is generated by 1 in fld, that is, is the prime field of fld. (Contributed by Thierry Arnoux, 15-Jan-2025.)
Assertion
Ref Expression
1fldgenq (ℂfld fldGen {1}) = ℚ

Proof of Theorem 1fldgenq
Dummy variables 𝑞 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 20800 . . . . 5 ℂ = (Base‘ℂfld)
2 cndrng 20826 . . . . . 6 fld ∈ DivRing
32a1i 11 . . . . 5 (⊤ → ℂfld ∈ DivRing)
4 qsscn 12885 . . . . . 6 ℚ ⊆ ℂ
54a1i 11 . . . . 5 (⊤ → ℚ ⊆ ℂ)
6 1z 12533 . . . . . . . 8 1 ∈ ℤ
7 snssi 4768 . . . . . . . 8 (1 ∈ ℤ → {1} ⊆ ℤ)
86, 7ax-mp 5 . . . . . . 7 {1} ⊆ ℤ
9 zssq 12881 . . . . . . 7 ℤ ⊆ ℚ
108, 9sstri 3953 . . . . . 6 {1} ⊆ ℚ
1110a1i 11 . . . . 5 (⊤ → {1} ⊆ ℚ)
121, 3, 5, 11fldgenss 32084 . . . 4 (⊤ → (ℂfld fldGen {1}) ⊆ (ℂfld fldGen ℚ))
13 qsubdrg 20849 . . . . . . . 8 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1413simpli 484 . . . . . . 7 ℚ ∈ (SubRing‘ℂfld)
1513simpri 486 . . . . . . 7 (ℂflds ℚ) ∈ DivRing
16 issdrg 20261 . . . . . . 7 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
172, 14, 15, 16mpbir3an 1341 . . . . . 6 ℚ ∈ (SubDRing‘ℂfld)
1817a1i 11 . . . . 5 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
191, 3, 18fldgenidfld 32085 . . . 4 (⊤ → (ℂfld fldGen ℚ) = ℚ)
2012, 19sseqtrd 3984 . . 3 (⊤ → (ℂfld fldGen {1}) ⊆ ℚ)
21 elq 12875 . . . . . 6 (𝑧 ∈ ℚ ↔ ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ 𝑧 = (𝑝 / 𝑞))
22 cnflddiv 20827 . . . . . . . . 9 / = (/r‘ℂfld)
23 cnfld0 20821 . . . . . . . . 9 0 = (0g‘ℂfld)
2411, 4sstrdi 3956 . . . . . . . . . . . 12 (⊤ → {1} ⊆ ℂ)
251, 3, 24fldgensdrg 32083 . . . . . . . . . . 11 (⊤ → (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld))
2625mptru 1548 . . . . . . . . . 10 (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld)
2726a1i 11 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld))
28 ax-1cn 11109 . . . . . . . . . . . . 13 1 ∈ ℂ
29 cnfldmulg 20829 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑝(.g‘ℂfld)1) = (𝑝 · 1))
3028, 29mpan2 689 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) = (𝑝 · 1))
31 zre 12503 . . . . . . . . . . . . 13 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
32 ax-1rid 11121 . . . . . . . . . . . . 13 (𝑝 ∈ ℝ → (𝑝 · 1) = 𝑝)
3331, 32syl 17 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → (𝑝 · 1) = 𝑝)
3430, 33eqtrd 2776 . . . . . . . . . . 11 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) = 𝑝)
35 issdrg 20261 . . . . . . . . . . . . . . 15 ((ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) ∧ (ℂflds (ℂfld fldGen {1})) ∈ DivRing))
3626, 35mpbi 229 . . . . . . . . . . . . . 14 (ℂfld ∈ DivRing ∧ (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) ∧ (ℂflds (ℂfld fldGen {1})) ∈ DivRing)
3736simp2i 1140 . . . . . . . . . . . . 13 (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld)
38 subrgsubg 20228 . . . . . . . . . . . . 13 ((ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) → (ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld))
3937, 38ax-mp 5 . . . . . . . . . . . 12 (ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld)
401, 3, 24fldgenssid 32082 . . . . . . . . . . . . . 14 (⊤ → {1} ⊆ (ℂfld fldGen {1}))
41 1ex 11151 . . . . . . . . . . . . . . 15 1 ∈ V
4241snss 4746 . . . . . . . . . . . . . 14 (1 ∈ (ℂfld fldGen {1}) ↔ {1} ⊆ (ℂfld fldGen {1}))
4340, 42sylibr 233 . . . . . . . . . . . . 13 (⊤ → 1 ∈ (ℂfld fldGen {1}))
4443mptru 1548 . . . . . . . . . . . 12 1 ∈ (ℂfld fldGen {1})
45 eqid 2736 . . . . . . . . . . . . 13 (.g‘ℂfld) = (.g‘ℂfld)
4645subgmulgcl 18941 . . . . . . . . . . . 12 (((ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld) ∧ 𝑝 ∈ ℤ ∧ 1 ∈ (ℂfld fldGen {1})) → (𝑝(.g‘ℂfld)1) ∈ (ℂfld fldGen {1}))
4739, 44, 46mp3an13 1452 . . . . . . . . . . 11 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) ∈ (ℂfld fldGen {1}))
4834, 47eqeltrrd 2839 . . . . . . . . . 10 (𝑝 ∈ ℤ → 𝑝 ∈ (ℂfld fldGen {1}))
4948adantr 481 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ (ℂfld fldGen {1}))
5048ssriv 3948 . . . . . . . . . 10 ℤ ⊆ (ℂfld fldGen {1})
51 nnz 12520 . . . . . . . . . . 11 (𝑞 ∈ ℕ → 𝑞 ∈ ℤ)
5251adantl 482 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℤ)
5350, 52sselid 3942 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ (ℂfld fldGen {1}))
54 nnne0 12187 . . . . . . . . . 10 (𝑞 ∈ ℕ → 𝑞 ≠ 0)
5554adantl 482 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ≠ 0)
5622, 23, 27, 49, 53, 55sdrgdvcl 32076 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ (ℂfld fldGen {1}))
57 eleq1 2825 . . . . . . . 8 (𝑧 = (𝑝 / 𝑞) → (𝑧 ∈ (ℂfld fldGen {1}) ↔ (𝑝 / 𝑞) ∈ (ℂfld fldGen {1})))
5856, 57syl5ibrcom 246 . . . . . . 7 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑧 = (𝑝 / 𝑞) → 𝑧 ∈ (ℂfld fldGen {1})))
5958rexlimivv 3196 . . . . . 6 (∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ 𝑧 = (𝑝 / 𝑞) → 𝑧 ∈ (ℂfld fldGen {1}))
6021, 59sylbi 216 . . . . 5 (𝑧 ∈ ℚ → 𝑧 ∈ (ℂfld fldGen {1}))
6160ssriv 3948 . . . 4 ℚ ⊆ (ℂfld fldGen {1})
6261a1i 11 . . 3 (⊤ → ℚ ⊆ (ℂfld fldGen {1}))
6320, 62eqssd 3961 . 2 (⊤ → (ℂfld fldGen {1}) = ℚ)
6463mptru 1548 1 (ℂfld fldGen {1}) = ℚ
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1087   = wceq 1541  wtru 1542  wcel 2106  wne 2943  wrex 3073  wss 3910  {csn 4586  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   / cdiv 11812  cn 12153  cz 12499  cq 12873  s cress 17112  .gcmg 18872  SubGrpcsubg 18922  DivRingcdr 20185  SubRingcsubrg 20218  SubDRingcsdrg 20259  fldccnfld 20796   fldGen cfldgen 32079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-fz 13425  df-seq 13907  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-mulg 18873  df-subg 18925  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-subrg 20220  df-sdrg 20260  df-cnfld 20797  df-fldgen 32080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator