Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1fldgenq Structured version   Visualization version   GIF version

Theorem 1fldgenq 33289
Description: The field of rational numbers is generated by 1 in fld, that is, is the prime field of fld. (Contributed by Thierry Arnoux, 15-Jan-2025.)
Assertion
Ref Expression
1fldgenq (ℂfld fldGen {1}) = ℚ

Proof of Theorem 1fldgenq
Dummy variables 𝑞 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 21391 . . . . 5 ℂ = (Base‘ℂfld)
2 cndrng 21434 . . . . . 6 fld ∈ DivRing
32a1i 11 . . . . 5 (⊤ → ℂfld ∈ DivRing)
4 qsscn 13025 . . . . . 6 ℚ ⊆ ℂ
54a1i 11 . . . . 5 (⊤ → ℚ ⊆ ℂ)
6 1z 12673 . . . . . . . 8 1 ∈ ℤ
7 snssi 4833 . . . . . . . 8 (1 ∈ ℤ → {1} ⊆ ℤ)
86, 7ax-mp 5 . . . . . . 7 {1} ⊆ ℤ
9 zssq 13021 . . . . . . 7 ℤ ⊆ ℚ
108, 9sstri 4018 . . . . . 6 {1} ⊆ ℚ
1110a1i 11 . . . . 5 (⊤ → {1} ⊆ ℚ)
121, 3, 5, 11fldgenss 33283 . . . 4 (⊤ → (ℂfld fldGen {1}) ⊆ (ℂfld fldGen ℚ))
13 qsubdrg 21460 . . . . . . . 8 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1413simpli 483 . . . . . . 7 ℚ ∈ (SubRing‘ℂfld)
1513simpri 485 . . . . . . 7 (ℂflds ℚ) ∈ DivRing
16 issdrg 20811 . . . . . . 7 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
172, 14, 15, 16mpbir3an 1341 . . . . . 6 ℚ ∈ (SubDRing‘ℂfld)
1817a1i 11 . . . . 5 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
191, 3, 18fldgenidfld 33284 . . . 4 (⊤ → (ℂfld fldGen ℚ) = ℚ)
2012, 19sseqtrd 4049 . . 3 (⊤ → (ℂfld fldGen {1}) ⊆ ℚ)
21 elq 13015 . . . . . 6 (𝑧 ∈ ℚ ↔ ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ 𝑧 = (𝑝 / 𝑞))
22 cnflddiv 21436 . . . . . . . . 9 / = (/r‘ℂfld)
23 cnfld0 21428 . . . . . . . . 9 0 = (0g‘ℂfld)
2411, 4sstrdi 4021 . . . . . . . . . . . 12 (⊤ → {1} ⊆ ℂ)
251, 3, 24fldgensdrg 33281 . . . . . . . . . . 11 (⊤ → (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld))
2625mptru 1544 . . . . . . . . . 10 (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld)
2726a1i 11 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld))
28 ax-1cn 11242 . . . . . . . . . . . . 13 1 ∈ ℂ
29 cnfldmulg 21439 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑝(.g‘ℂfld)1) = (𝑝 · 1))
3028, 29mpan2 690 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) = (𝑝 · 1))
31 zre 12643 . . . . . . . . . . . . 13 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
32 ax-1rid 11254 . . . . . . . . . . . . 13 (𝑝 ∈ ℝ → (𝑝 · 1) = 𝑝)
3331, 32syl 17 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → (𝑝 · 1) = 𝑝)
3430, 33eqtrd 2780 . . . . . . . . . . 11 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) = 𝑝)
35 issdrg 20811 . . . . . . . . . . . . . . 15 ((ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) ∧ (ℂflds (ℂfld fldGen {1})) ∈ DivRing))
3626, 35mpbi 230 . . . . . . . . . . . . . 14 (ℂfld ∈ DivRing ∧ (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) ∧ (ℂflds (ℂfld fldGen {1})) ∈ DivRing)
3736simp2i 1140 . . . . . . . . . . . . 13 (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld)
38 subrgsubg 20605 . . . . . . . . . . . . 13 ((ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) → (ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld))
3937, 38ax-mp 5 . . . . . . . . . . . 12 (ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld)
401, 3, 24fldgenssid 33280 . . . . . . . . . . . . . 14 (⊤ → {1} ⊆ (ℂfld fldGen {1}))
41 1ex 11286 . . . . . . . . . . . . . . 15 1 ∈ V
4241snss 4810 . . . . . . . . . . . . . 14 (1 ∈ (ℂfld fldGen {1}) ↔ {1} ⊆ (ℂfld fldGen {1}))
4340, 42sylibr 234 . . . . . . . . . . . . 13 (⊤ → 1 ∈ (ℂfld fldGen {1}))
4443mptru 1544 . . . . . . . . . . . 12 1 ∈ (ℂfld fldGen {1})
45 eqid 2740 . . . . . . . . . . . . 13 (.g‘ℂfld) = (.g‘ℂfld)
4645subgmulgcl 19179 . . . . . . . . . . . 12 (((ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld) ∧ 𝑝 ∈ ℤ ∧ 1 ∈ (ℂfld fldGen {1})) → (𝑝(.g‘ℂfld)1) ∈ (ℂfld fldGen {1}))
4739, 44, 46mp3an13 1452 . . . . . . . . . . 11 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) ∈ (ℂfld fldGen {1}))
4834, 47eqeltrrd 2845 . . . . . . . . . 10 (𝑝 ∈ ℤ → 𝑝 ∈ (ℂfld fldGen {1}))
4948adantr 480 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ (ℂfld fldGen {1}))
5048ssriv 4012 . . . . . . . . . 10 ℤ ⊆ (ℂfld fldGen {1})
51 nnz 12660 . . . . . . . . . . 11 (𝑞 ∈ ℕ → 𝑞 ∈ ℤ)
5251adantl 481 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℤ)
5350, 52sselid 4006 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ (ℂfld fldGen {1}))
54 nnne0 12327 . . . . . . . . . 10 (𝑞 ∈ ℕ → 𝑞 ≠ 0)
5554adantl 481 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ≠ 0)
5622, 23, 27, 49, 53, 55sdrgdvcl 33266 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ (ℂfld fldGen {1}))
57 eleq1 2832 . . . . . . . 8 (𝑧 = (𝑝 / 𝑞) → (𝑧 ∈ (ℂfld fldGen {1}) ↔ (𝑝 / 𝑞) ∈ (ℂfld fldGen {1})))
5856, 57syl5ibrcom 247 . . . . . . 7 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑧 = (𝑝 / 𝑞) → 𝑧 ∈ (ℂfld fldGen {1})))
5958rexlimivv 3207 . . . . . 6 (∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ 𝑧 = (𝑝 / 𝑞) → 𝑧 ∈ (ℂfld fldGen {1}))
6021, 59sylbi 217 . . . . 5 (𝑧 ∈ ℚ → 𝑧 ∈ (ℂfld fldGen {1}))
6160ssriv 4012 . . . 4 ℚ ⊆ (ℂfld fldGen {1})
6261a1i 11 . . 3 (⊤ → ℚ ⊆ (ℂfld fldGen {1}))
6320, 62eqssd 4026 . 2 (⊤ → (ℂfld fldGen {1}) = ℚ)
6463mptru 1544 1 (ℂfld fldGen {1}) = ℚ
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wrex 3076  wss 3976  {csn 4648  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189   / cdiv 11947  cn 12293  cz 12639  cq 13013  s cress 17287  .gcmg 19107  SubGrpcsubg 19160  SubRingcsubrg 20595  DivRingcdr 20751  SubDRingcsdrg 20809  fldccnfld 21387   fldGen cfldgen 33277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-fz 13568  df-seq 14053  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-subrng 20572  df-subrg 20597  df-drng 20753  df-sdrg 20810  df-cnfld 21388  df-fldgen 33278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator