Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1fldgenq Structured version   Visualization version   GIF version

Theorem 1fldgenq 33262
Description: The field of rational numbers is generated by 1 in fld, that is, is the prime field of fld. (Contributed by Thierry Arnoux, 15-Jan-2025.)
Assertion
Ref Expression
1fldgenq (ℂfld fldGen {1}) = ℚ

Proof of Theorem 1fldgenq
Dummy variables 𝑞 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 21317 . . . . 5 ℂ = (Base‘ℂfld)
2 cndrng 21359 . . . . . 6 fld ∈ DivRing
32a1i 11 . . . . 5 (⊤ → ℂfld ∈ DivRing)
4 qsscn 12974 . . . . . 6 ℚ ⊆ ℂ
54a1i 11 . . . . 5 (⊤ → ℚ ⊆ ℂ)
6 1z 12620 . . . . . . . 8 1 ∈ ℤ
7 snssi 4784 . . . . . . . 8 (1 ∈ ℤ → {1} ⊆ ℤ)
86, 7ax-mp 5 . . . . . . 7 {1} ⊆ ℤ
9 zssq 12970 . . . . . . 7 ℤ ⊆ ℚ
108, 9sstri 3968 . . . . . 6 {1} ⊆ ℚ
1110a1i 11 . . . . 5 (⊤ → {1} ⊆ ℚ)
121, 3, 5, 11fldgenss 33256 . . . 4 (⊤ → (ℂfld fldGen {1}) ⊆ (ℂfld fldGen ℚ))
13 qsubdrg 21385 . . . . . . . 8 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1413simpli 483 . . . . . . 7 ℚ ∈ (SubRing‘ℂfld)
1513simpri 485 . . . . . . 7 (ℂflds ℚ) ∈ DivRing
16 issdrg 20746 . . . . . . 7 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
172, 14, 15, 16mpbir3an 1342 . . . . . 6 ℚ ∈ (SubDRing‘ℂfld)
1817a1i 11 . . . . 5 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
191, 3, 18fldgenidfld 33257 . . . 4 (⊤ → (ℂfld fldGen ℚ) = ℚ)
2012, 19sseqtrd 3995 . . 3 (⊤ → (ℂfld fldGen {1}) ⊆ ℚ)
21 elq 12964 . . . . . 6 (𝑧 ∈ ℚ ↔ ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ 𝑧 = (𝑝 / 𝑞))
22 cnflddiv 21361 . . . . . . . . 9 / = (/r‘ℂfld)
23 cnfld0 21353 . . . . . . . . 9 0 = (0g‘ℂfld)
2411, 4sstrdi 3971 . . . . . . . . . . . 12 (⊤ → {1} ⊆ ℂ)
251, 3, 24fldgensdrg 33254 . . . . . . . . . . 11 (⊤ → (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld))
2625mptru 1547 . . . . . . . . . 10 (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld)
2726a1i 11 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld))
28 ax-1cn 11185 . . . . . . . . . . . . 13 1 ∈ ℂ
29 cnfldmulg 21364 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑝(.g‘ℂfld)1) = (𝑝 · 1))
3028, 29mpan2 691 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) = (𝑝 · 1))
31 zre 12590 . . . . . . . . . . . . 13 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
32 ax-1rid 11197 . . . . . . . . . . . . 13 (𝑝 ∈ ℝ → (𝑝 · 1) = 𝑝)
3331, 32syl 17 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → (𝑝 · 1) = 𝑝)
3430, 33eqtrd 2770 . . . . . . . . . . 11 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) = 𝑝)
35 issdrg 20746 . . . . . . . . . . . . . . 15 ((ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) ∧ (ℂflds (ℂfld fldGen {1})) ∈ DivRing))
3626, 35mpbi 230 . . . . . . . . . . . . . 14 (ℂfld ∈ DivRing ∧ (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) ∧ (ℂflds (ℂfld fldGen {1})) ∈ DivRing)
3736simp2i 1140 . . . . . . . . . . . . 13 (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld)
38 subrgsubg 20535 . . . . . . . . . . . . 13 ((ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) → (ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld))
3937, 38ax-mp 5 . . . . . . . . . . . 12 (ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld)
401, 3, 24fldgenssid 33253 . . . . . . . . . . . . . 14 (⊤ → {1} ⊆ (ℂfld fldGen {1}))
41 1ex 11229 . . . . . . . . . . . . . . 15 1 ∈ V
4241snss 4761 . . . . . . . . . . . . . 14 (1 ∈ (ℂfld fldGen {1}) ↔ {1} ⊆ (ℂfld fldGen {1}))
4340, 42sylibr 234 . . . . . . . . . . . . 13 (⊤ → 1 ∈ (ℂfld fldGen {1}))
4443mptru 1547 . . . . . . . . . . . 12 1 ∈ (ℂfld fldGen {1})
45 eqid 2735 . . . . . . . . . . . . 13 (.g‘ℂfld) = (.g‘ℂfld)
4645subgmulgcl 19120 . . . . . . . . . . . 12 (((ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld) ∧ 𝑝 ∈ ℤ ∧ 1 ∈ (ℂfld fldGen {1})) → (𝑝(.g‘ℂfld)1) ∈ (ℂfld fldGen {1}))
4739, 44, 46mp3an13 1454 . . . . . . . . . . 11 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) ∈ (ℂfld fldGen {1}))
4834, 47eqeltrrd 2835 . . . . . . . . . 10 (𝑝 ∈ ℤ → 𝑝 ∈ (ℂfld fldGen {1}))
4948adantr 480 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ (ℂfld fldGen {1}))
5048ssriv 3962 . . . . . . . . . 10 ℤ ⊆ (ℂfld fldGen {1})
51 nnz 12607 . . . . . . . . . . 11 (𝑞 ∈ ℕ → 𝑞 ∈ ℤ)
5251adantl 481 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℤ)
5350, 52sselid 3956 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ (ℂfld fldGen {1}))
54 nnne0 12272 . . . . . . . . . 10 (𝑞 ∈ ℕ → 𝑞 ≠ 0)
5554adantl 481 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ≠ 0)
5622, 23, 27, 49, 53, 55sdrgdvcl 33239 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ (ℂfld fldGen {1}))
57 eleq1 2822 . . . . . . . 8 (𝑧 = (𝑝 / 𝑞) → (𝑧 ∈ (ℂfld fldGen {1}) ↔ (𝑝 / 𝑞) ∈ (ℂfld fldGen {1})))
5856, 57syl5ibrcom 247 . . . . . . 7 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑧 = (𝑝 / 𝑞) → 𝑧 ∈ (ℂfld fldGen {1})))
5958rexlimivv 3186 . . . . . 6 (∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ 𝑧 = (𝑝 / 𝑞) → 𝑧 ∈ (ℂfld fldGen {1}))
6021, 59sylbi 217 . . . . 5 (𝑧 ∈ ℚ → 𝑧 ∈ (ℂfld fldGen {1}))
6160ssriv 3962 . . . 4 ℚ ⊆ (ℂfld fldGen {1})
6261a1i 11 . . 3 (⊤ → ℚ ⊆ (ℂfld fldGen {1}))
6320, 62eqssd 3976 . 2 (⊤ → (ℂfld fldGen {1}) = ℚ)
6463mptru 1547 1 (ℂfld fldGen {1}) = ℚ
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2108  wne 2932  wrex 3060  wss 3926  {csn 4601  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   · cmul 11132   / cdiv 11892  cn 12238  cz 12586  cq 12962  s cress 17249  .gcmg 19048  SubGrpcsubg 19101  SubRingcsubrg 20527  DivRingcdr 20687  SubDRingcsdrg 20744  fldccnfld 21313   fldGen cfldgen 33250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-fz 13523  df-seq 14018  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-0g 17453  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-minusg 18918  df-mulg 19049  df-subg 19104  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-dvr 20359  df-subrng 20504  df-subrg 20528  df-drng 20689  df-sdrg 20745  df-cnfld 21314  df-fldgen 33251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator