Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1fldgenq Structured version   Visualization version   GIF version

Theorem 1fldgenq 33286
Description: The field of rational numbers is generated by 1 in fld, that is, is the prime field of fld. (Contributed by Thierry Arnoux, 15-Jan-2025.)
Assertion
Ref Expression
1fldgenq (ℂfld fldGen {1}) = ℚ

Proof of Theorem 1fldgenq
Dummy variables 𝑞 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 21296 . . . . 5 ℂ = (Base‘ℂfld)
2 cndrng 21336 . . . . . 6 fld ∈ DivRing
32a1i 11 . . . . 5 (⊤ → ℂfld ∈ DivRing)
4 qsscn 12858 . . . . . 6 ℚ ⊆ ℂ
54a1i 11 . . . . 5 (⊤ → ℚ ⊆ ℂ)
6 1z 12502 . . . . . . . 8 1 ∈ ℤ
7 snssi 4760 . . . . . . . 8 (1 ∈ ℤ → {1} ⊆ ℤ)
86, 7ax-mp 5 . . . . . . 7 {1} ⊆ ℤ
9 zssq 12854 . . . . . . 7 ℤ ⊆ ℚ
108, 9sstri 3944 . . . . . 6 {1} ⊆ ℚ
1110a1i 11 . . . . 5 (⊤ → {1} ⊆ ℚ)
121, 3, 5, 11fldgenss 33280 . . . 4 (⊤ → (ℂfld fldGen {1}) ⊆ (ℂfld fldGen ℚ))
13 qsubdrg 21357 . . . . . . . 8 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1413simpli 483 . . . . . . 7 ℚ ∈ (SubRing‘ℂfld)
1513simpri 485 . . . . . . 7 (ℂflds ℚ) ∈ DivRing
16 issdrg 20704 . . . . . . 7 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
172, 14, 15, 16mpbir3an 1342 . . . . . 6 ℚ ∈ (SubDRing‘ℂfld)
1817a1i 11 . . . . 5 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
191, 3, 18fldgenidfld 33281 . . . 4 (⊤ → (ℂfld fldGen ℚ) = ℚ)
2012, 19sseqtrd 3971 . . 3 (⊤ → (ℂfld fldGen {1}) ⊆ ℚ)
21 elq 12848 . . . . . 6 (𝑧 ∈ ℚ ↔ ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ 𝑧 = (𝑝 / 𝑞))
22 cnflddiv 21338 . . . . . . . . 9 / = (/r‘ℂfld)
23 cnfld0 21330 . . . . . . . . 9 0 = (0g‘ℂfld)
2411, 4sstrdi 3947 . . . . . . . . . . . 12 (⊤ → {1} ⊆ ℂ)
251, 3, 24fldgensdrg 33278 . . . . . . . . . . 11 (⊤ → (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld))
2625mptru 1548 . . . . . . . . . 10 (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld)
2726a1i 11 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld))
28 ax-1cn 11064 . . . . . . . . . . . . 13 1 ∈ ℂ
29 cnfldmulg 21341 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑝(.g‘ℂfld)1) = (𝑝 · 1))
3028, 29mpan2 691 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) = (𝑝 · 1))
31 zre 12472 . . . . . . . . . . . . 13 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
32 ax-1rid 11076 . . . . . . . . . . . . 13 (𝑝 ∈ ℝ → (𝑝 · 1) = 𝑝)
3331, 32syl 17 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → (𝑝 · 1) = 𝑝)
3430, 33eqtrd 2766 . . . . . . . . . . 11 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) = 𝑝)
35 issdrg 20704 . . . . . . . . . . . . . . 15 ((ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) ∧ (ℂflds (ℂfld fldGen {1})) ∈ DivRing))
3626, 35mpbi 230 . . . . . . . . . . . . . 14 (ℂfld ∈ DivRing ∧ (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) ∧ (ℂflds (ℂfld fldGen {1})) ∈ DivRing)
3736simp2i 1140 . . . . . . . . . . . . 13 (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld)
38 subrgsubg 20493 . . . . . . . . . . . . 13 ((ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) → (ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld))
3937, 38ax-mp 5 . . . . . . . . . . . 12 (ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld)
401, 3, 24fldgenssid 33277 . . . . . . . . . . . . . 14 (⊤ → {1} ⊆ (ℂfld fldGen {1}))
41 1ex 11108 . . . . . . . . . . . . . . 15 1 ∈ V
4241snss 4737 . . . . . . . . . . . . . 14 (1 ∈ (ℂfld fldGen {1}) ↔ {1} ⊆ (ℂfld fldGen {1}))
4340, 42sylibr 234 . . . . . . . . . . . . 13 (⊤ → 1 ∈ (ℂfld fldGen {1}))
4443mptru 1548 . . . . . . . . . . . 12 1 ∈ (ℂfld fldGen {1})
45 eqid 2731 . . . . . . . . . . . . 13 (.g‘ℂfld) = (.g‘ℂfld)
4645subgmulgcl 19052 . . . . . . . . . . . 12 (((ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld) ∧ 𝑝 ∈ ℤ ∧ 1 ∈ (ℂfld fldGen {1})) → (𝑝(.g‘ℂfld)1) ∈ (ℂfld fldGen {1}))
4739, 44, 46mp3an13 1454 . . . . . . . . . . 11 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) ∈ (ℂfld fldGen {1}))
4834, 47eqeltrrd 2832 . . . . . . . . . 10 (𝑝 ∈ ℤ → 𝑝 ∈ (ℂfld fldGen {1}))
4948adantr 480 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ (ℂfld fldGen {1}))
5048ssriv 3938 . . . . . . . . . 10 ℤ ⊆ (ℂfld fldGen {1})
51 nnz 12489 . . . . . . . . . . 11 (𝑞 ∈ ℕ → 𝑞 ∈ ℤ)
5251adantl 481 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℤ)
5350, 52sselid 3932 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ (ℂfld fldGen {1}))
54 nnne0 12159 . . . . . . . . . 10 (𝑞 ∈ ℕ → 𝑞 ≠ 0)
5554adantl 481 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ≠ 0)
5622, 23, 27, 49, 53, 55sdrgdvcl 33263 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ (ℂfld fldGen {1}))
57 eleq1 2819 . . . . . . . 8 (𝑧 = (𝑝 / 𝑞) → (𝑧 ∈ (ℂfld fldGen {1}) ↔ (𝑝 / 𝑞) ∈ (ℂfld fldGen {1})))
5856, 57syl5ibrcom 247 . . . . . . 7 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑧 = (𝑝 / 𝑞) → 𝑧 ∈ (ℂfld fldGen {1})))
5958rexlimivv 3174 . . . . . 6 (∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ 𝑧 = (𝑝 / 𝑞) → 𝑧 ∈ (ℂfld fldGen {1}))
6021, 59sylbi 217 . . . . 5 (𝑧 ∈ ℚ → 𝑧 ∈ (ℂfld fldGen {1}))
6160ssriv 3938 . . . 4 ℚ ⊆ (ℂfld fldGen {1})
6261a1i 11 . . 3 (⊤ → ℚ ⊆ (ℂfld fldGen {1}))
6320, 62eqssd 3952 . 2 (⊤ → (ℂfld fldGen {1}) = ℚ)
6463mptru 1548 1 (ℂfld fldGen {1}) = ℚ
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2111  wne 2928  wrex 3056  wss 3902  {csn 4576  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   / cdiv 11774  cn 12125  cz 12468  cq 12846  s cress 17141  .gcmg 18980  SubGrpcsubg 19033  SubRingcsubrg 20485  DivRingcdr 20645  SubDRingcsdrg 20702  fldccnfld 21292   fldGen cfldgen 33274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-fz 13408  df-seq 13909  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-cring 20155  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-subrng 20462  df-subrg 20486  df-drng 20647  df-sdrg 20703  df-cnfld 21293  df-fldgen 33275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator