Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1fldgenq Structured version   Visualization version   GIF version

Theorem 1fldgenq 33324
Description: The field of rational numbers is generated by 1 in fld, that is, is the prime field of fld. (Contributed by Thierry Arnoux, 15-Jan-2025.)
Assertion
Ref Expression
1fldgenq (ℂfld fldGen {1}) = ℚ

Proof of Theorem 1fldgenq
Dummy variables 𝑞 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 21368 . . . . 5 ℂ = (Base‘ℂfld)
2 cndrng 21411 . . . . . 6 fld ∈ DivRing
32a1i 11 . . . . 5 (⊤ → ℂfld ∈ DivRing)
4 qsscn 13002 . . . . . 6 ℚ ⊆ ℂ
54a1i 11 . . . . 5 (⊤ → ℚ ⊆ ℂ)
6 1z 12647 . . . . . . . 8 1 ∈ ℤ
7 snssi 4808 . . . . . . . 8 (1 ∈ ℤ → {1} ⊆ ℤ)
86, 7ax-mp 5 . . . . . . 7 {1} ⊆ ℤ
9 zssq 12998 . . . . . . 7 ℤ ⊆ ℚ
108, 9sstri 3993 . . . . . 6 {1} ⊆ ℚ
1110a1i 11 . . . . 5 (⊤ → {1} ⊆ ℚ)
121, 3, 5, 11fldgenss 33318 . . . 4 (⊤ → (ℂfld fldGen {1}) ⊆ (ℂfld fldGen ℚ))
13 qsubdrg 21437 . . . . . . . 8 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1413simpli 483 . . . . . . 7 ℚ ∈ (SubRing‘ℂfld)
1513simpri 485 . . . . . . 7 (ℂflds ℚ) ∈ DivRing
16 issdrg 20789 . . . . . . 7 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
172, 14, 15, 16mpbir3an 1342 . . . . . 6 ℚ ∈ (SubDRing‘ℂfld)
1817a1i 11 . . . . 5 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
191, 3, 18fldgenidfld 33319 . . . 4 (⊤ → (ℂfld fldGen ℚ) = ℚ)
2012, 19sseqtrd 4020 . . 3 (⊤ → (ℂfld fldGen {1}) ⊆ ℚ)
21 elq 12992 . . . . . 6 (𝑧 ∈ ℚ ↔ ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ 𝑧 = (𝑝 / 𝑞))
22 cnflddiv 21413 . . . . . . . . 9 / = (/r‘ℂfld)
23 cnfld0 21405 . . . . . . . . 9 0 = (0g‘ℂfld)
2411, 4sstrdi 3996 . . . . . . . . . . . 12 (⊤ → {1} ⊆ ℂ)
251, 3, 24fldgensdrg 33316 . . . . . . . . . . 11 (⊤ → (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld))
2625mptru 1547 . . . . . . . . . 10 (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld)
2726a1i 11 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld))
28 ax-1cn 11213 . . . . . . . . . . . . 13 1 ∈ ℂ
29 cnfldmulg 21416 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑝(.g‘ℂfld)1) = (𝑝 · 1))
3028, 29mpan2 691 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) = (𝑝 · 1))
31 zre 12617 . . . . . . . . . . . . 13 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
32 ax-1rid 11225 . . . . . . . . . . . . 13 (𝑝 ∈ ℝ → (𝑝 · 1) = 𝑝)
3331, 32syl 17 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → (𝑝 · 1) = 𝑝)
3430, 33eqtrd 2777 . . . . . . . . . . 11 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) = 𝑝)
35 issdrg 20789 . . . . . . . . . . . . . . 15 ((ℂfld fldGen {1}) ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) ∧ (ℂflds (ℂfld fldGen {1})) ∈ DivRing))
3626, 35mpbi 230 . . . . . . . . . . . . . 14 (ℂfld ∈ DivRing ∧ (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) ∧ (ℂflds (ℂfld fldGen {1})) ∈ DivRing)
3736simp2i 1141 . . . . . . . . . . . . 13 (ℂfld fldGen {1}) ∈ (SubRing‘ℂfld)
38 subrgsubg 20577 . . . . . . . . . . . . 13 ((ℂfld fldGen {1}) ∈ (SubRing‘ℂfld) → (ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld))
3937, 38ax-mp 5 . . . . . . . . . . . 12 (ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld)
401, 3, 24fldgenssid 33315 . . . . . . . . . . . . . 14 (⊤ → {1} ⊆ (ℂfld fldGen {1}))
41 1ex 11257 . . . . . . . . . . . . . . 15 1 ∈ V
4241snss 4785 . . . . . . . . . . . . . 14 (1 ∈ (ℂfld fldGen {1}) ↔ {1} ⊆ (ℂfld fldGen {1}))
4340, 42sylibr 234 . . . . . . . . . . . . 13 (⊤ → 1 ∈ (ℂfld fldGen {1}))
4443mptru 1547 . . . . . . . . . . . 12 1 ∈ (ℂfld fldGen {1})
45 eqid 2737 . . . . . . . . . . . . 13 (.g‘ℂfld) = (.g‘ℂfld)
4645subgmulgcl 19157 . . . . . . . . . . . 12 (((ℂfld fldGen {1}) ∈ (SubGrp‘ℂfld) ∧ 𝑝 ∈ ℤ ∧ 1 ∈ (ℂfld fldGen {1})) → (𝑝(.g‘ℂfld)1) ∈ (ℂfld fldGen {1}))
4739, 44, 46mp3an13 1454 . . . . . . . . . . 11 (𝑝 ∈ ℤ → (𝑝(.g‘ℂfld)1) ∈ (ℂfld fldGen {1}))
4834, 47eqeltrrd 2842 . . . . . . . . . 10 (𝑝 ∈ ℤ → 𝑝 ∈ (ℂfld fldGen {1}))
4948adantr 480 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ (ℂfld fldGen {1}))
5048ssriv 3987 . . . . . . . . . 10 ℤ ⊆ (ℂfld fldGen {1})
51 nnz 12634 . . . . . . . . . . 11 (𝑞 ∈ ℕ → 𝑞 ∈ ℤ)
5251adantl 481 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℤ)
5350, 52sselid 3981 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ (ℂfld fldGen {1}))
54 nnne0 12300 . . . . . . . . . 10 (𝑞 ∈ ℕ → 𝑞 ≠ 0)
5554adantl 481 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → 𝑞 ≠ 0)
5622, 23, 27, 49, 53, 55sdrgdvcl 33301 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ (ℂfld fldGen {1}))
57 eleq1 2829 . . . . . . . 8 (𝑧 = (𝑝 / 𝑞) → (𝑧 ∈ (ℂfld fldGen {1}) ↔ (𝑝 / 𝑞) ∈ (ℂfld fldGen {1})))
5856, 57syl5ibrcom 247 . . . . . . 7 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑧 = (𝑝 / 𝑞) → 𝑧 ∈ (ℂfld fldGen {1})))
5958rexlimivv 3201 . . . . . 6 (∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ 𝑧 = (𝑝 / 𝑞) → 𝑧 ∈ (ℂfld fldGen {1}))
6021, 59sylbi 217 . . . . 5 (𝑧 ∈ ℚ → 𝑧 ∈ (ℂfld fldGen {1}))
6160ssriv 3987 . . . 4 ℚ ⊆ (ℂfld fldGen {1})
6261a1i 11 . . 3 (⊤ → ℚ ⊆ (ℂfld fldGen {1}))
6320, 62eqssd 4001 . 2 (⊤ → (ℂfld fldGen {1}) = ℚ)
6463mptru 1547 1 (ℂfld fldGen {1}) = ℚ
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1540  wtru 1541  wcel 2108  wne 2940  wrex 3070  wss 3951  {csn 4626  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   / cdiv 11920  cn 12266  cz 12613  cq 12990  s cress 17274  .gcmg 19085  SubGrpcsubg 19138  SubRingcsubrg 20569  DivRingcdr 20729  SubDRingcsdrg 20787  fldccnfld 21364   fldGen cfldgen 33312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-fz 13548  df-seq 14043  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-mulg 19086  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-subrng 20546  df-subrg 20570  df-drng 20731  df-sdrg 20788  df-cnfld 21365  df-fldgen 33313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator