Proof of Theorem trlval3
Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simpl31 1253 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
3 | | simpl2 1191 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → 𝐹 ∈ 𝑇) |
4 | | simpr 485 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑃) = 𝑃) |
5 | | trlval3.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
6 | | eqid 2738 |
. . . . 5
⊢
(0.‘𝐾) =
(0.‘𝐾) |
7 | | trlval3.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
8 | | trlval3.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
9 | | trlval3.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
10 | | trlval3.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
11 | 5, 6, 7, 8, 9, 10 | trl0 38184 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑅‘𝐹) = (0.‘𝐾)) |
12 | 1, 2, 3, 4, 11 | syl112anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑅‘𝐹) = (0.‘𝐾)) |
13 | | simpl33 1255 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄))) |
14 | | simpl1l 1223 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → 𝐾 ∈ HL) |
15 | | hlatl 37374 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
16 | 14, 15 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → 𝐾 ∈ AtLat) |
17 | 4 | oveq2d 7291 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ∨ (𝐹‘𝑃)) = (𝑃 ∨ 𝑃)) |
18 | | simp31l 1295 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) → 𝑃 ∈ 𝐴) |
19 | 18 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → 𝑃 ∈ 𝐴) |
20 | | trlval3.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
21 | 20, 7 | hlatjidm 37383 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
22 | 14, 19, 21 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ∨ 𝑃) = 𝑃) |
23 | 17, 22 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ∨ (𝐹‘𝑃)) = 𝑃) |
24 | 23, 19 | eqeltrd 2839 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ∨ (𝐹‘𝑃)) ∈ 𝐴) |
25 | | simp1 1135 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
26 | | simp2 1136 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) → 𝐹 ∈ 𝑇) |
27 | | simp31 1208 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
28 | | simp32 1209 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
29 | 5, 7, 8, 9 | ltrn2ateq 38194 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) = 𝑃 ↔ (𝐹‘𝑄) = 𝑄)) |
30 | 25, 26, 27, 28, 29 | syl13anc 1371 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) → ((𝐹‘𝑃) = 𝑃 ↔ (𝐹‘𝑄) = 𝑄)) |
31 | 30 | biimpa 477 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑄) = 𝑄) |
32 | 31 | oveq2d 7291 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑄 ∨ (𝐹‘𝑄)) = (𝑄 ∨ 𝑄)) |
33 | | simp32l 1297 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) → 𝑄 ∈ 𝐴) |
34 | 33 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → 𝑄 ∈ 𝐴) |
35 | 20, 7 | hlatjidm 37383 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
36 | 14, 34, 35 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑄 ∨ 𝑄) = 𝑄) |
37 | 32, 36 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑄 ∨ (𝐹‘𝑄)) = 𝑄) |
38 | 37, 34 | eqeltrd 2839 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑄 ∨ (𝐹‘𝑄)) ∈ 𝐴) |
39 | | trlval3.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
40 | 39, 6, 7 | atnem0 37332 |
. . . . 5
⊢ ((𝐾 ∈ AtLat ∧ (𝑃 ∨ (𝐹‘𝑃)) ∈ 𝐴 ∧ (𝑄 ∨ (𝐹‘𝑄)) ∈ 𝐴) → ((𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)) ↔ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) = (0.‘𝐾))) |
41 | 16, 24, 38, 40 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → ((𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)) ↔ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) = (0.‘𝐾))) |
42 | 13, 41 | mpbid 231 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) = (0.‘𝐾)) |
43 | 12, 42 | eqtr4d 2781 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄)))) |
44 | | simpl1 1190 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
45 | | simpl2 1191 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝐹 ∈ 𝑇) |
46 | | simpl31 1253 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
47 | 5, 20, 39, 7, 8, 9,
10 | trlval2 38177 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)) |
48 | 44, 45, 46, 47 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)) |
49 | | simpl1l 1223 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝐾 ∈ HL) |
50 | 49 | hllatd 37378 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝐾 ∈ Lat) |
51 | 18 | adantr 481 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝑃 ∈ 𝐴) |
52 | 5, 7, 8, 9 | ltrnat 38154 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
53 | 44, 45, 51, 52 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑃) ∈ 𝐴) |
54 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
55 | 54, 20, 7 | hlatjcl 37381 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝐹‘𝑃) ∈ 𝐴) → (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) |
56 | 49, 51, 53, 55 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) |
57 | | simpl1r 1224 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝑊 ∈ 𝐻) |
58 | 54, 8 | lhpbase 38012 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
59 | 57, 58 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝑊 ∈ (Base‘𝐾)) |
60 | 54, 5, 39 | latmle1 18182 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) ≤ (𝑃 ∨ (𝐹‘𝑃))) |
61 | 50, 56, 59, 60 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) ≤ (𝑃 ∨ (𝐹‘𝑃))) |
62 | 48, 61 | eqbrtrd 5096 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑅‘𝐹) ≤ (𝑃 ∨ (𝐹‘𝑃))) |
63 | | simpl32 1254 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
64 | 5, 20, 39, 7, 8, 9,
10 | trlval2 38177 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊)) |
65 | 44, 45, 63, 64 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑅‘𝐹) = ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊)) |
66 | 33 | adantr 481 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝑄 ∈ 𝐴) |
67 | 5, 7, 8, 9 | ltrnat 38154 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) → (𝐹‘𝑄) ∈ 𝐴) |
68 | 44, 45, 66, 67 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑄) ∈ 𝐴) |
69 | 54, 20, 7 | hlatjcl 37381 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ (𝐹‘𝑄) ∈ 𝐴) → (𝑄 ∨ (𝐹‘𝑄)) ∈ (Base‘𝐾)) |
70 | 49, 66, 68, 69 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑄 ∨ (𝐹‘𝑄)) ∈ (Base‘𝐾)) |
71 | 54, 5, 39 | latmle1 18182 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ (𝐹‘𝑄)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊) ≤ (𝑄 ∨ (𝐹‘𝑄))) |
72 | 50, 70, 59, 71 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊) ≤ (𝑄 ∨ (𝐹‘𝑄))) |
73 | 65, 72 | eqbrtrd 5096 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑅‘𝐹) ≤ (𝑄 ∨ (𝐹‘𝑄))) |
74 | 54, 8, 9, 10 | trlcl 38178 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
75 | 44, 45, 74 | syl2anc 584 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
76 | 54, 5, 39 | latlem12 18184 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾) ∧ (𝑄 ∨ (𝐹‘𝑄)) ∈ (Base‘𝐾))) → (((𝑅‘𝐹) ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑅‘𝐹) ≤ (𝑄 ∨ (𝐹‘𝑄))) ↔ (𝑅‘𝐹) ≤ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))))) |
77 | 50, 75, 56, 70, 76 | syl13anc 1371 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (((𝑅‘𝐹) ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑅‘𝐹) ≤ (𝑄 ∨ (𝐹‘𝑄))) ↔ (𝑅‘𝐹) ≤ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))))) |
78 | 62, 73, 77 | mpbi2and 709 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑅‘𝐹) ≤ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄)))) |
79 | 49, 15 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝐾 ∈ AtLat) |
80 | | simpr 485 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑃) ≠ 𝑃) |
81 | 5, 7, 8, 9, 10 | trlat 38183 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ∈ 𝐴) |
82 | 44, 46, 45, 80, 81 | syl112anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑅‘𝐹) ∈ 𝐴) |
83 | 54, 39 | latmcl 18158 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾) ∧ (𝑄 ∨ (𝐹‘𝑄)) ∈ (Base‘𝐾)) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) ∈ (Base‘𝐾)) |
84 | 50, 56, 70, 83 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) ∈ (Base‘𝐾)) |
85 | 54, 5, 6, 7 | atlen0 37324 |
. . . . . . 7
⊢ (((𝐾 ∈ AtLat ∧ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) ∈ (Base‘𝐾) ∧ (𝑅‘𝐹) ∈ 𝐴) ∧ (𝑅‘𝐹) ≤ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄)))) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) ≠ (0.‘𝐾)) |
86 | 79, 84, 82, 78, 85 | syl31anc 1372 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) ≠ (0.‘𝐾)) |
87 | 86 | neneqd 2948 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → ¬ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) = (0.‘𝐾)) |
88 | | simpl33 1255 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄))) |
89 | 20, 39, 6, 7 | 2atmat0 37540 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝐹‘𝑃) ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ (𝐹‘𝑄) ∈ 𝐴 ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) → (((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) ∈ 𝐴 ∨ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) = (0.‘𝐾))) |
90 | 49, 51, 53, 66, 68, 88, 89 | syl33anc 1384 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) ∈ 𝐴 ∨ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) = (0.‘𝐾))) |
91 | 90 | ord 861 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (¬ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) ∈ 𝐴 → ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) = (0.‘𝐾))) |
92 | 87, 91 | mt3d 148 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) ∈ 𝐴) |
93 | 5, 7 | atcmp 37325 |
. . . 4
⊢ ((𝐾 ∈ AtLat ∧ (𝑅‘𝐹) ∈ 𝐴 ∧ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) ∈ 𝐴) → ((𝑅‘𝐹) ≤ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) ↔ (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))))) |
94 | 79, 82, 92, 93 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → ((𝑅‘𝐹) ≤ ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))) ↔ (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄))))) |
95 | 78, 94 | mpbid 231 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄)))) |
96 | 43, 95 | pm2.61dane 3032 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄)))) |