Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval3 Structured version   Visualization version   GIF version

Theorem trlval3 40144
Description: The value of the trace of a lattice translation in terms of 2 atoms. TODO: Try to shorten proof. (Contributed by NM, 3-May-2013.)
Hypotheses
Ref Expression
trlval3.l = (le‘𝐾)
trlval3.j = (join‘𝐾)
trlval3.m = (meet‘𝐾)
trlval3.a 𝐴 = (Atoms‘𝐾)
trlval3.h 𝐻 = (LHyp‘𝐾)
trlval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlval3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))

Proof of Theorem trlval3
StepHypRef Expression
1 simpl1 1191 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl31 1254 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simpl2 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
4 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
5 trlval3.l . . . . 5 = (le‘𝐾)
6 eqid 2740 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7 trlval3.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 trlval3.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 trlval3.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlval3.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
115, 6, 7, 8, 9, 10trl0 40127 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = (0.‘𝐾))
121, 2, 3, 4, 11syl112anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = (0.‘𝐾))
13 simpl33 1256 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))
14 simpl1l 1224 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ HL)
15 hlatl 39316 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1614, 15syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ AtLat)
174oveq2d 7464 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝐹𝑃)) = (𝑃 𝑃))
18 simp31l 1296 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → 𝑃𝐴)
1918adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝑃𝐴)
20 trlval3.j . . . . . . . . 9 = (join‘𝐾)
2120, 7hlatjidm 39325 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
2214, 19, 21syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 𝑃) = 𝑃)
2317, 22eqtrd 2780 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝐹𝑃)) = 𝑃)
2423, 19eqeltrd 2844 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝐹𝑃)) ∈ 𝐴)
25 simp1 1136 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simp2 1137 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → 𝐹𝑇)
27 simp31 1209 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
28 simp32 1210 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
295, 7, 8, 9ltrn2ateq 40137 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐹𝑃) = 𝑃 ↔ (𝐹𝑄) = 𝑄))
3025, 26, 27, 28, 29syl13anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → ((𝐹𝑃) = 𝑃 ↔ (𝐹𝑄) = 𝑄))
3130biimpa 476 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑄) = 𝑄)
3231oveq2d 7464 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝐹𝑄)) = (𝑄 𝑄))
33 simp32l 1298 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → 𝑄𝐴)
3433adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝑄𝐴)
3520, 7hlatjidm 39325 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
3614, 34, 35syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑄 𝑄) = 𝑄)
3732, 36eqtrd 2780 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝐹𝑄)) = 𝑄)
3837, 34eqeltrd 2844 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝐹𝑄)) ∈ 𝐴)
39 trlval3.m . . . . . 6 = (meet‘𝐾)
4039, 6, 7atnem0 39274 . . . . 5 ((𝐾 ∈ AtLat ∧ (𝑃 (𝐹𝑃)) ∈ 𝐴 ∧ (𝑄 (𝐹𝑄)) ∈ 𝐴) → ((𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)) ↔ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
4116, 24, 38, 40syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → ((𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)) ↔ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
4213, 41mpbid 232 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾))
4312, 42eqtr4d 2783 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
44 simpl1 1191 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
45 simpl2 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐹𝑇)
46 simpl31 1254 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
475, 20, 39, 7, 8, 9, 10trlval2 40120 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
4844, 45, 46, 47syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
49 simpl1l 1224 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐾 ∈ HL)
5049hllatd 39320 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐾 ∈ Lat)
5118adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑃𝐴)
525, 7, 8, 9ltrnat 40097 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
5344, 45, 51, 52syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑃) ∈ 𝐴)
54 eqid 2740 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
5554, 20, 7hlatjcl 39323 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
5649, 51, 53, 55syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
57 simpl1r 1225 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑊𝐻)
5854, 8lhpbase 39955 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
5957, 58syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑊 ∈ (Base‘𝐾))
6054, 5, 39latmle1 18534 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) 𝑊) (𝑃 (𝐹𝑃)))
6150, 56, 59, 60syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑃 (𝐹𝑃)) 𝑊) (𝑃 (𝐹𝑃)))
6248, 61eqbrtrd 5188 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) (𝑃 (𝐹𝑃)))
63 simpl32 1255 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
645, 20, 39, 7, 8, 9, 10trlval2 40120 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝐹) = ((𝑄 (𝐹𝑄)) 𝑊))
6544, 45, 63, 64syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) = ((𝑄 (𝐹𝑄)) 𝑊))
6633adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑄𝐴)
675, 7, 8, 9ltrnat 40097 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
6844, 45, 66, 67syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑄) ∈ 𝐴)
6954, 20, 7hlatjcl 39323 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝐹𝑄) ∈ 𝐴) → (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾))
7049, 66, 68, 69syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾))
7154, 5, 39latmle1 18534 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑄 (𝐹𝑄)) 𝑊) (𝑄 (𝐹𝑄)))
7250, 70, 59, 71syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑄 (𝐹𝑄)) 𝑊) (𝑄 (𝐹𝑄)))
7365, 72eqbrtrd 5188 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) (𝑄 (𝐹𝑄)))
7454, 8, 9, 10trlcl 40121 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
7544, 45, 74syl2anc 583 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) ∈ (Base‘𝐾))
7654, 5, 39latlem12 18536 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾))) → (((𝑅𝐹) (𝑃 (𝐹𝑃)) ∧ (𝑅𝐹) (𝑄 (𝐹𝑄))) ↔ (𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))))
7750, 75, 56, 70, 76syl13anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (((𝑅𝐹) (𝑃 (𝐹𝑃)) ∧ (𝑅𝐹) (𝑄 (𝐹𝑄))) ↔ (𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))))
7862, 73, 77mpbi2and 711 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
7949, 15syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐾 ∈ AtLat)
80 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑃) ≠ 𝑃)
815, 7, 8, 9, 10trlat 40126 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
8244, 46, 45, 80, 81syl112anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) ∈ 𝐴)
8354, 39latmcl 18510 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ (Base‘𝐾))
8450, 56, 70, 83syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ (Base‘𝐾))
8554, 5, 6, 7atlen0 39266 . . . . . . 7 (((𝐾 ∈ AtLat ∧ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ 𝐴) ∧ (𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ≠ (0.‘𝐾))
8679, 84, 82, 78, 85syl31anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ≠ (0.‘𝐾))
8786neneqd 2951 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ¬ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾))
88 simpl33 1256 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))
8920, 39, 6, 72atmat0 39483 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) ∧ (𝑄𝐴 ∧ (𝐹𝑄) ∈ 𝐴 ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴 ∨ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
9049, 51, 53, 66, 68, 88, 89syl33anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴 ∨ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
9190ord 863 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (¬ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴 → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
9287, 91mt3d 148 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴)
935, 7atcmp 39267 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅𝐹) ∈ 𝐴 ∧ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴) → ((𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ↔ (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))))
9479, 82, 92, 93syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ↔ (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))))
9578, 94mpbid 232 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
9643, 95pm2.61dane 3035 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  0.cp0 18493  Latclat 18501  Atomscatm 39219  AtLatcal 39220  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  trLctrl 40115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116
This theorem is referenced by:  trlval4  40145
  Copyright terms: Public domain W3C validator