Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval3 Structured version   Visualization version   GIF version

Theorem trlval3 40307
Description: The value of the trace of a lattice translation in terms of 2 atoms. TODO: Try to shorten proof. (Contributed by NM, 3-May-2013.)
Hypotheses
Ref Expression
trlval3.l = (le‘𝐾)
trlval3.j = (join‘𝐾)
trlval3.m = (meet‘𝐾)
trlval3.a 𝐴 = (Atoms‘𝐾)
trlval3.h 𝐻 = (LHyp‘𝐾)
trlval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlval3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))

Proof of Theorem trlval3
StepHypRef Expression
1 simpl1 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl31 1255 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simpl2 1193 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
4 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
5 trlval3.l . . . . 5 = (le‘𝐾)
6 eqid 2733 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7 trlval3.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 trlval3.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 trlval3.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlval3.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
115, 6, 7, 8, 9, 10trl0 40290 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = (0.‘𝐾))
121, 2, 3, 4, 11syl112anc 1376 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = (0.‘𝐾))
13 simpl33 1257 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))
14 simpl1l 1225 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ HL)
15 hlatl 39480 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1614, 15syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ AtLat)
174oveq2d 7368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝐹𝑃)) = (𝑃 𝑃))
18 simp31l 1297 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → 𝑃𝐴)
1918adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝑃𝐴)
20 trlval3.j . . . . . . . . 9 = (join‘𝐾)
2120, 7hlatjidm 39489 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
2214, 19, 21syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 𝑃) = 𝑃)
2317, 22eqtrd 2768 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝐹𝑃)) = 𝑃)
2423, 19eqeltrd 2833 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝐹𝑃)) ∈ 𝐴)
25 simp1 1136 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simp2 1137 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → 𝐹𝑇)
27 simp31 1210 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
28 simp32 1211 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
295, 7, 8, 9ltrn2ateq 40300 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐹𝑃) = 𝑃 ↔ (𝐹𝑄) = 𝑄))
3025, 26, 27, 28, 29syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → ((𝐹𝑃) = 𝑃 ↔ (𝐹𝑄) = 𝑄))
3130biimpa 476 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑄) = 𝑄)
3231oveq2d 7368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝐹𝑄)) = (𝑄 𝑄))
33 simp32l 1299 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → 𝑄𝐴)
3433adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝑄𝐴)
3520, 7hlatjidm 39489 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
3614, 34, 35syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑄 𝑄) = 𝑄)
3732, 36eqtrd 2768 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝐹𝑄)) = 𝑄)
3837, 34eqeltrd 2833 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝐹𝑄)) ∈ 𝐴)
39 trlval3.m . . . . . 6 = (meet‘𝐾)
4039, 6, 7atnem0 39438 . . . . 5 ((𝐾 ∈ AtLat ∧ (𝑃 (𝐹𝑃)) ∈ 𝐴 ∧ (𝑄 (𝐹𝑄)) ∈ 𝐴) → ((𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)) ↔ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
4116, 24, 38, 40syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → ((𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)) ↔ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
4213, 41mpbid 232 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾))
4312, 42eqtr4d 2771 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
44 simpl1 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
45 simpl2 1193 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐹𝑇)
46 simpl31 1255 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
475, 20, 39, 7, 8, 9, 10trlval2 40283 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
4844, 45, 46, 47syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
49 simpl1l 1225 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐾 ∈ HL)
5049hllatd 39484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐾 ∈ Lat)
5118adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑃𝐴)
525, 7, 8, 9ltrnat 40260 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
5344, 45, 51, 52syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑃) ∈ 𝐴)
54 eqid 2733 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
5554, 20, 7hlatjcl 39487 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
5649, 51, 53, 55syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
57 simpl1r 1226 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑊𝐻)
5854, 8lhpbase 40118 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
5957, 58syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑊 ∈ (Base‘𝐾))
6054, 5, 39latmle1 18372 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) 𝑊) (𝑃 (𝐹𝑃)))
6150, 56, 59, 60syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑃 (𝐹𝑃)) 𝑊) (𝑃 (𝐹𝑃)))
6248, 61eqbrtrd 5115 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) (𝑃 (𝐹𝑃)))
63 simpl32 1256 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
645, 20, 39, 7, 8, 9, 10trlval2 40283 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝐹) = ((𝑄 (𝐹𝑄)) 𝑊))
6544, 45, 63, 64syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) = ((𝑄 (𝐹𝑄)) 𝑊))
6633adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑄𝐴)
675, 7, 8, 9ltrnat 40260 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
6844, 45, 66, 67syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑄) ∈ 𝐴)
6954, 20, 7hlatjcl 39487 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝐹𝑄) ∈ 𝐴) → (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾))
7049, 66, 68, 69syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾))
7154, 5, 39latmle1 18372 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑄 (𝐹𝑄)) 𝑊) (𝑄 (𝐹𝑄)))
7250, 70, 59, 71syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑄 (𝐹𝑄)) 𝑊) (𝑄 (𝐹𝑄)))
7365, 72eqbrtrd 5115 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) (𝑄 (𝐹𝑄)))
7454, 8, 9, 10trlcl 40284 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
7544, 45, 74syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) ∈ (Base‘𝐾))
7654, 5, 39latlem12 18374 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾))) → (((𝑅𝐹) (𝑃 (𝐹𝑃)) ∧ (𝑅𝐹) (𝑄 (𝐹𝑄))) ↔ (𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))))
7750, 75, 56, 70, 76syl13anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (((𝑅𝐹) (𝑃 (𝐹𝑃)) ∧ (𝑅𝐹) (𝑄 (𝐹𝑄))) ↔ (𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))))
7862, 73, 77mpbi2and 712 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
7949, 15syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐾 ∈ AtLat)
80 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑃) ≠ 𝑃)
815, 7, 8, 9, 10trlat 40289 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
8244, 46, 45, 80, 81syl112anc 1376 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) ∈ 𝐴)
8354, 39latmcl 18348 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ (Base‘𝐾))
8450, 56, 70, 83syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ (Base‘𝐾))
8554, 5, 6, 7atlen0 39430 . . . . . . 7 (((𝐾 ∈ AtLat ∧ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ 𝐴) ∧ (𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ≠ (0.‘𝐾))
8679, 84, 82, 78, 85syl31anc 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ≠ (0.‘𝐾))
8786neneqd 2934 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ¬ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾))
88 simpl33 1257 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))
8920, 39, 6, 72atmat0 39646 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) ∧ (𝑄𝐴 ∧ (𝐹𝑄) ∈ 𝐴 ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴 ∨ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
9049, 51, 53, 66, 68, 88, 89syl33anc 1387 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴 ∨ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
9190ord 864 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (¬ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴 → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
9287, 91mt3d 148 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴)
935, 7atcmp 39431 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅𝐹) ∈ 𝐴 ∧ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴) → ((𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ↔ (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))))
9479, 82, 92, 93syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ↔ (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))))
9578, 94mpbid 232 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
9643, 95pm2.61dane 3016 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  joincjn 18219  meetcmee 18220  0.cp0 18329  Latclat 18339  Atomscatm 39383  AtLatcal 39384  HLchlt 39470  LHypclh 40104  LTrncltrn 40221  trLctrl 40278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-p1 18332  df-lat 18340  df-clat 18407  df-oposet 39296  df-ol 39298  df-oml 39299  df-covers 39386  df-ats 39387  df-atl 39418  df-cvlat 39442  df-hlat 39471  df-llines 39618  df-lhyp 40108  df-laut 40109  df-ldil 40224  df-ltrn 40225  df-trl 40279
This theorem is referenced by:  trlval4  40308
  Copyright terms: Public domain W3C validator