Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval3 Structured version   Visualization version   GIF version

Theorem trlval3 40206
Description: The value of the trace of a lattice translation in terms of 2 atoms. TODO: Try to shorten proof. (Contributed by NM, 3-May-2013.)
Hypotheses
Ref Expression
trlval3.l = (le‘𝐾)
trlval3.j = (join‘𝐾)
trlval3.m = (meet‘𝐾)
trlval3.a 𝐴 = (Atoms‘𝐾)
trlval3.h 𝐻 = (LHyp‘𝐾)
trlval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlval3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))

Proof of Theorem trlval3
StepHypRef Expression
1 simpl1 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl31 1255 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simpl2 1193 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
4 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
5 trlval3.l . . . . 5 = (le‘𝐾)
6 eqid 2735 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7 trlval3.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 trlval3.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 trlval3.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlval3.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
115, 6, 7, 8, 9, 10trl0 40189 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = (0.‘𝐾))
121, 2, 3, 4, 11syl112anc 1376 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = (0.‘𝐾))
13 simpl33 1257 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))
14 simpl1l 1225 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ HL)
15 hlatl 39378 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1614, 15syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ AtLat)
174oveq2d 7421 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝐹𝑃)) = (𝑃 𝑃))
18 simp31l 1297 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → 𝑃𝐴)
1918adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝑃𝐴)
20 trlval3.j . . . . . . . . 9 = (join‘𝐾)
2120, 7hlatjidm 39387 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
2214, 19, 21syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 𝑃) = 𝑃)
2317, 22eqtrd 2770 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝐹𝑃)) = 𝑃)
2423, 19eqeltrd 2834 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝐹𝑃)) ∈ 𝐴)
25 simp1 1136 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simp2 1137 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → 𝐹𝑇)
27 simp31 1210 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
28 simp32 1211 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
295, 7, 8, 9ltrn2ateq 40199 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐹𝑃) = 𝑃 ↔ (𝐹𝑄) = 𝑄))
3025, 26, 27, 28, 29syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → ((𝐹𝑃) = 𝑃 ↔ (𝐹𝑄) = 𝑄))
3130biimpa 476 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑄) = 𝑄)
3231oveq2d 7421 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝐹𝑄)) = (𝑄 𝑄))
33 simp32l 1299 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → 𝑄𝐴)
3433adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → 𝑄𝐴)
3520, 7hlatjidm 39387 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
3614, 34, 35syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑄 𝑄) = 𝑄)
3732, 36eqtrd 2770 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝐹𝑄)) = 𝑄)
3837, 34eqeltrd 2834 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑄 (𝐹𝑄)) ∈ 𝐴)
39 trlval3.m . . . . . 6 = (meet‘𝐾)
4039, 6, 7atnem0 39336 . . . . 5 ((𝐾 ∈ AtLat ∧ (𝑃 (𝐹𝑃)) ∈ 𝐴 ∧ (𝑄 (𝐹𝑄)) ∈ 𝐴) → ((𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)) ↔ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
4116, 24, 38, 40syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → ((𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)) ↔ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
4213, 41mpbid 232 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾))
4312, 42eqtr4d 2773 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
44 simpl1 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
45 simpl2 1193 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐹𝑇)
46 simpl31 1255 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
475, 20, 39, 7, 8, 9, 10trlval2 40182 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
4844, 45, 46, 47syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
49 simpl1l 1225 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐾 ∈ HL)
5049hllatd 39382 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐾 ∈ Lat)
5118adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑃𝐴)
525, 7, 8, 9ltrnat 40159 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
5344, 45, 51, 52syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑃) ∈ 𝐴)
54 eqid 2735 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
5554, 20, 7hlatjcl 39385 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
5649, 51, 53, 55syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
57 simpl1r 1226 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑊𝐻)
5854, 8lhpbase 40017 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
5957, 58syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑊 ∈ (Base‘𝐾))
6054, 5, 39latmle1 18474 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) 𝑊) (𝑃 (𝐹𝑃)))
6150, 56, 59, 60syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑃 (𝐹𝑃)) 𝑊) (𝑃 (𝐹𝑃)))
6248, 61eqbrtrd 5141 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) (𝑃 (𝐹𝑃)))
63 simpl32 1256 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
645, 20, 39, 7, 8, 9, 10trlval2 40182 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅𝐹) = ((𝑄 (𝐹𝑄)) 𝑊))
6544, 45, 63, 64syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) = ((𝑄 (𝐹𝑄)) 𝑊))
6633adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑄𝐴)
675, 7, 8, 9ltrnat 40159 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
6844, 45, 66, 67syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑄) ∈ 𝐴)
6954, 20, 7hlatjcl 39385 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝐹𝑄) ∈ 𝐴) → (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾))
7049, 66, 68, 69syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾))
7154, 5, 39latmle1 18474 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑄 (𝐹𝑄)) 𝑊) (𝑄 (𝐹𝑄)))
7250, 70, 59, 71syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑄 (𝐹𝑄)) 𝑊) (𝑄 (𝐹𝑄)))
7365, 72eqbrtrd 5141 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) (𝑄 (𝐹𝑄)))
7454, 8, 9, 10trlcl 40183 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
7544, 45, 74syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) ∈ (Base‘𝐾))
7654, 5, 39latlem12 18476 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾))) → (((𝑅𝐹) (𝑃 (𝐹𝑃)) ∧ (𝑅𝐹) (𝑄 (𝐹𝑄))) ↔ (𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))))
7750, 75, 56, 70, 76syl13anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (((𝑅𝐹) (𝑃 (𝐹𝑃)) ∧ (𝑅𝐹) (𝑄 (𝐹𝑄))) ↔ (𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))))
7862, 73, 77mpbi2and 712 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
7949, 15syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐾 ∈ AtLat)
80 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑃) ≠ 𝑃)
815, 7, 8, 9, 10trlat 40188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
8244, 46, 45, 80, 81syl112anc 1376 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) ∈ 𝐴)
8354, 39latmcl 18450 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ (𝑄 (𝐹𝑄)) ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ (Base‘𝐾))
8450, 56, 70, 83syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ (Base‘𝐾))
8554, 5, 6, 7atlen0 39328 . . . . . . 7 (((𝐾 ∈ AtLat ∧ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ 𝐴) ∧ (𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ≠ (0.‘𝐾))
8679, 84, 82, 78, 85syl31anc 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ≠ (0.‘𝐾))
8786neneqd 2937 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ¬ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾))
88 simpl33 1257 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))
8920, 39, 6, 72atmat0 39545 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) ∧ (𝑄𝐴 ∧ (𝐹𝑄) ∈ 𝐴 ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴 ∨ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
9049, 51, 53, 66, 68, 88, 89syl33anc 1387 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴 ∨ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
9190ord 864 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (¬ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴 → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) = (0.‘𝐾)))
9287, 91mt3d 148 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴)
935, 7atcmp 39329 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑅𝐹) ∈ 𝐴 ∧ ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ∈ 𝐴) → ((𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ↔ (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))))
9479, 82, 92, 93syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → ((𝑅𝐹) ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))) ↔ (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄)))))
9578, 94mpbid 232 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
9643, 95pm2.61dane 3019 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  meetcmee 18324  0.cp0 18433  Latclat 18441  Atomscatm 39281  AtLatcal 39282  HLchlt 39368  LHypclh 40003  LTrncltrn 40120  trLctrl 40177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178
This theorem is referenced by:  trlval4  40207
  Copyright terms: Public domain W3C validator