Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval3 Structured version   Visualization version   GIF version

Theorem trlval3 39046
Description: The value of the trace of a lattice translation in terms of 2 atoms. TODO: Try to shorten proof. (Contributed by NM, 3-May-2013.)
Hypotheses
Ref Expression
trlval3.l ≀ = (leβ€˜πΎ)
trlval3.j ∨ = (joinβ€˜πΎ)
trlval3.m ∧ = (meetβ€˜πΎ)
trlval3.a 𝐴 = (Atomsβ€˜πΎ)
trlval3.h 𝐻 = (LHypβ€˜πΎ)
trlval3.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
trlval3.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
trlval3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) β†’ (π‘…β€˜πΉ) = ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))))

Proof of Theorem trlval3
StepHypRef Expression
1 simpl1 1191 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simpl31 1254 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
3 simpl2 1192 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝐹 ∈ 𝑇)
4 simpr 485 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (πΉβ€˜π‘ƒ) = 𝑃)
5 trlval3.l . . . . 5 ≀ = (leβ€˜πΎ)
6 eqid 2732 . . . . 5 (0.β€˜πΎ) = (0.β€˜πΎ)
7 trlval3.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
8 trlval3.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
9 trlval3.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
10 trlval3.r . . . . 5 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
115, 6, 7, 8, 9, 10trl0 39029 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ (πΉβ€˜π‘ƒ) = 𝑃)) β†’ (π‘…β€˜πΉ) = (0.β€˜πΎ))
121, 2, 3, 4, 11syl112anc 1374 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (π‘…β€˜πΉ) = (0.β€˜πΎ))
13 simpl33 1256 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))
14 simpl1l 1224 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝐾 ∈ HL)
15 hlatl 38218 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
1614, 15syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝐾 ∈ AtLat)
174oveq2d 7421 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑃 ∨ (πΉβ€˜π‘ƒ)) = (𝑃 ∨ 𝑃))
18 simp31l 1296 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) β†’ 𝑃 ∈ 𝐴)
1918adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝑃 ∈ 𝐴)
20 trlval3.j . . . . . . . . 9 ∨ = (joinβ€˜πΎ)
2120, 7hlatjidm 38227 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) β†’ (𝑃 ∨ 𝑃) = 𝑃)
2214, 19, 21syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑃 ∨ 𝑃) = 𝑃)
2317, 22eqtrd 2772 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑃 ∨ (πΉβ€˜π‘ƒ)) = 𝑃)
2423, 19eqeltrd 2833 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ∈ 𝐴)
25 simp1 1136 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
26 simp2 1137 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) β†’ 𝐹 ∈ 𝑇)
27 simp31 1209 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
28 simp32 1210 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
295, 7, 8, 9ltrn2ateq 39039 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) = 𝑃 ↔ (πΉβ€˜π‘„) = 𝑄))
3025, 26, 27, 28, 29syl13anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) β†’ ((πΉβ€˜π‘ƒ) = 𝑃 ↔ (πΉβ€˜π‘„) = 𝑄))
3130biimpa 477 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (πΉβ€˜π‘„) = 𝑄)
3231oveq2d 7421 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑄 ∨ (πΉβ€˜π‘„)) = (𝑄 ∨ 𝑄))
33 simp32l 1298 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) β†’ 𝑄 ∈ 𝐴)
3433adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝑄 ∈ 𝐴)
3520, 7hlatjidm 38227 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) β†’ (𝑄 ∨ 𝑄) = 𝑄)
3614, 34, 35syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑄 ∨ 𝑄) = 𝑄)
3732, 36eqtrd 2772 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑄 ∨ (πΉβ€˜π‘„)) = 𝑄)
3837, 34eqeltrd 2833 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑄 ∨ (πΉβ€˜π‘„)) ∈ 𝐴)
39 trlval3.m . . . . . 6 ∧ = (meetβ€˜πΎ)
4039, 6, 7atnem0 38176 . . . . 5 ((𝐾 ∈ AtLat ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ∈ 𝐴 ∧ (𝑄 ∨ (πΉβ€˜π‘„)) ∈ 𝐴) β†’ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)) ↔ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) = (0.β€˜πΎ)))
4116, 24, 38, 40syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)) ↔ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) = (0.β€˜πΎ)))
4213, 41mpbid 231 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) = (0.β€˜πΎ))
4312, 42eqtr4d 2775 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (π‘…β€˜πΉ) = ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))))
44 simpl1 1191 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
45 simpl2 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝐹 ∈ 𝑇)
46 simpl31 1254 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
475, 20, 39, 7, 8, 9, 10trlval2 39022 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (π‘…β€˜πΉ) = ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ π‘Š))
4844, 45, 46, 47syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (π‘…β€˜πΉ) = ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ π‘Š))
49 simpl1l 1224 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝐾 ∈ HL)
5049hllatd 38222 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝐾 ∈ Lat)
5118adantr 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝑃 ∈ 𝐴)
525, 7, 8, 9ltrnat 38999 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
5344, 45, 51, 52syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
54 eqid 2732 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
5554, 20, 7hlatjcl 38225 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴) β†’ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ∈ (Baseβ€˜πΎ))
5649, 51, 53, 55syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ∈ (Baseβ€˜πΎ))
57 simpl1r 1225 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ π‘Š ∈ 𝐻)
5854, 8lhpbase 38857 . . . . . . 7 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
5957, 58syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ π‘Š ∈ (Baseβ€˜πΎ))
6054, 5, 39latmle1 18413 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ π‘Š) ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)))
6150, 56, 59, 60syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ π‘Š) ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)))
6248, 61eqbrtrd 5169 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (π‘…β€˜πΉ) ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)))
63 simpl32 1255 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
645, 20, 39, 7, 8, 9, 10trlval2 39022 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (π‘…β€˜πΉ) = ((𝑄 ∨ (πΉβ€˜π‘„)) ∧ π‘Š))
6544, 45, 63, 64syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (π‘…β€˜πΉ) = ((𝑄 ∨ (πΉβ€˜π‘„)) ∧ π‘Š))
6633adantr 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝑄 ∈ 𝐴)
675, 7, 8, 9ltrnat 38999 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) β†’ (πΉβ€˜π‘„) ∈ 𝐴)
6844, 45, 66, 67syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (πΉβ€˜π‘„) ∈ 𝐴)
6954, 20, 7hlatjcl 38225 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ (πΉβ€˜π‘„) ∈ 𝐴) β†’ (𝑄 ∨ (πΉβ€˜π‘„)) ∈ (Baseβ€˜πΎ))
7049, 66, 68, 69syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝑄 ∨ (πΉβ€˜π‘„)) ∈ (Baseβ€˜πΎ))
7154, 5, 39latmle1 18413 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∨ (πΉβ€˜π‘„)) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ (πΉβ€˜π‘„)) ∧ π‘Š) ≀ (𝑄 ∨ (πΉβ€˜π‘„)))
7250, 70, 59, 71syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ ((𝑄 ∨ (πΉβ€˜π‘„)) ∧ π‘Š) ≀ (𝑄 ∨ (πΉβ€˜π‘„)))
7365, 72eqbrtrd 5169 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (π‘…β€˜πΉ) ≀ (𝑄 ∨ (πΉβ€˜π‘„)))
7454, 8, 9, 10trlcl 39023 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ))
7544, 45, 74syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ))
7654, 5, 39latlem12 18415 . . . . 5 ((𝐾 ∈ Lat ∧ ((π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ (πΉβ€˜π‘„)) ∈ (Baseβ€˜πΎ))) β†’ (((π‘…β€˜πΉ) ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (π‘…β€˜πΉ) ≀ (𝑄 ∨ (πΉβ€˜π‘„))) ↔ (π‘…β€˜πΉ) ≀ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„)))))
7750, 75, 56, 70, 76syl13anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (((π‘…β€˜πΉ) ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (π‘…β€˜πΉ) ≀ (𝑄 ∨ (πΉβ€˜π‘„))) ↔ (π‘…β€˜πΉ) ≀ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„)))))
7862, 73, 77mpbi2and 710 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (π‘…β€˜πΉ) ≀ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))))
7949, 15syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝐾 ∈ AtLat)
80 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (πΉβ€˜π‘ƒ) β‰  𝑃)
815, 7, 8, 9, 10trlat 39028 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ (πΉβ€˜π‘ƒ) β‰  𝑃)) β†’ (π‘…β€˜πΉ) ∈ 𝐴)
8244, 46, 45, 80, 81syl112anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (π‘…β€˜πΉ) ∈ 𝐴)
8354, 39latmcl 18389 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ (πΉβ€˜π‘„)) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) ∈ (Baseβ€˜πΎ))
8450, 56, 70, 83syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) ∈ (Baseβ€˜πΎ))
8554, 5, 6, 7atlen0 38168 . . . . . . 7 (((𝐾 ∈ AtLat ∧ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) ∈ (Baseβ€˜πΎ) ∧ (π‘…β€˜πΉ) ∈ 𝐴) ∧ (π‘…β€˜πΉ) ≀ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„)))) β†’ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) β‰  (0.β€˜πΎ))
8679, 84, 82, 78, 85syl31anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) β‰  (0.β€˜πΎ))
8786neneqd 2945 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ Β¬ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) = (0.β€˜πΎ))
88 simpl33 1256 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))
8920, 39, 6, 72atmat0 38385 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ (πΉβ€˜π‘„) ∈ 𝐴 ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) β†’ (((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) ∈ 𝐴 ∨ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) = (0.β€˜πΎ)))
9049, 51, 53, 66, 68, 88, 89syl33anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) ∈ 𝐴 ∨ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) = (0.β€˜πΎ)))
9190ord 862 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (Β¬ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) ∈ 𝐴 β†’ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) = (0.β€˜πΎ)))
9287, 91mt3d 148 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) ∈ 𝐴)
935, 7atcmp 38169 . . . 4 ((𝐾 ∈ AtLat ∧ (π‘…β€˜πΉ) ∈ 𝐴 ∧ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) ∈ 𝐴) β†’ ((π‘…β€˜πΉ) ≀ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) ↔ (π‘…β€˜πΉ) = ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„)))))
9479, 82, 92, 93syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ ((π‘…β€˜πΉ) ≀ ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))) ↔ (π‘…β€˜πΉ) = ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„)))))
9578, 94mpbid 231 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (π‘…β€˜πΉ) = ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))))
9643, 95pm2.61dane 3029 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑄 ∨ (πΉβ€˜π‘„)))) β†’ (π‘…β€˜πΉ) = ((𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΉβ€˜π‘„))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  0.cp0 18372  Latclat 18380  Atomscatm 38121  AtLatcal 38122  HLchlt 38208  LHypclh 38843  LTrncltrn 38960  trLctrl 39017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018
This theorem is referenced by:  trlval4  39047
  Copyright terms: Public domain W3C validator