| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp23r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp23r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem6 28861 lshpkrlem5 39107 lplnexllnN 39558 4atexlemutvt 40048 cdlemc5 40189 cdlemd2 40193 cdleme0moN 40219 cdleme3h 40229 cdleme5 40234 cdleme9 40247 cdleme11l 40263 cdleme14 40267 cdleme15c 40270 cdleme16b 40273 cdleme16d 40275 cdleme16e 40276 cdlemednpq 40293 cdleme20bN 40304 cdleme20j 40312 cdleme20l2 40315 cdleme20l 40316 cdleme22cN 40336 cdleme22d 40337 cdleme22e 40338 cdleme22f 40340 cdleme26fALTN 40356 cdleme26f 40357 cdleme26f2ALTN 40358 cdleme26f2 40359 cdleme27a 40361 cdleme32b 40436 cdleme32d 40438 cdleme32f 40440 cdleme39n 40460 cdleme40n 40462 cdlemg2fv2 40594 cdlemg17h 40662 cdlemg27b 40690 cdlemg28b 40697 cdlemg28 40698 cdlemg29 40699 cdlemg33a 40700 cdlemg33d 40703 cdlemk7u-2N 40882 cdlemk11u-2N 40883 cdlemk12u-2N 40884 cdlemk26-3 40900 cdlemk27-3 40901 cdlemkfid3N 40919 cdlemn11c 41203 |
| Copyright terms: Public domain | W3C validator |