| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp23r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp23r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem6 28910 lshpkrlem5 39152 lplnexllnN 39602 4atexlemutvt 40092 cdlemc5 40233 cdlemd2 40237 cdleme0moN 40263 cdleme3h 40273 cdleme5 40278 cdleme9 40291 cdleme11l 40307 cdleme14 40311 cdleme15c 40314 cdleme16b 40317 cdleme16d 40319 cdleme16e 40320 cdlemednpq 40337 cdleme20bN 40348 cdleme20j 40356 cdleme20l2 40359 cdleme20l 40360 cdleme22cN 40380 cdleme22d 40381 cdleme22e 40382 cdleme22f 40384 cdleme26fALTN 40400 cdleme26f 40401 cdleme26f2ALTN 40402 cdleme26f2 40403 cdleme27a 40405 cdleme32b 40480 cdleme32d 40482 cdleme32f 40484 cdleme39n 40504 cdleme40n 40506 cdlemg2fv2 40638 cdlemg17h 40706 cdlemg27b 40734 cdlemg28b 40741 cdlemg28 40742 cdlemg29 40743 cdlemg33a 40744 cdlemg33d 40747 cdlemk7u-2N 40926 cdlemk11u-2N 40927 cdlemk12u-2N 40928 cdlemk26-3 40944 cdlemk27-3 40945 cdlemkfid3N 40963 cdlemn11c 41247 |
| Copyright terms: Public domain | W3C validator |