Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp23r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp23r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1200 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant2 1132 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ax5seglem6 27283 lshpkrlem5 37107 lplnexllnN 37557 4atexlemutvt 38047 cdlemc5 38188 cdlemd2 38192 cdleme0moN 38218 cdleme3h 38228 cdleme5 38233 cdleme9 38246 cdleme11l 38262 cdleme14 38266 cdleme15c 38269 cdleme16b 38272 cdleme16d 38274 cdleme16e 38275 cdlemednpq 38292 cdleme20bN 38303 cdleme20j 38311 cdleme20l2 38314 cdleme20l 38315 cdleme22cN 38335 cdleme22d 38336 cdleme22e 38337 cdleme22f 38339 cdleme26fALTN 38355 cdleme26f 38356 cdleme26f2ALTN 38357 cdleme26f2 38358 cdleme27a 38360 cdleme32b 38435 cdleme32d 38437 cdleme32f 38439 cdleme39n 38459 cdleme40n 38461 cdlemg2fv2 38593 cdlemg17h 38661 cdlemg27b 38689 cdlemg28b 38696 cdlemg28 38697 cdlemg29 38698 cdlemg33a 38699 cdlemg33d 38702 cdlemk7u-2N 38881 cdlemk11u-2N 38882 cdlemk12u-2N 38883 cdlemk26-3 38899 cdlemk27-3 38900 cdlemkfid3N 38918 cdlemn11c 39202 |
Copyright terms: Public domain | W3C validator |