| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp23r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp23r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem6 28913 lshpkrlem5 39132 lplnexllnN 39583 4atexlemutvt 40073 cdlemc5 40214 cdlemd2 40218 cdleme0moN 40244 cdleme3h 40254 cdleme5 40259 cdleme9 40272 cdleme11l 40288 cdleme14 40292 cdleme15c 40295 cdleme16b 40298 cdleme16d 40300 cdleme16e 40301 cdlemednpq 40318 cdleme20bN 40329 cdleme20j 40337 cdleme20l2 40340 cdleme20l 40341 cdleme22cN 40361 cdleme22d 40362 cdleme22e 40363 cdleme22f 40365 cdleme26fALTN 40381 cdleme26f 40382 cdleme26f2ALTN 40383 cdleme26f2 40384 cdleme27a 40386 cdleme32b 40461 cdleme32d 40463 cdleme32f 40465 cdleme39n 40485 cdleme40n 40487 cdlemg2fv2 40619 cdlemg17h 40687 cdlemg27b 40715 cdlemg28b 40722 cdlemg28 40723 cdlemg29 40724 cdlemg33a 40725 cdlemg33d 40728 cdlemk7u-2N 40907 cdlemk11u-2N 40908 cdlemk12u-2N 40909 cdlemk26-3 40925 cdlemk27-3 40926 cdlemkfid3N 40944 cdlemn11c 41228 |
| Copyright terms: Public domain | W3C validator |