![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp23r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp23r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1201 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant2 1133 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: ax5seglem6 28964 lshpkrlem5 39096 lplnexllnN 39547 4atexlemutvt 40037 cdlemc5 40178 cdlemd2 40182 cdleme0moN 40208 cdleme3h 40218 cdleme5 40223 cdleme9 40236 cdleme11l 40252 cdleme14 40256 cdleme15c 40259 cdleme16b 40262 cdleme16d 40264 cdleme16e 40265 cdlemednpq 40282 cdleme20bN 40293 cdleme20j 40301 cdleme20l2 40304 cdleme20l 40305 cdleme22cN 40325 cdleme22d 40326 cdleme22e 40327 cdleme22f 40329 cdleme26fALTN 40345 cdleme26f 40346 cdleme26f2ALTN 40347 cdleme26f2 40348 cdleme27a 40350 cdleme32b 40425 cdleme32d 40427 cdleme32f 40429 cdleme39n 40449 cdleme40n 40451 cdlemg2fv2 40583 cdlemg17h 40651 cdlemg27b 40679 cdlemg28b 40686 cdlemg28 40687 cdlemg29 40688 cdlemg33a 40689 cdlemg33d 40692 cdlemk7u-2N 40871 cdlemk11u-2N 40872 cdlemk12u-2N 40873 cdlemk26-3 40889 cdlemk27-3 40890 cdlemkfid3N 40908 cdlemn11c 41192 |
Copyright terms: Public domain | W3C validator |