![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp23r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp23r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1202 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: ax5seglem6 28967 lshpkrlem5 39070 lplnexllnN 39521 4atexlemutvt 40011 cdlemc5 40152 cdlemd2 40156 cdleme0moN 40182 cdleme3h 40192 cdleme5 40197 cdleme9 40210 cdleme11l 40226 cdleme14 40230 cdleme15c 40233 cdleme16b 40236 cdleme16d 40238 cdleme16e 40239 cdlemednpq 40256 cdleme20bN 40267 cdleme20j 40275 cdleme20l2 40278 cdleme20l 40279 cdleme22cN 40299 cdleme22d 40300 cdleme22e 40301 cdleme22f 40303 cdleme26fALTN 40319 cdleme26f 40320 cdleme26f2ALTN 40321 cdleme26f2 40322 cdleme27a 40324 cdleme32b 40399 cdleme32d 40401 cdleme32f 40403 cdleme39n 40423 cdleme40n 40425 cdlemg2fv2 40557 cdlemg17h 40625 cdlemg27b 40653 cdlemg28b 40660 cdlemg28 40661 cdlemg29 40662 cdlemg33a 40663 cdlemg33d 40666 cdlemk7u-2N 40845 cdlemk11u-2N 40846 cdlemk12u-2N 40847 cdlemk26-3 40863 cdlemk27-3 40864 cdlemkfid3N 40882 cdlemn11c 41166 |
Copyright terms: Public domain | W3C validator |