| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp23r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp23r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem6 28868 lshpkrlem5 39114 lplnexllnN 39565 4atexlemutvt 40055 cdlemc5 40196 cdlemd2 40200 cdleme0moN 40226 cdleme3h 40236 cdleme5 40241 cdleme9 40254 cdleme11l 40270 cdleme14 40274 cdleme15c 40277 cdleme16b 40280 cdleme16d 40282 cdleme16e 40283 cdlemednpq 40300 cdleme20bN 40311 cdleme20j 40319 cdleme20l2 40322 cdleme20l 40323 cdleme22cN 40343 cdleme22d 40344 cdleme22e 40345 cdleme22f 40347 cdleme26fALTN 40363 cdleme26f 40364 cdleme26f2ALTN 40365 cdleme26f2 40366 cdleme27a 40368 cdleme32b 40443 cdleme32d 40445 cdleme32f 40447 cdleme39n 40467 cdleme40n 40469 cdlemg2fv2 40601 cdlemg17h 40669 cdlemg27b 40697 cdlemg28b 40704 cdlemg28 40705 cdlemg29 40706 cdlemg33a 40707 cdlemg33d 40710 cdlemk7u-2N 40889 cdlemk11u-2N 40890 cdlemk12u-2N 40891 cdlemk26-3 40907 cdlemk27-3 40908 cdlemkfid3N 40926 cdlemn11c 41210 |
| Copyright terms: Public domain | W3C validator |