| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp23r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp23r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem6 28914 lshpkrlem5 39233 lplnexllnN 39683 4atexlemutvt 40173 cdlemc5 40314 cdlemd2 40318 cdleme0moN 40344 cdleme3h 40354 cdleme5 40359 cdleme9 40372 cdleme11l 40388 cdleme14 40392 cdleme15c 40395 cdleme16b 40398 cdleme16d 40400 cdleme16e 40401 cdlemednpq 40418 cdleme20bN 40429 cdleme20j 40437 cdleme20l2 40440 cdleme20l 40441 cdleme22cN 40461 cdleme22d 40462 cdleme22e 40463 cdleme22f 40465 cdleme26fALTN 40481 cdleme26f 40482 cdleme26f2ALTN 40483 cdleme26f2 40484 cdleme27a 40486 cdleme32b 40561 cdleme32d 40563 cdleme32f 40565 cdleme39n 40585 cdleme40n 40587 cdlemg2fv2 40719 cdlemg17h 40787 cdlemg27b 40815 cdlemg28b 40822 cdlemg28 40823 cdlemg29 40824 cdlemg33a 40825 cdlemg33d 40828 cdlemk7u-2N 41007 cdlemk11u-2N 41008 cdlemk12u-2N 41009 cdlemk26-3 41025 cdlemk27-3 41026 cdlemkfid3N 41044 cdlemn11c 41328 |
| Copyright terms: Public domain | W3C validator |