Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp23r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp23r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1202 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: ax5seglem6 27351 lshpkrlem5 37328 lplnexllnN 37778 4atexlemutvt 38268 cdlemc5 38409 cdlemd2 38413 cdleme0moN 38439 cdleme3h 38449 cdleme5 38454 cdleme9 38467 cdleme11l 38483 cdleme14 38487 cdleme15c 38490 cdleme16b 38493 cdleme16d 38495 cdleme16e 38496 cdlemednpq 38513 cdleme20bN 38524 cdleme20j 38532 cdleme20l2 38535 cdleme20l 38536 cdleme22cN 38556 cdleme22d 38557 cdleme22e 38558 cdleme22f 38560 cdleme26fALTN 38576 cdleme26f 38577 cdleme26f2ALTN 38578 cdleme26f2 38579 cdleme27a 38581 cdleme32b 38656 cdleme32d 38658 cdleme32f 38660 cdleme39n 38680 cdleme40n 38682 cdlemg2fv2 38814 cdlemg17h 38882 cdlemg27b 38910 cdlemg28b 38917 cdlemg28 38918 cdlemg29 38919 cdlemg33a 38920 cdlemg33d 38923 cdlemk7u-2N 39102 cdlemk11u-2N 39103 cdlemk12u-2N 39104 cdlemk26-3 39120 cdlemk27-3 39121 cdlemkfid3N 39139 cdlemn11c 39423 |
Copyright terms: Public domain | W3C validator |