| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp23r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp23r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ax5seglem6 28897 lshpkrlem5 39092 lplnexllnN 39543 4atexlemutvt 40033 cdlemc5 40174 cdlemd2 40178 cdleme0moN 40204 cdleme3h 40214 cdleme5 40219 cdleme9 40232 cdleme11l 40248 cdleme14 40252 cdleme15c 40255 cdleme16b 40258 cdleme16d 40260 cdleme16e 40261 cdlemednpq 40278 cdleme20bN 40289 cdleme20j 40297 cdleme20l2 40300 cdleme20l 40301 cdleme22cN 40321 cdleme22d 40322 cdleme22e 40323 cdleme22f 40325 cdleme26fALTN 40341 cdleme26f 40342 cdleme26f2ALTN 40343 cdleme26f2 40344 cdleme27a 40346 cdleme32b 40421 cdleme32d 40423 cdleme32f 40425 cdleme39n 40445 cdleme40n 40447 cdlemg2fv2 40579 cdlemg17h 40647 cdlemg27b 40675 cdlemg28b 40682 cdlemg28 40683 cdlemg29 40684 cdlemg33a 40685 cdlemg33d 40688 cdlemk7u-2N 40867 cdlemk11u-2N 40868 cdlemk12u-2N 40869 cdlemk26-3 40885 cdlemk27-3 40886 cdlemkfid3N 40904 cdlemn11c 41188 |
| Copyright terms: Public domain | W3C validator |