Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg42 Structured version   Visualization version   GIF version

Theorem cdlemg42 40712
Description: Part of proof of Lemma G of [Crawley] p. 116, first line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg42.l = (le‘𝐾)
cdlemg42.j = (join‘𝐾)
cdlemg42.a 𝐴 = (Atoms‘𝐾)
cdlemg42.h 𝐻 = (LHyp‘𝐾)
cdlemg42.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg42.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg42 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ¬ (𝐺𝑃) (𝑃 (𝐹𝑃)))

Proof of Theorem cdlemg42
StepHypRef Expression
1 simp33 1212 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
2 simpl1l 1225 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝐾 ∈ HL)
3 simp31l 1297 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
43adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝑃𝐴)
5 simp1 1136 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp2l 1200 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
7 cdlemg42.l . . . . . . . . . . . 12 = (le‘𝐾)
8 cdlemg42.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
9 cdlemg42.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
10 cdlemg42.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
117, 8, 9, 10ltrnat 40123 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
125, 6, 3, 11syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹𝑃) ∈ 𝐴)
1312adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐹𝑃) ∈ 𝐴)
14 cdlemg42.j . . . . . . . . . 10 = (join‘𝐾)
157, 14, 8hlatlej1 39358 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → 𝑃 (𝑃 (𝐹𝑃)))
162, 4, 13, 15syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝑃 (𝑃 (𝐹𝑃)))
17 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐺𝑃) (𝑃 (𝐹𝑃)))
182hllatd 39347 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝐾 ∈ Lat)
19 eqid 2729 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
2019, 8atbase 39272 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
214, 20syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝑃 ∈ (Base‘𝐾))
22 simp2r 1201 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
237, 8, 9, 10ltrnat 40123 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
245, 22, 3, 23syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝑃) ∈ 𝐴)
2524adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐺𝑃) ∈ 𝐴)
2619, 8atbase 39272 . . . . . . . . . 10 ((𝐺𝑃) ∈ 𝐴 → (𝐺𝑃) ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐺𝑃) ∈ (Base‘𝐾))
2819, 14, 8hlatjcl 39350 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
292, 4, 13, 28syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
3019, 7, 14latjle12 18356 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 (𝐹𝑃)) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) ↔ (𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃))))
3118, 21, 27, 29, 30syl13anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → ((𝑃 (𝑃 (𝐹𝑃)) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) ↔ (𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃))))
3216, 17, 31mpbi2and 712 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃)))
33 simpl32 1256 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐺𝑃) ≠ 𝑃)
3433necomd 2980 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝑃 ≠ (𝐺𝑃))
357, 14, 8ps-1 39460 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴𝑃 ≠ (𝐺𝑃)) ∧ (𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴)) → ((𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃)) ↔ (𝑃 (𝐺𝑃)) = (𝑃 (𝐹𝑃))))
362, 4, 25, 34, 4, 13, 35syl132anc 1390 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → ((𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃)) ↔ (𝑃 (𝐺𝑃)) = (𝑃 (𝐹𝑃))))
3732, 36mpbid 232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑃 (𝐺𝑃)) = (𝑃 (𝐹𝑃)))
3837oveq1d 7364 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
39 simpl1 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
40 simpl2r 1228 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝐺𝑇)
41 simpl31 1255 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
42 eqid 2729 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
43 cdlemg42.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
447, 14, 42, 8, 9, 10, 43trlval2 40146 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊))
4539, 40, 41, 44syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑅𝐺) = ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊))
46 simpl2l 1227 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝐹𝑇)
477, 14, 42, 8, 9, 10, 43trlval2 40146 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
4839, 46, 41, 47syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
4938, 45, 483eqtr4rd 2775 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑅𝐹) = (𝑅𝐺))
5049ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝐺𝑃) (𝑃 (𝐹𝑃)) → (𝑅𝐹) = (𝑅𝐺)))
5150necon3ad 2938 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) ≠ (𝑅𝐺) → ¬ (𝐺𝑃) (𝑃 (𝐹𝑃))))
521, 51mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ¬ (𝐺𝑃) (𝑃 (𝐹𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39246  HLchlt 39333  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by:  cdlemg43  40713
  Copyright terms: Public domain W3C validator