Proof of Theorem cdlemg42
Step | Hyp | Ref
| Expression |
1 | | simp33 1208 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐹) ≠ (𝑅‘𝐺)) |
2 | | simpl1l 1221 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → 𝐾 ∈ HL) |
3 | | simp31l 1293 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑃 ∈ 𝐴) |
4 | 3 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → 𝑃 ∈ 𝐴) |
5 | | simp1 1133 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
6 | | simp2l 1196 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐹 ∈ 𝑇) |
7 | | cdlemg42.l |
. . . . . . . . . . . 12
⊢ ≤ =
(le‘𝐾) |
8 | | cdlemg42.a |
. . . . . . . . . . . 12
⊢ 𝐴 = (Atoms‘𝐾) |
9 | | cdlemg42.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (LHyp‘𝐾) |
10 | | cdlemg42.t |
. . . . . . . . . . . 12
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
11 | 7, 8, 9, 10 | ltrnat 37750 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
12 | 5, 6, 3, 11 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐹‘𝑃) ∈ 𝐴) |
13 | 12 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝐹‘𝑃) ∈ 𝐴) |
14 | | cdlemg42.j |
. . . . . . . . . 10
⊢ ∨ =
(join‘𝐾) |
15 | 7, 14, 8 | hlatlej1 36985 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝐹‘𝑃) ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ (𝐹‘𝑃))) |
16 | 2, 4, 13, 15 | syl3anc 1368 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → 𝑃 ≤ (𝑃 ∨ (𝐹‘𝑃))) |
17 | | simpr 488 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) |
18 | 2 | hllatd 36974 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → 𝐾 ∈ Lat) |
19 | | eqid 2758 |
. . . . . . . . . . 11
⊢
(Base‘𝐾) =
(Base‘𝐾) |
20 | 19, 8 | atbase 36899 |
. . . . . . . . . 10
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
21 | 4, 20 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → 𝑃 ∈ (Base‘𝐾)) |
22 | | simp2r 1197 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐺 ∈ 𝑇) |
23 | 7, 8, 9, 10 | ltrnat 37750 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐺‘𝑃) ∈ 𝐴) |
24 | 5, 22, 3, 23 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐺‘𝑃) ∈ 𝐴) |
25 | 24 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝐺‘𝑃) ∈ 𝐴) |
26 | 19, 8 | atbase 36899 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑃) ∈ 𝐴 → (𝐺‘𝑃) ∈ (Base‘𝐾)) |
27 | 25, 26 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝐺‘𝑃) ∈ (Base‘𝐾)) |
28 | 19, 14, 8 | hlatjcl 36977 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝐹‘𝑃) ∈ 𝐴) → (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) |
29 | 2, 4, 13, 28 | syl3anc 1368 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) |
30 | 19, 7, 14 | latjle12 17751 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺‘𝑃) ∈ (Base‘𝐾) ∧ (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) ↔ (𝑃 ∨ (𝐺‘𝑃)) ≤ (𝑃 ∨ (𝐹‘𝑃)))) |
31 | 18, 21, 27, 29, 30 | syl13anc 1369 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → ((𝑃 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) ↔ (𝑃 ∨ (𝐺‘𝑃)) ≤ (𝑃 ∨ (𝐹‘𝑃)))) |
32 | 16, 17, 31 | mpbi2and 711 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝑃 ∨ (𝐺‘𝑃)) ≤ (𝑃 ∨ (𝐹‘𝑃))) |
33 | | simpl32 1252 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝐺‘𝑃) ≠ 𝑃) |
34 | 33 | necomd 3006 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → 𝑃 ≠ (𝐺‘𝑃)) |
35 | 7, 14, 8 | ps-1 37087 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝐺‘𝑃) ∈ 𝐴 ∧ 𝑃 ≠ (𝐺‘𝑃)) ∧ (𝑃 ∈ 𝐴 ∧ (𝐹‘𝑃) ∈ 𝐴)) → ((𝑃 ∨ (𝐺‘𝑃)) ≤ (𝑃 ∨ (𝐹‘𝑃)) ↔ (𝑃 ∨ (𝐺‘𝑃)) = (𝑃 ∨ (𝐹‘𝑃)))) |
36 | 2, 4, 25, 34, 4, 13, 35 | syl132anc 1385 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → ((𝑃 ∨ (𝐺‘𝑃)) ≤ (𝑃 ∨ (𝐹‘𝑃)) ↔ (𝑃 ∨ (𝐺‘𝑃)) = (𝑃 ∨ (𝐹‘𝑃)))) |
37 | 32, 36 | mpbid 235 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝑃 ∨ (𝐺‘𝑃)) = (𝑃 ∨ (𝐹‘𝑃))) |
38 | 37 | oveq1d 7171 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → ((𝑃 ∨ (𝐺‘𝑃))(meet‘𝐾)𝑊) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊)) |
39 | | simpl1 1188 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
40 | | simpl2r 1224 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → 𝐺 ∈ 𝑇) |
41 | | simpl31 1251 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
42 | | eqid 2758 |
. . . . . . 7
⊢
(meet‘𝐾) =
(meet‘𝐾) |
43 | | cdlemg42.r |
. . . . . . 7
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
44 | 7, 14, 42, 8, 9, 10, 43 | trlval2 37773 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐺) = ((𝑃 ∨ (𝐺‘𝑃))(meet‘𝐾)𝑊)) |
45 | 39, 40, 41, 44 | syl3anc 1368 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝑅‘𝐺) = ((𝑃 ∨ (𝐺‘𝑃))(meet‘𝐾)𝑊)) |
46 | | simpl2l 1223 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → 𝐹 ∈ 𝑇) |
47 | 7, 14, 42, 8, 9, 10, 43 | trlval2 37773 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊)) |
48 | 39, 46, 41, 47 | syl3anc 1368 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊)) |
49 | 38, 45, 48 | 3eqtr4rd 2804 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝑅‘𝐹) = (𝑅‘𝐺)) |
50 | 49 | ex 416 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃)) → (𝑅‘𝐹) = (𝑅‘𝐺))) |
51 | 50 | necon3ad 2964 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑅‘𝐹) ≠ (𝑅‘𝐺) → ¬ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃)))) |
52 | 1, 51 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ¬ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) |