Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg42 Structured version   Visualization version   GIF version

Theorem cdlemg42 37417
Description: Part of proof of Lemma G of [Crawley] p. 116, first line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg42.l = (le‘𝐾)
cdlemg42.j = (join‘𝐾)
cdlemg42.a 𝐴 = (Atoms‘𝐾)
cdlemg42.h 𝐻 = (LHyp‘𝐾)
cdlemg42.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg42.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg42 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ¬ (𝐺𝑃) (𝑃 (𝐹𝑃)))

Proof of Theorem cdlemg42
StepHypRef Expression
1 simp33 1204 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
2 simpl1l 1217 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝐾 ∈ HL)
3 simp31l 1289 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
43adantr 481 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝑃𝐴)
5 simp1 1129 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp2l 1192 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
7 cdlemg42.l . . . . . . . . . . . 12 = (le‘𝐾)
8 cdlemg42.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
9 cdlemg42.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
10 cdlemg42.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
117, 8, 9, 10ltrnat 36828 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
125, 6, 3, 11syl3anc 1364 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹𝑃) ∈ 𝐴)
1312adantr 481 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐹𝑃) ∈ 𝐴)
14 cdlemg42.j . . . . . . . . . 10 = (join‘𝐾)
157, 14, 8hlatlej1 36063 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → 𝑃 (𝑃 (𝐹𝑃)))
162, 4, 13, 15syl3anc 1364 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝑃 (𝑃 (𝐹𝑃)))
17 simpr 485 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐺𝑃) (𝑃 (𝐹𝑃)))
182hllatd 36052 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝐾 ∈ Lat)
19 eqid 2797 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
2019, 8atbase 35977 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
214, 20syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝑃 ∈ (Base‘𝐾))
22 simp2r 1193 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
237, 8, 9, 10ltrnat 36828 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
245, 22, 3, 23syl3anc 1364 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝑃) ∈ 𝐴)
2524adantr 481 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐺𝑃) ∈ 𝐴)
2619, 8atbase 35977 . . . . . . . . . 10 ((𝐺𝑃) ∈ 𝐴 → (𝐺𝑃) ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐺𝑃) ∈ (Base‘𝐾))
2819, 14, 8hlatjcl 36055 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
292, 4, 13, 28syl3anc 1364 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
3019, 7, 14latjle12 17505 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 (𝐹𝑃)) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) ↔ (𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃))))
3118, 21, 27, 29, 30syl13anc 1365 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → ((𝑃 (𝑃 (𝐹𝑃)) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) ↔ (𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃))))
3216, 17, 31mpbi2and 708 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃)))
33 simpl32 1248 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐺𝑃) ≠ 𝑃)
3433necomd 3041 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝑃 ≠ (𝐺𝑃))
357, 14, 8ps-1 36165 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴𝑃 ≠ (𝐺𝑃)) ∧ (𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴)) → ((𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃)) ↔ (𝑃 (𝐺𝑃)) = (𝑃 (𝐹𝑃))))
362, 4, 25, 34, 4, 13, 35syl132anc 1381 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → ((𝑃 (𝐺𝑃)) (𝑃 (𝐹𝑃)) ↔ (𝑃 (𝐺𝑃)) = (𝑃 (𝐹𝑃))))
3732, 36mpbid 233 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑃 (𝐺𝑃)) = (𝑃 (𝐹𝑃)))
3837oveq1d 7038 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
39 simpl1 1184 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
40 simpl2r 1220 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝐺𝑇)
41 simpl31 1247 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
42 eqid 2797 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
43 cdlemg42.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
447, 14, 42, 8, 9, 10, 43trlval2 36851 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊))
4539, 40, 41, 44syl3anc 1364 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑅𝐺) = ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊))
46 simpl2l 1219 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → 𝐹𝑇)
477, 14, 42, 8, 9, 10, 43trlval2 36851 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
4839, 46, 41, 47syl3anc 1364 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
4938, 45, 483eqtr4rd 2844 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (𝐺𝑃) (𝑃 (𝐹𝑃))) → (𝑅𝐹) = (𝑅𝐺))
5049ex 413 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝐺𝑃) (𝑃 (𝐹𝑃)) → (𝑅𝐹) = (𝑅𝐺)))
5150necon3ad 2999 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) ≠ (𝑅𝐺) → ¬ (𝐺𝑃) (𝑃 (𝐹𝑃))))
521, 51mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ¬ (𝐺𝑃) (𝑃 (𝐹𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  wne 2986   class class class wbr 4968  cfv 6232  (class class class)co 7023  Basecbs 16316  lecple 16405  joincjn 17387  meetcmee 17388  Latclat 17488  Atomscatm 35951  HLchlt 36038  LHypclh 36672  LTrncltrn 36789  trLctrl 36846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-map 8265  df-proset 17371  df-poset 17389  df-plt 17401  df-lub 17417  df-glb 17418  df-join 17419  df-meet 17420  df-p0 17482  df-lat 17489  df-oposet 35864  df-ol 35866  df-oml 35867  df-covers 35954  df-ats 35955  df-atl 35986  df-cvlat 36010  df-hlat 36039  df-lhyp 36676  df-laut 36677  df-ldil 36792  df-ltrn 36793  df-trl 36847
This theorem is referenced by:  cdlemg43  37418
  Copyright terms: Public domain W3C validator