Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32b Structured version   Visualization version   GIF version

Theorem cdleme32b 39971
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 19-Feb-2013.)
Hypotheses
Ref Expression
cdleme32.b 𝐡 = (Baseβ€˜πΎ)
cdleme32.l ≀ = (leβ€˜πΎ)
cdleme32.j ∨ = (joinβ€˜πΎ)
cdleme32.m ∧ = (meetβ€˜πΎ)
cdleme32.a 𝐴 = (Atomsβ€˜πΎ)
cdleme32.h 𝐻 = (LHypβ€˜πΎ)
cdleme32.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme32.c 𝐢 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
cdleme32.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdleme32.e 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdleme32.i 𝐼 = (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸))
cdleme32.n 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢)
cdleme32.o 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (𝑁 ∨ (π‘₯ ∧ π‘Š))))
cdleme32.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), 𝑂, π‘₯))
Assertion
Ref Expression
cdleme32b ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (πΉβ€˜π‘Œ) = (𝑁 ∨ (π‘Œ ∧ π‘Š)))
Distinct variable groups:   𝑑,𝑠,π‘₯,𝑦,𝑧,𝐴   𝐡,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑦,𝐢   𝐷,𝑠,𝑦,𝑧   𝑦,𝐸   𝐻,𝑠,𝑑   ∨ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐾,𝑠,𝑑   ≀ ,𝑠,𝑑,π‘₯,𝑦,𝑧   ∧ ,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘₯,𝑁,𝑧   𝑃,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑄,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘ˆ,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘Š,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑋,𝑠,𝑑,π‘₯,𝑧   𝑦,𝐻   𝑦,𝐾   𝑦,π‘Œ   𝑧,𝐻   𝑧,𝐾   π‘Œ,𝑠,𝑑,π‘₯,𝑧
Allowed substitution hints:   𝐢(π‘₯,𝑧,𝑑,𝑠)   𝐷(π‘₯,𝑑)   𝐸(π‘₯,𝑧,𝑑,𝑠)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝐻(π‘₯)   𝐼(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝐾(π‘₯)   𝑁(𝑦,𝑑,𝑠)   𝑂(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝑋(𝑦)

Proof of Theorem cdleme32b
StepHypRef Expression
1 simp1 1133 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
2 simp22 1204 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ π‘Œ ∈ 𝐡)
3 simp23l 1291 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑃 β‰  𝑄)
4 simp23r 1292 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ Β¬ 𝑋 ≀ π‘Š)
5 simp33 1208 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑋 ≀ π‘Œ)
6 simp11l 1281 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝐾 ∈ HL)
76hllatd 38892 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝐾 ∈ Lat)
8 simp21 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑋 ∈ 𝐡)
9 simp11r 1282 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ π‘Š ∈ 𝐻)
10 cdleme32.b . . . . . . . 8 𝐡 = (Baseβ€˜πΎ)
11 cdleme32.h . . . . . . . 8 𝐻 = (LHypβ€˜πΎ)
1210, 11lhpbase 39527 . . . . . . 7 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
139, 12syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ π‘Š ∈ 𝐡)
14 cdleme32.l . . . . . . 7 ≀ = (leβ€˜πΎ)
1510, 14lattr 18435 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ π‘Š) β†’ 𝑋 ≀ π‘Š))
167, 8, 2, 13, 15syl13anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ π‘Š) β†’ 𝑋 ≀ π‘Š))
175, 16mpand 693 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (π‘Œ ≀ π‘Š β†’ 𝑋 ≀ π‘Š))
184, 17mtod 197 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ Β¬ π‘Œ ≀ π‘Š)
193, 18jca 510 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑃 β‰  𝑄 ∧ Β¬ π‘Œ ≀ π‘Š))
20 simp31 1206 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š))
21 simp11 1200 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
22 simp31l 1293 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑠 ∈ 𝐴)
238, 4jca 510 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š))
24 simp32 1207 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋)
25 cdleme32.j . . . 4 ∨ = (joinβ€˜πΎ)
26 cdleme32.m . . . 4 ∧ = (meetβ€˜πΎ)
27 cdleme32.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
2810, 14, 25, 26, 27, 11cdleme30a 39907 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∨ (π‘Œ ∧ π‘Š)) = π‘Œ)
2921, 22, 23, 2, 24, 5, 28syl132anc 1385 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∨ (π‘Œ ∧ π‘Š)) = π‘Œ)
30 cdleme32.u . . 3 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
31 cdleme32.c . . 3 𝐢 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
32 cdleme32.d . . 3 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
33 cdleme32.e . . 3 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
34 cdleme32.i . . 3 𝐼 = (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸))
35 cdleme32.n . . 3 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢)
36 cdleme32.o . . 3 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (𝑁 ∨ (π‘₯ ∧ π‘Š))))
37 cdleme32.f . . 3 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), 𝑂, π‘₯))
3810, 14, 25, 26, 27, 11, 30, 31, 32, 33, 34, 35, 36, 37cdleme32a 39970 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ π‘Œ ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (π‘Œ ∧ π‘Š)) = π‘Œ)) β†’ (πΉβ€˜π‘Œ) = (𝑁 ∨ (π‘Œ ∧ π‘Š)))
391, 2, 19, 20, 29, 38syl122anc 1376 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (πΉβ€˜π‘Œ) = (𝑁 ∨ (π‘Œ ∧ π‘Š)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  ifcif 4524   class class class wbr 5143   ↦ cmpt 5226  β€˜cfv 6543  β„©crio 7371  (class class class)co 7416  Basecbs 17179  lecple 17239  joincjn 18302  meetcmee 18303  Latclat 18422  Atomscatm 38791  HLchlt 38878  LHypclh 39513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-riotaBAD 38481
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-undef 8277  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-p1 18417  df-lat 18423  df-clat 18490  df-oposet 38704  df-ol 38706  df-oml 38707  df-covers 38794  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879  df-llines 39027  df-lplanes 39028  df-lvols 39029  df-lines 39030  df-psubsp 39032  df-pmap 39033  df-padd 39325  df-lhyp 39517
This theorem is referenced by:  cdleme32c  39972
  Copyright terms: Public domain W3C validator