Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgaddlemb Structured version   Visualization version   GIF version

Theorem sitgaddlemb 34330
Description: Lemma for * sitgadd . (Contributed by Thierry Arnoux, 10-Mar-2019.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sitgadd.1 (𝜑𝑊 ∈ TopSp)
sitgadd.2 (𝜑 → (𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod)
sitgadd.3 (𝜑𝐽 ∈ Fre)
sitgadd.4 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitgadd.5 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sitgadd.6 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
sitgadd.7 + = (+g𝑊)
Assertion
Ref Expression
sitgaddlemb ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ((𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) · (2nd𝑝)) ∈ 𝐵)

Proof of Theorem sitgaddlemb
StepHypRef Expression
1 sitgadd.2 . . 3 (𝜑 → (𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod)
21adantr 480 . 2 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod)
3 simpl 482 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝜑)
4 sitgadd.6 . . . . . . . 8 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
5 eqid 2735 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
65rrhfe 33975 . . . . . . . 8 ((Scalar‘𝑊) ∈ ℝExt → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
74, 6syl 17 . . . . . . 7 (𝜑 → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
8 sitgval.h . . . . . . . 8 𝐻 = (ℝHom‘(Scalar‘𝑊))
98feq1i 6728 . . . . . . 7 (𝐻:ℝ⟶(Base‘(Scalar‘𝑊)) ↔ (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
107, 9sylibr 234 . . . . . 6 (𝜑𝐻:ℝ⟶(Base‘(Scalar‘𝑊)))
1110ffnd 6738 . . . . 5 (𝜑𝐻 Fn ℝ)
123, 11syl 17 . . . 4 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝐻 Fn ℝ)
13 rge0ssre 13493 . . . . 5 (0[,)+∞) ⊆ ℝ
1413a1i 11 . . . 4 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (0[,)+∞) ⊆ ℝ)
15 simpr 484 . . . . . . 7 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩}))
1615eldifad 3975 . . . . . 6 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝑝 ∈ (ran 𝐹 × ran 𝐺))
17 xp1st 8045 . . . . . 6 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st𝑝) ∈ ran 𝐹)
1816, 17syl 17 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (1st𝑝) ∈ ran 𝐹)
19 xp2nd 8046 . . . . . 6 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd𝑝) ∈ ran 𝐺)
2016, 19syl 17 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (2nd𝑝) ∈ ran 𝐺)
2115eldifbd 3976 . . . . . . . 8 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ¬ 𝑝 ∈ {⟨ 0 , 0 ⟩})
22 velsn 4647 . . . . . . . . 9 (𝑝 ∈ {⟨ 0 , 0 ⟩} ↔ 𝑝 = ⟨ 0 , 0 ⟩)
2322notbii 320 . . . . . . . 8 𝑝 ∈ {⟨ 0 , 0 ⟩} ↔ ¬ 𝑝 = ⟨ 0 , 0 ⟩)
2421, 23sylib 218 . . . . . . 7 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ¬ 𝑝 = ⟨ 0 , 0 ⟩)
25 eqopi 8049 . . . . . . . . . 10 ((𝑝 ∈ (ran 𝐹 × ran 𝐺) ∧ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 )) → 𝑝 = ⟨ 0 , 0 ⟩)
2625ex 412 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ) → 𝑝 = ⟨ 0 , 0 ⟩))
2726con3d 152 . . . . . . . 8 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (¬ 𝑝 = ⟨ 0 , 0 ⟩ → ¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 )))
2827imp 406 . . . . . . 7 ((𝑝 ∈ (ran 𝐹 × ran 𝐺) ∧ ¬ 𝑝 = ⟨ 0 , 0 ⟩) → ¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ))
2916, 24, 28syl2anc 584 . . . . . 6 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ))
30 ianor 983 . . . . . . 7 (¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ) ↔ (¬ (1st𝑝) = 0 ∨ ¬ (2nd𝑝) = 0 ))
31 df-ne 2939 . . . . . . . 8 ((1st𝑝) ≠ 0 ↔ ¬ (1st𝑝) = 0 )
32 df-ne 2939 . . . . . . . 8 ((2nd𝑝) ≠ 0 ↔ ¬ (2nd𝑝) = 0 )
3331, 32orbi12i 914 . . . . . . 7 (((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ) ↔ (¬ (1st𝑝) = 0 ∨ ¬ (2nd𝑝) = 0 ))
3430, 33bitr4i 278 . . . . . 6 (¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ) ↔ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
3529, 34sylib 218 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
36 sitgval.b . . . . . 6 𝐵 = (Base‘𝑊)
37 sitgval.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
38 sitgval.s . . . . . 6 𝑆 = (sigaGen‘𝐽)
39 sitgval.0 . . . . . 6 0 = (0g𝑊)
40 sitgval.x . . . . . 6 · = ( ·𝑠𝑊)
41 sitgval.1 . . . . . 6 (𝜑𝑊𝑉)
42 sitgval.2 . . . . . 6 (𝜑𝑀 ran measures)
43 sitgadd.4 . . . . . 6 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
44 sitgadd.5 . . . . . 6 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
45 sitgadd.1 . . . . . 6 (𝜑𝑊 ∈ TopSp)
46 sitgadd.3 . . . . . 6 (𝜑𝐽 ∈ Fre)
4736, 37, 38, 39, 40, 8, 41, 42, 43, 44, 45, 46sibfinima 34321 . . . . 5 (((𝜑 ∧ (1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) ∧ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
483, 18, 20, 35, 47syl31anc 1372 . . . 4 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
49 fnfvima 7253 . . . 4 ((𝐻 Fn ℝ ∧ (0[,)+∞) ⊆ ℝ ∧ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞)) → (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (𝐻 “ (0[,)+∞)))
5012, 14, 48, 49syl3anc 1370 . . 3 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (𝐻 “ (0[,)+∞)))
51 imassrn 6091 . . . . . 6 (𝐻 “ (0[,)+∞)) ⊆ ran 𝐻
5210frnd 6745 . . . . . 6 (𝜑 → ran 𝐻 ⊆ (Base‘(Scalar‘𝑊)))
5351, 52sstrid 4007 . . . . 5 (𝜑 → (𝐻 “ (0[,)+∞)) ⊆ (Base‘(Scalar‘𝑊)))
54 eqid 2735 . . . . . 6 ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))) = ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))
5554, 5ressbas2 17283 . . . . 5 ((𝐻 “ (0[,)+∞)) ⊆ (Base‘(Scalar‘𝑊)) → (𝐻 “ (0[,)+∞)) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
5653, 55syl 17 . . . 4 (𝜑 → (𝐻 “ (0[,)+∞)) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
573, 56syl 17 . . 3 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝐻 “ (0[,)+∞)) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
5850, 57eleqtrd 2841 . 2 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
5936, 37, 38, 39, 40, 8, 41, 42, 44sibff 34318 . . . . . 6 (𝜑𝐺: dom 𝑀 𝐽)
6036, 37tpsuni 22958 . . . . . . 7 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
61 feq3 6719 . . . . . . 7 (𝐵 = 𝐽 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6245, 60, 613syl 18 . . . . . 6 (𝜑 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6359, 62mpbird 257 . . . . 5 (𝜑𝐺: dom 𝑀𝐵)
6463frnd 6745 . . . 4 (𝜑 → ran 𝐺𝐵)
6564adantr 480 . . 3 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ran 𝐺𝐵)
6665, 20sseldd 3996 . 2 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (2nd𝑝) ∈ 𝐵)
678fvexi 6921 . . . 4 𝐻 ∈ V
68 imaexg 7936 . . . 4 (𝐻 ∈ V → (𝐻 “ (0[,)+∞)) ∈ V)
69 eqid 2735 . . . . 5 (𝑊v (𝐻 “ (0[,)+∞))) = (𝑊v (𝐻 “ (0[,)+∞)))
7069, 36resvbas 33339 . . . 4 ((𝐻 “ (0[,)+∞)) ∈ V → 𝐵 = (Base‘(𝑊v (𝐻 “ (0[,)+∞)))))
7167, 68, 70mp2b 10 . . 3 𝐵 = (Base‘(𝑊v (𝐻 “ (0[,)+∞))))
72 eqid 2735 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
7369, 72, 5resvsca 33336 . . . 4 ((𝐻 “ (0[,)+∞)) ∈ V → ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))) = (Scalar‘(𝑊v (𝐻 “ (0[,)+∞)))))
7467, 68, 73mp2b 10 . . 3 ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))) = (Scalar‘(𝑊v (𝐻 “ (0[,)+∞))))
7569, 40resvvsca 33343 . . . 4 ((𝐻 “ (0[,)+∞)) ∈ V → · = ( ·𝑠 ‘(𝑊v (𝐻 “ (0[,)+∞)))))
7667, 68, 75mp2b 10 . . 3 · = ( ·𝑠 ‘(𝑊v (𝐻 “ (0[,)+∞))))
77 eqid 2735 . . 3 (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))))
7871, 74, 76, 77slmdvscl 33203 . 2 (((𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod ∧ (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))) ∧ (2nd𝑝) ∈ 𝐵) → ((𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) · (2nd𝑝)) ∈ 𝐵)
792, 58, 66, 78syl3anc 1370 1 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ((𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) · (2nd𝑝)) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  cdif 3960  cin 3962  wss 3963  {csn 4631  cop 4637   cuni 4912   × cxp 5687  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  cr 11152  0cc0 11153  +∞cpnf 11290  [,)cico 13386  Basecbs 17245  s cress 17274  +gcplusg 17298  Scalarcsca 17301   ·𝑠 cvsca 17302  TopOpenctopn 17468  0gc0g 17486  TopSpctps 22954  Frect1 23331  SLModcslmd 33189  v cresv 33330  ℝHomcrrh 33956   ℝExt crrext 33957  sigaGencsigagen 34119  measurescmeas 34176  sitgcsitg 34311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-dvds 16288  df-gcd 16529  df-numer 16769  df-denom 16770  df-gz 16964  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-ordt 17548  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-ps 18624  df-tsr 18625  df-plusf 18665  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-od 19561  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-nzr 20530  df-subrng 20563  df-subrg 20587  df-drng 20748  df-abv 20827  df-lmod 20877  df-scaf 20878  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-metu 21381  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zlm 21533  df-chr 21534  df-refld 21641  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-t1 23338  df-haus 23339  df-reg 23340  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-fcls 23965  df-cnext 24084  df-tmd 24096  df-tgp 24097  df-tsms 24151  df-trg 24184  df-ust 24225  df-utop 24256  df-uss 24281  df-usp 24282  df-ucn 24301  df-cfilu 24312  df-cusp 24323  df-xms 24346  df-ms 24347  df-tms 24348  df-nm 24611  df-ngp 24612  df-nrg 24614  df-nlm 24615  df-ii 24917  df-cncf 24918  df-cfil 25303  df-cmet 25305  df-cms 25383  df-limc 25916  df-dv 25917  df-log 26613  df-slmd 33190  df-resv 33331  df-qqh 33934  df-rrh 33958  df-rrext 33962  df-esum 34009  df-siga 34090  df-sigagen 34120  df-meas 34177  df-mbfm 34231  df-sitg 34312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator