Step | Hyp | Ref
| Expression |
1 | | sitgadd.2 |
. . 3
β’ (π β (π βΎv (π» β (0[,)+β))) β
SLMod) |
2 | 1 | adantr 481 |
. 2
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β (π βΎv (π» β (0[,)+β))) β
SLMod) |
3 | | simpl 483 |
. . . . 5
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β π) |
4 | | sitgadd.6 |
. . . . . . . 8
β’ (π β (Scalarβπ) β βExt
) |
5 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
6 | 5 | rrhfe 32980 |
. . . . . . . 8
β’
((Scalarβπ)
β βExt β (βHomβ(Scalarβπ)):ββΆ(Baseβ(Scalarβπ))) |
7 | 4, 6 | syl 17 |
. . . . . . 7
β’ (π β
(βHomβ(Scalarβπ)):ββΆ(Baseβ(Scalarβπ))) |
8 | | sitgval.h |
. . . . . . . 8
β’ π» =
(βHomβ(Scalarβπ)) |
9 | 8 | feq1i 6705 |
. . . . . . 7
β’ (π»:ββΆ(Baseβ(Scalarβπ)) β
(βHomβ(Scalarβπ)):ββΆ(Baseβ(Scalarβπ))) |
10 | 7, 9 | sylibr 233 |
. . . . . 6
β’ (π β π»:ββΆ(Baseβ(Scalarβπ))) |
11 | 10 | ffnd 6715 |
. . . . 5
β’ (π β π» Fn β) |
12 | 3, 11 | syl 17 |
. . . 4
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β π» Fn β) |
13 | | rge0ssre 13429 |
. . . . 5
β’
(0[,)+β) β β |
14 | 13 | a1i 11 |
. . . 4
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β
(0[,)+β) β β) |
15 | | simpr 485 |
. . . . . . 7
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) |
16 | 15 | eldifad 3959 |
. . . . . 6
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β π β (ran πΉ Γ ran πΊ)) |
17 | | xp1st 8003 |
. . . . . 6
β’ (π β (ran πΉ Γ ran πΊ) β (1st βπ) β ran πΉ) |
18 | 16, 17 | syl 17 |
. . . . 5
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β
(1st βπ)
β ran πΉ) |
19 | | xp2nd 8004 |
. . . . . 6
β’ (π β (ran πΉ Γ ran πΊ) β (2nd βπ) β ran πΊ) |
20 | 16, 19 | syl 17 |
. . . . 5
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β
(2nd βπ)
β ran πΊ) |
21 | 15 | eldifbd 3960 |
. . . . . . . 8
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β Β¬
π β {β¨ 0 , 0
β©}) |
22 | | velsn 4643 |
. . . . . . . . 9
β’ (π β {β¨ 0 , 0 β©}
β π = β¨ 0 , 0
β©) |
23 | 22 | notbii 319 |
. . . . . . . 8
β’ (Β¬
π β {β¨ 0 , 0 β©}
β Β¬ π = β¨
0 , 0
β©) |
24 | 21, 23 | sylib 217 |
. . . . . . 7
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β Β¬
π = β¨ 0 , 0
β©) |
25 | | eqopi 8007 |
. . . . . . . . . 10
β’ ((π β (ran πΉ Γ ran πΊ) β§ ((1st βπ) = 0 β§ (2nd
βπ) = 0 )) β
π = β¨ 0 , 0
β©) |
26 | 25 | ex 413 |
. . . . . . . . 9
β’ (π β (ran πΉ Γ ran πΊ) β (((1st βπ) = 0 β§ (2nd
βπ) = 0 ) β
π = β¨ 0 , 0
β©)) |
27 | 26 | con3d 152 |
. . . . . . . 8
β’ (π β (ran πΉ Γ ran πΊ) β (Β¬ π = β¨ 0 , 0 β© β Β¬
((1st βπ)
= 0 β§
(2nd βπ) =
0
))) |
28 | 27 | imp 407 |
. . . . . . 7
β’ ((π β (ran πΉ Γ ran πΊ) β§ Β¬ π = β¨ 0 , 0 β©) β Β¬
((1st βπ)
= 0 β§
(2nd βπ) =
0
)) |
29 | 16, 24, 28 | syl2anc 584 |
. . . . . 6
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β Β¬
((1st βπ)
= 0 β§
(2nd βπ) =
0
)) |
30 | | ianor 980 |
. . . . . . 7
β’ (Β¬
((1st βπ)
= 0 β§
(2nd βπ) =
0 )
β (Β¬ (1st βπ) = 0 β¨ Β¬ (2nd
βπ) = 0
)) |
31 | | df-ne 2941 |
. . . . . . . 8
β’
((1st βπ) β 0 β Β¬
(1st βπ) =
0
) |
32 | | df-ne 2941 |
. . . . . . . 8
β’
((2nd βπ) β 0 β Β¬
(2nd βπ) =
0
) |
33 | 31, 32 | orbi12i 913 |
. . . . . . 7
β’
(((1st βπ) β 0 β¨ (2nd
βπ) β 0 ) β
(Β¬ (1st βπ) = 0 β¨ Β¬ (2nd
βπ) = 0
)) |
34 | 30, 33 | bitr4i 277 |
. . . . . 6
β’ (Β¬
((1st βπ)
= 0 β§
(2nd βπ) =
0 )
β ((1st βπ) β 0 β¨ (2nd
βπ) β 0
)) |
35 | 29, 34 | sylib 217 |
. . . . 5
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β
((1st βπ)
β 0
β¨ (2nd βπ) β 0 )) |
36 | | sitgval.b |
. . . . . 6
β’ π΅ = (Baseβπ) |
37 | | sitgval.j |
. . . . . 6
β’ π½ = (TopOpenβπ) |
38 | | sitgval.s |
. . . . . 6
β’ π = (sigaGenβπ½) |
39 | | sitgval.0 |
. . . . . 6
β’ 0 =
(0gβπ) |
40 | | sitgval.x |
. . . . . 6
β’ Β· = (
Β·π βπ) |
41 | | sitgval.1 |
. . . . . 6
β’ (π β π β π) |
42 | | sitgval.2 |
. . . . . 6
β’ (π β π β βͺ ran
measures) |
43 | | sitgadd.4 |
. . . . . 6
β’ (π β πΉ β dom (πsitgπ)) |
44 | | sitgadd.5 |
. . . . . 6
β’ (π β πΊ β dom (πsitgπ)) |
45 | | sitgadd.1 |
. . . . . 6
β’ (π β π β TopSp) |
46 | | sitgadd.3 |
. . . . . 6
β’ (π β π½ β Fre) |
47 | 36, 37, 38, 39, 40, 8, 41, 42, 43, 44, 45, 46 | sibfinima 33326 |
. . . . 5
β’ (((π β§ (1st
βπ) β ran πΉ β§ (2nd
βπ) β ran πΊ) β§ ((1st
βπ) β 0 β¨
(2nd βπ)
β 0 ))
β (πβ((β‘πΉ β {(1st βπ)}) β© (β‘πΊ β {(2nd βπ)}))) β
(0[,)+β)) |
48 | 3, 18, 20, 35, 47 | syl31anc 1373 |
. . . 4
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β (πβ((β‘πΉ β {(1st βπ)}) β© (β‘πΊ β {(2nd βπ)}))) β
(0[,)+β)) |
49 | | fnfvima 7231 |
. . . 4
β’ ((π» Fn β β§ (0[,)+β)
β β β§ (πβ((β‘πΉ β {(1st βπ)}) β© (β‘πΊ β {(2nd βπ)}))) β (0[,)+β))
β (π»β(πβ((β‘πΉ β {(1st βπ)}) β© (β‘πΊ β {(2nd βπ)})))) β (π» β (0[,)+β))) |
50 | 12, 14, 48, 49 | syl3anc 1371 |
. . 3
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β (π»β(πβ((β‘πΉ β {(1st βπ)}) β© (β‘πΊ β {(2nd βπ)})))) β (π» β (0[,)+β))) |
51 | | imassrn 6068 |
. . . . . 6
β’ (π» β (0[,)+β)) β
ran π» |
52 | 10 | frnd 6722 |
. . . . . 6
β’ (π β ran π» β (Baseβ(Scalarβπ))) |
53 | 51, 52 | sstrid 3992 |
. . . . 5
β’ (π β (π» β (0[,)+β)) β
(Baseβ(Scalarβπ))) |
54 | | eqid 2732 |
. . . . . 6
β’
((Scalarβπ)
βΎs (π»
β (0[,)+β))) = ((Scalarβπ) βΎs (π» β (0[,)+β))) |
55 | 54, 5 | ressbas2 17178 |
. . . . 5
β’ ((π» β (0[,)+β)) β
(Baseβ(Scalarβπ)) β (π» β (0[,)+β)) =
(Baseβ((Scalarβπ) βΎs (π» β (0[,)+β))))) |
56 | 53, 55 | syl 17 |
. . . 4
β’ (π β (π» β (0[,)+β)) =
(Baseβ((Scalarβπ) βΎs (π» β (0[,)+β))))) |
57 | 3, 56 | syl 17 |
. . 3
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β (π» β (0[,)+β)) =
(Baseβ((Scalarβπ) βΎs (π» β (0[,)+β))))) |
58 | 50, 57 | eleqtrd 2835 |
. 2
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β (π»β(πβ((β‘πΉ β {(1st βπ)}) β© (β‘πΊ β {(2nd βπ)})))) β
(Baseβ((Scalarβπ) βΎs (π» β (0[,)+β))))) |
59 | 36, 37, 38, 39, 40, 8, 41, 42, 44 | sibff 33323 |
. . . . . 6
β’ (π β πΊ:βͺ dom πβΆβͺ π½) |
60 | 36, 37 | tpsuni 22429 |
. . . . . . 7
β’ (π β TopSp β π΅ = βͺ
π½) |
61 | | feq3 6697 |
. . . . . . 7
β’ (π΅ = βͺ
π½ β (πΊ:βͺ dom πβΆπ΅ β πΊ:βͺ dom πβΆβͺ π½)) |
62 | 45, 60, 61 | 3syl 18 |
. . . . . 6
β’ (π β (πΊ:βͺ dom πβΆπ΅ β πΊ:βͺ dom πβΆβͺ π½)) |
63 | 59, 62 | mpbird 256 |
. . . . 5
β’ (π β πΊ:βͺ dom πβΆπ΅) |
64 | 63 | frnd 6722 |
. . . 4
β’ (π β ran πΊ β π΅) |
65 | 64 | adantr 481 |
. . 3
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β ran πΊ β π΅) |
66 | 65, 20 | sseldd 3982 |
. 2
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β
(2nd βπ)
β π΅) |
67 | 8 | fvexi 6902 |
. . . 4
β’ π» β V |
68 | | imaexg 7902 |
. . . 4
β’ (π» β V β (π» β (0[,)+β)) β
V) |
69 | | eqid 2732 |
. . . . 5
β’ (π βΎv (π» β (0[,)+β))) =
(π βΎv
(π» β
(0[,)+β))) |
70 | 69, 36 | resvbas 32435 |
. . . 4
β’ ((π» β (0[,)+β)) β
V β π΅ =
(Baseβ(π
βΎv (π»
β (0[,)+β))))) |
71 | 67, 68, 70 | mp2b 10 |
. . 3
β’ π΅ = (Baseβ(π βΎv (π» β
(0[,)+β)))) |
72 | | eqid 2732 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
73 | 69, 72, 5 | resvsca 32432 |
. . . 4
β’ ((π» β (0[,)+β)) β
V β ((Scalarβπ)
βΎs (π»
β (0[,)+β))) = (Scalarβ(π βΎv (π» β (0[,)+β))))) |
74 | 67, 68, 73 | mp2b 10 |
. . 3
β’
((Scalarβπ)
βΎs (π»
β (0[,)+β))) = (Scalarβ(π βΎv (π» β (0[,)+β)))) |
75 | 69, 40 | resvvsca 32439 |
. . . 4
β’ ((π» β (0[,)+β)) β
V β Β· = (
Β·π β(π βΎv (π» β (0[,)+β))))) |
76 | 67, 68, 75 | mp2b 10 |
. . 3
β’ Β· = (
Β·π β(π βΎv (π» β (0[,)+β)))) |
77 | | eqid 2732 |
. . 3
β’
(Baseβ((Scalarβπ) βΎs (π» β (0[,)+β)))) =
(Baseβ((Scalarβπ) βΎs (π» β (0[,)+β)))) |
78 | 71, 74, 76, 77 | slmdvscl 32346 |
. 2
β’ (((π βΎv (π» β (0[,)+β))) β
SLMod β§ (π»β(πβ((β‘πΉ β {(1st βπ)}) β© (β‘πΊ β {(2nd βπ)})))) β
(Baseβ((Scalarβπ) βΎs (π» β (0[,)+β)))) β§
(2nd βπ)
β π΅) β ((π»β(πβ((β‘πΉ β {(1st βπ)}) β© (β‘πΊ β {(2nd βπ)})))) Β· (2nd
βπ)) β π΅) |
79 | 2, 58, 66, 78 | syl3anc 1371 |
1
β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β ((π»β(πβ((β‘πΉ β {(1st βπ)}) β© (β‘πΊ β {(2nd βπ)})))) Β· (2nd
βπ)) β π΅) |