Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgaddlemb Structured version   Visualization version   GIF version

Theorem sitgaddlemb 30956
Description: Lemma for * sitgadd . (Contributed by Thierry Arnoux, 10-Mar-2019.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sitgadd.1 (𝜑𝑊 ∈ TopSp)
sitgadd.2 (𝜑 → (𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod)
sitgadd.3 (𝜑𝐽 ∈ Fre)
sitgadd.4 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitgadd.5 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sitgadd.6 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
sitgadd.7 + = (+g𝑊)
Assertion
Ref Expression
sitgaddlemb ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ((𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) · (2nd𝑝)) ∈ 𝐵)

Proof of Theorem sitgaddlemb
StepHypRef Expression
1 sitgadd.2 . . 3 (𝜑 → (𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod)
21adantr 474 . 2 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod)
3 simpl 476 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝜑)
4 sitgadd.6 . . . . . . . 8 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
5 eqid 2826 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
65rrhfe 30602 . . . . . . . 8 ((Scalar‘𝑊) ∈ ℝExt → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
74, 6syl 17 . . . . . . 7 (𝜑 → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
8 sitgval.h . . . . . . . 8 𝐻 = (ℝHom‘(Scalar‘𝑊))
98feq1i 6270 . . . . . . 7 (𝐻:ℝ⟶(Base‘(Scalar‘𝑊)) ↔ (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
107, 9sylibr 226 . . . . . 6 (𝜑𝐻:ℝ⟶(Base‘(Scalar‘𝑊)))
1110ffnd 6280 . . . . 5 (𝜑𝐻 Fn ℝ)
123, 11syl 17 . . . 4 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝐻 Fn ℝ)
13 rge0ssre 12571 . . . . 5 (0[,)+∞) ⊆ ℝ
1413a1i 11 . . . 4 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (0[,)+∞) ⊆ ℝ)
15 simpr 479 . . . . . . 7 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩}))
1615eldifad 3811 . . . . . 6 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝑝 ∈ (ran 𝐹 × ran 𝐺))
17 xp1st 7461 . . . . . 6 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st𝑝) ∈ ran 𝐹)
1816, 17syl 17 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (1st𝑝) ∈ ran 𝐹)
19 xp2nd 7462 . . . . . 6 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd𝑝) ∈ ran 𝐺)
2016, 19syl 17 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (2nd𝑝) ∈ ran 𝐺)
2115eldifbd 3812 . . . . . . . 8 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ¬ 𝑝 ∈ {⟨ 0 , 0 ⟩})
22 velsn 4414 . . . . . . . . 9 (𝑝 ∈ {⟨ 0 , 0 ⟩} ↔ 𝑝 = ⟨ 0 , 0 ⟩)
2322notbii 312 . . . . . . . 8 𝑝 ∈ {⟨ 0 , 0 ⟩} ↔ ¬ 𝑝 = ⟨ 0 , 0 ⟩)
2421, 23sylib 210 . . . . . . 7 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ¬ 𝑝 = ⟨ 0 , 0 ⟩)
25 eqopi 7465 . . . . . . . . . 10 ((𝑝 ∈ (ran 𝐹 × ran 𝐺) ∧ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 )) → 𝑝 = ⟨ 0 , 0 ⟩)
2625ex 403 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ) → 𝑝 = ⟨ 0 , 0 ⟩))
2726con3d 150 . . . . . . . 8 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (¬ 𝑝 = ⟨ 0 , 0 ⟩ → ¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 )))
2827imp 397 . . . . . . 7 ((𝑝 ∈ (ran 𝐹 × ran 𝐺) ∧ ¬ 𝑝 = ⟨ 0 , 0 ⟩) → ¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ))
2916, 24, 28syl2anc 581 . . . . . 6 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ))
30 ianor 1011 . . . . . . 7 (¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ) ↔ (¬ (1st𝑝) = 0 ∨ ¬ (2nd𝑝) = 0 ))
31 df-ne 3001 . . . . . . . 8 ((1st𝑝) ≠ 0 ↔ ¬ (1st𝑝) = 0 )
32 df-ne 3001 . . . . . . . 8 ((2nd𝑝) ≠ 0 ↔ ¬ (2nd𝑝) = 0 )
3331, 32orbi12i 945 . . . . . . 7 (((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ) ↔ (¬ (1st𝑝) = 0 ∨ ¬ (2nd𝑝) = 0 ))
3430, 33bitr4i 270 . . . . . 6 (¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ) ↔ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
3529, 34sylib 210 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
36 sitgval.b . . . . . 6 𝐵 = (Base‘𝑊)
37 sitgval.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
38 sitgval.s . . . . . 6 𝑆 = (sigaGen‘𝐽)
39 sitgval.0 . . . . . 6 0 = (0g𝑊)
40 sitgval.x . . . . . 6 · = ( ·𝑠𝑊)
41 sitgval.1 . . . . . 6 (𝜑𝑊𝑉)
42 sitgval.2 . . . . . 6 (𝜑𝑀 ran measures)
43 sitgadd.4 . . . . . 6 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
44 sitgadd.5 . . . . . 6 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
45 sitgadd.1 . . . . . 6 (𝜑𝑊 ∈ TopSp)
46 sitgadd.3 . . . . . 6 (𝜑𝐽 ∈ Fre)
4736, 37, 38, 39, 40, 8, 41, 42, 43, 44, 45, 46sibfinima 30947 . . . . 5 (((𝜑 ∧ (1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) ∧ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
483, 18, 20, 35, 47syl31anc 1498 . . . 4 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
49 fnfvima 6753 . . . 4 ((𝐻 Fn ℝ ∧ (0[,)+∞) ⊆ ℝ ∧ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞)) → (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (𝐻 “ (0[,)+∞)))
5012, 14, 48, 49syl3anc 1496 . . 3 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (𝐻 “ (0[,)+∞)))
51 imassrn 5719 . . . . . 6 (𝐻 “ (0[,)+∞)) ⊆ ran 𝐻
5210frnd 6286 . . . . . 6 (𝜑 → ran 𝐻 ⊆ (Base‘(Scalar‘𝑊)))
5351, 52syl5ss 3839 . . . . 5 (𝜑 → (𝐻 “ (0[,)+∞)) ⊆ (Base‘(Scalar‘𝑊)))
54 eqid 2826 . . . . . 6 ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))) = ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))
5554, 5ressbas2 16295 . . . . 5 ((𝐻 “ (0[,)+∞)) ⊆ (Base‘(Scalar‘𝑊)) → (𝐻 “ (0[,)+∞)) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
5653, 55syl 17 . . . 4 (𝜑 → (𝐻 “ (0[,)+∞)) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
573, 56syl 17 . . 3 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝐻 “ (0[,)+∞)) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
5850, 57eleqtrd 2909 . 2 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
5936, 37, 38, 39, 40, 8, 41, 42, 44sibff 30944 . . . . . 6 (𝜑𝐺: dom 𝑀 𝐽)
6036, 37tpsuni 21112 . . . . . . 7 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
61 feq3 6262 . . . . . . 7 (𝐵 = 𝐽 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6245, 60, 613syl 18 . . . . . 6 (𝜑 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6359, 62mpbird 249 . . . . 5 (𝜑𝐺: dom 𝑀𝐵)
6463frnd 6286 . . . 4 (𝜑 → ran 𝐺𝐵)
6564adantr 474 . . 3 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ran 𝐺𝐵)
6665, 20sseldd 3829 . 2 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (2nd𝑝) ∈ 𝐵)
678fvexi 6448 . . . 4 𝐻 ∈ V
68 imaexg 7366 . . . 4 (𝐻 ∈ V → (𝐻 “ (0[,)+∞)) ∈ V)
69 eqid 2826 . . . . 5 (𝑊v (𝐻 “ (0[,)+∞))) = (𝑊v (𝐻 “ (0[,)+∞)))
7069, 36resvbas 30378 . . . 4 ((𝐻 “ (0[,)+∞)) ∈ V → 𝐵 = (Base‘(𝑊v (𝐻 “ (0[,)+∞)))))
7167, 68, 70mp2b 10 . . 3 𝐵 = (Base‘(𝑊v (𝐻 “ (0[,)+∞))))
72 eqid 2826 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
7369, 72, 5resvsca 30376 . . . 4 ((𝐻 “ (0[,)+∞)) ∈ V → ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))) = (Scalar‘(𝑊v (𝐻 “ (0[,)+∞)))))
7467, 68, 73mp2b 10 . . 3 ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))) = (Scalar‘(𝑊v (𝐻 “ (0[,)+∞))))
7569, 40resvvsca 30380 . . . 4 ((𝐻 “ (0[,)+∞)) ∈ V → · = ( ·𝑠 ‘(𝑊v (𝐻 “ (0[,)+∞)))))
7667, 68, 75mp2b 10 . . 3 · = ( ·𝑠 ‘(𝑊v (𝐻 “ (0[,)+∞))))
77 eqid 2826 . . 3 (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))))
7871, 74, 76, 77slmdvscl 30313 . 2 (((𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod ∧ (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))) ∧ (2nd𝑝) ∈ 𝐵) → ((𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) · (2nd𝑝)) ∈ 𝐵)
792, 58, 66, 78syl3anc 1496 1 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ((𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) · (2nd𝑝)) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 880   = wceq 1658  wcel 2166  wne 3000  Vcvv 3415  cdif 3796  cin 3798  wss 3799  {csn 4398  cop 4404   cuni 4659   × cxp 5341  ccnv 5342  dom cdm 5343  ran crn 5344  cima 5346   Fn wfn 6119  wf 6120  cfv 6124  (class class class)co 6906  1st c1st 7427  2nd c2nd 7428  cr 10252  0cc0 10253  +∞cpnf 10389  [,)cico 12466  Basecbs 16223  s cress 16224  +gcplusg 16306  Scalarcsca 16309   ·𝑠 cvsca 16310  TopOpenctopn 16436  0gc0g 16454  TopSpctps 21108  Frect1 21483  SLModcslmd 30299  v cresv 30370  ℝHomcrrh 30583   ℝExt crrext 30584  sigaGencsigagen 30747  measurescmeas 30804  sitgcsitg 30937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-ac2 9601  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331  ax-addf 10332  ax-mulf 10333
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-disj 4843  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-of 7158  df-om 7328  df-1st 7429  df-2nd 7430  df-supp 7561  df-tpos 7618  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-2o 7828  df-oadd 7831  df-er 8010  df-map 8125  df-pm 8126  df-ixp 8177  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-fsupp 8546  df-fi 8587  df-sup 8618  df-inf 8619  df-oi 8685  df-card 9079  df-acn 9082  df-ac 9253  df-cda 9306  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-n0 11620  df-z 11706  df-dec 11823  df-uz 11970  df-q 12073  df-rp 12114  df-xneg 12233  df-xadd 12234  df-xmul 12235  df-ioo 12468  df-ioc 12469  df-ico 12470  df-icc 12471  df-fz 12621  df-fzo 12762  df-fl 12889  df-mod 12965  df-seq 13097  df-exp 13156  df-fac 13355  df-bc 13384  df-hash 13412  df-shft 14185  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-limsup 14580  df-clim 14597  df-rlim 14598  df-sum 14795  df-ef 15171  df-sin 15173  df-cos 15174  df-pi 15176  df-dvds 15359  df-gcd 15591  df-numer 15815  df-denom 15816  df-gz 16006  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-starv 16321  df-sca 16322  df-vsca 16323  df-ip 16324  df-tset 16325  df-ple 16326  df-ds 16328  df-unif 16329  df-hom 16330  df-cco 16331  df-rest 16437  df-topn 16438  df-0g 16456  df-gsum 16457  df-topgen 16458  df-pt 16459  df-prds 16462  df-ordt 16515  df-xrs 16516  df-qtop 16521  df-imas 16522  df-xps 16524  df-mre 16600  df-mrc 16601  df-acs 16603  df-ps 17554  df-tsr 17555  df-plusf 17595  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-mhm 17689  df-submnd 17690  df-grp 17780  df-minusg 17781  df-sbg 17782  df-mulg 17896  df-subg 17943  df-ghm 18010  df-cntz 18101  df-od 18300  df-cmn 18549  df-abl 18550  df-mgp 18845  df-ur 18857  df-ring 18904  df-cring 18905  df-oppr 18978  df-dvdsr 18996  df-unit 18997  df-invr 19027  df-dvr 19038  df-rnghom 19072  df-drng 19106  df-subrg 19135  df-abv 19174  df-lmod 19222  df-scaf 19223  df-sra 19534  df-rgmod 19535  df-nzr 19620  df-psmet 20099  df-xmet 20100  df-met 20101  df-bl 20102  df-mopn 20103  df-fbas 20104  df-fg 20105  df-metu 20106  df-cnfld 20108  df-zring 20180  df-zrh 20213  df-zlm 20214  df-chr 20215  df-refld 20313  df-top 21070  df-topon 21087  df-topsp 21109  df-bases 21122  df-cld 21195  df-ntr 21196  df-cls 21197  df-nei 21274  df-lp 21312  df-perf 21313  df-cn 21403  df-cnp 21404  df-t1 21490  df-haus 21491  df-reg 21492  df-cmp 21562  df-tx 21737  df-hmeo 21930  df-fil 22021  df-fm 22113  df-flim 22114  df-flf 22115  df-fcls 22116  df-cnext 22235  df-tmd 22247  df-tgp 22248  df-tsms 22301  df-trg 22334  df-ust 22375  df-utop 22406  df-uss 22431  df-usp 22432  df-ucn 22451  df-cfilu 22462  df-cusp 22473  df-xms 22496  df-ms 22497  df-tms 22498  df-nm 22758  df-ngp 22759  df-nrg 22761  df-nlm 22762  df-ii 23051  df-cncf 23052  df-cfil 23424  df-cmet 23426  df-cms 23504  df-limc 24030  df-dv 24031  df-log 24703  df-slmd 30300  df-resv 30371  df-qqh 30563  df-rrh 30585  df-rrext 30589  df-esum 30636  df-siga 30717  df-sigagen 30748  df-meas 30805  df-mbfm 30859  df-sitg 30938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator