Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgaddlemb Structured version   Visualization version   GIF version

Theorem sitgaddlemb 34335
Description: Lemma for * sitgadd . (Contributed by Thierry Arnoux, 10-Mar-2019.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sitgadd.1 (𝜑𝑊 ∈ TopSp)
sitgadd.2 (𝜑 → (𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod)
sitgadd.3 (𝜑𝐽 ∈ Fre)
sitgadd.4 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitgadd.5 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sitgadd.6 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
sitgadd.7 + = (+g𝑊)
Assertion
Ref Expression
sitgaddlemb ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ((𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) · (2nd𝑝)) ∈ 𝐵)

Proof of Theorem sitgaddlemb
StepHypRef Expression
1 sitgadd.2 . . 3 (𝜑 → (𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod)
21adantr 480 . 2 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod)
3 simpl 482 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝜑)
4 sitgadd.6 . . . . . . . 8 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
5 eqid 2729 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
65rrhfe 33998 . . . . . . . 8 ((Scalar‘𝑊) ∈ ℝExt → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
74, 6syl 17 . . . . . . 7 (𝜑 → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
8 sitgval.h . . . . . . . 8 𝐻 = (ℝHom‘(Scalar‘𝑊))
98feq1i 6647 . . . . . . 7 (𝐻:ℝ⟶(Base‘(Scalar‘𝑊)) ↔ (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
107, 9sylibr 234 . . . . . 6 (𝜑𝐻:ℝ⟶(Base‘(Scalar‘𝑊)))
1110ffnd 6657 . . . . 5 (𝜑𝐻 Fn ℝ)
123, 11syl 17 . . . 4 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝐻 Fn ℝ)
13 rge0ssre 13378 . . . . 5 (0[,)+∞) ⊆ ℝ
1413a1i 11 . . . 4 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (0[,)+∞) ⊆ ℝ)
15 simpr 484 . . . . . . 7 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩}))
1615eldifad 3917 . . . . . 6 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → 𝑝 ∈ (ran 𝐹 × ran 𝐺))
17 xp1st 7963 . . . . . 6 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st𝑝) ∈ ran 𝐹)
1816, 17syl 17 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (1st𝑝) ∈ ran 𝐹)
19 xp2nd 7964 . . . . . 6 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd𝑝) ∈ ran 𝐺)
2016, 19syl 17 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (2nd𝑝) ∈ ran 𝐺)
2115eldifbd 3918 . . . . . . . 8 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ¬ 𝑝 ∈ {⟨ 0 , 0 ⟩})
22 velsn 4595 . . . . . . . . 9 (𝑝 ∈ {⟨ 0 , 0 ⟩} ↔ 𝑝 = ⟨ 0 , 0 ⟩)
2322notbii 320 . . . . . . . 8 𝑝 ∈ {⟨ 0 , 0 ⟩} ↔ ¬ 𝑝 = ⟨ 0 , 0 ⟩)
2421, 23sylib 218 . . . . . . 7 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ¬ 𝑝 = ⟨ 0 , 0 ⟩)
25 eqopi 7967 . . . . . . . . . 10 ((𝑝 ∈ (ran 𝐹 × ran 𝐺) ∧ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 )) → 𝑝 = ⟨ 0 , 0 ⟩)
2625ex 412 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ) → 𝑝 = ⟨ 0 , 0 ⟩))
2726con3d 152 . . . . . . . 8 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (¬ 𝑝 = ⟨ 0 , 0 ⟩ → ¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 )))
2827imp 406 . . . . . . 7 ((𝑝 ∈ (ran 𝐹 × ran 𝐺) ∧ ¬ 𝑝 = ⟨ 0 , 0 ⟩) → ¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ))
2916, 24, 28syl2anc 584 . . . . . 6 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ))
30 ianor 983 . . . . . . 7 (¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ) ↔ (¬ (1st𝑝) = 0 ∨ ¬ (2nd𝑝) = 0 ))
31 df-ne 2926 . . . . . . . 8 ((1st𝑝) ≠ 0 ↔ ¬ (1st𝑝) = 0 )
32 df-ne 2926 . . . . . . . 8 ((2nd𝑝) ≠ 0 ↔ ¬ (2nd𝑝) = 0 )
3331, 32orbi12i 914 . . . . . . 7 (((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ) ↔ (¬ (1st𝑝) = 0 ∨ ¬ (2nd𝑝) = 0 ))
3430, 33bitr4i 278 . . . . . 6 (¬ ((1st𝑝) = 0 ∧ (2nd𝑝) = 0 ) ↔ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
3529, 34sylib 218 . . . . 5 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
36 sitgval.b . . . . . 6 𝐵 = (Base‘𝑊)
37 sitgval.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
38 sitgval.s . . . . . 6 𝑆 = (sigaGen‘𝐽)
39 sitgval.0 . . . . . 6 0 = (0g𝑊)
40 sitgval.x . . . . . 6 · = ( ·𝑠𝑊)
41 sitgval.1 . . . . . 6 (𝜑𝑊𝑉)
42 sitgval.2 . . . . . 6 (𝜑𝑀 ran measures)
43 sitgadd.4 . . . . . 6 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
44 sitgadd.5 . . . . . 6 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
45 sitgadd.1 . . . . . 6 (𝜑𝑊 ∈ TopSp)
46 sitgadd.3 . . . . . 6 (𝜑𝐽 ∈ Fre)
4736, 37, 38, 39, 40, 8, 41, 42, 43, 44, 45, 46sibfinima 34326 . . . . 5 (((𝜑 ∧ (1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) ∧ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
483, 18, 20, 35, 47syl31anc 1375 . . . 4 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
49 fnfvima 7173 . . . 4 ((𝐻 Fn ℝ ∧ (0[,)+∞) ⊆ ℝ ∧ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞)) → (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (𝐻 “ (0[,)+∞)))
5012, 14, 48, 49syl3anc 1373 . . 3 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (𝐻 “ (0[,)+∞)))
51 imassrn 6026 . . . . . 6 (𝐻 “ (0[,)+∞)) ⊆ ran 𝐻
5210frnd 6664 . . . . . 6 (𝜑 → ran 𝐻 ⊆ (Base‘(Scalar‘𝑊)))
5351, 52sstrid 3949 . . . . 5 (𝜑 → (𝐻 “ (0[,)+∞)) ⊆ (Base‘(Scalar‘𝑊)))
54 eqid 2729 . . . . . 6 ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))) = ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))
5554, 5ressbas2 17168 . . . . 5 ((𝐻 “ (0[,)+∞)) ⊆ (Base‘(Scalar‘𝑊)) → (𝐻 “ (0[,)+∞)) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
5653, 55syl 17 . . . 4 (𝜑 → (𝐻 “ (0[,)+∞)) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
573, 56syl 17 . . 3 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝐻 “ (0[,)+∞)) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
5850, 57eleqtrd 2830 . 2 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))))
5936, 37, 38, 39, 40, 8, 41, 42, 44sibff 34323 . . . . . 6 (𝜑𝐺: dom 𝑀 𝐽)
6036, 37tpsuni 22840 . . . . . . 7 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
61 feq3 6636 . . . . . . 7 (𝐵 = 𝐽 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6245, 60, 613syl 18 . . . . . 6 (𝜑 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6359, 62mpbird 257 . . . . 5 (𝜑𝐺: dom 𝑀𝐵)
6463frnd 6664 . . . 4 (𝜑 → ran 𝐺𝐵)
6564adantr 480 . . 3 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ran 𝐺𝐵)
6665, 20sseldd 3938 . 2 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → (2nd𝑝) ∈ 𝐵)
678fvexi 6840 . . . 4 𝐻 ∈ V
68 imaexg 7853 . . . 4 (𝐻 ∈ V → (𝐻 “ (0[,)+∞)) ∈ V)
69 eqid 2729 . . . . 5 (𝑊v (𝐻 “ (0[,)+∞))) = (𝑊v (𝐻 “ (0[,)+∞)))
7069, 36resvbas 33291 . . . 4 ((𝐻 “ (0[,)+∞)) ∈ V → 𝐵 = (Base‘(𝑊v (𝐻 “ (0[,)+∞)))))
7167, 68, 70mp2b 10 . . 3 𝐵 = (Base‘(𝑊v (𝐻 “ (0[,)+∞))))
72 eqid 2729 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
7369, 72, 5resvsca 33289 . . . 4 ((𝐻 “ (0[,)+∞)) ∈ V → ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))) = (Scalar‘(𝑊v (𝐻 “ (0[,)+∞)))))
7467, 68, 73mp2b 10 . . 3 ((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))) = (Scalar‘(𝑊v (𝐻 “ (0[,)+∞))))
7569, 40resvvsca 33293 . . . 4 ((𝐻 “ (0[,)+∞)) ∈ V → · = ( ·𝑠 ‘(𝑊v (𝐻 “ (0[,)+∞)))))
7667, 68, 75mp2b 10 . . 3 · = ( ·𝑠 ‘(𝑊v (𝐻 “ (0[,)+∞))))
77 eqid 2729 . . 3 (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))) = (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞))))
7871, 74, 76, 77slmdvscl 33175 . 2 (((𝑊v (𝐻 “ (0[,)+∞))) ∈ SLMod ∧ (𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) ∈ (Base‘((Scalar‘𝑊) ↾s (𝐻 “ (0[,)+∞)))) ∧ (2nd𝑝) ∈ 𝐵) → ((𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) · (2nd𝑝)) ∈ 𝐵)
792, 58, 66, 78syl3anc 1373 1 ((𝜑𝑝 ∈ ((ran 𝐹 × ran 𝐺) ∖ {⟨ 0 , 0 ⟩})) → ((𝐻‘(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) · (2nd𝑝)) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  cdif 3902  cin 3904  wss 3905  {csn 4579  cop 4585   cuni 4861   × cxp 5621  ccnv 5622  dom cdm 5623  ran crn 5624  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  cr 11027  0cc0 11028  +∞cpnf 11165  [,)cico 13269  Basecbs 17139  s cress 17160  +gcplusg 17180  Scalarcsca 17183   ·𝑠 cvsca 17184  TopOpenctopn 17344  0gc0g 17362  TopSpctps 22836  Frect1 23211  SLModcslmd 33161  v cresv 33283  ℝHomcrrh 33979   ℝExt crrext 33980  sigaGencsigagen 34124  measurescmeas 34181  sitgcsitg 34316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ioc 13272  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-fac 14200  df-bc 14229  df-hash 14257  df-shft 14993  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15613  df-ef 15993  df-sin 15995  df-cos 15996  df-pi 15998  df-dvds 16183  df-gcd 16425  df-numer 16665  df-denom 16666  df-gz 16861  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-ordt 17424  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-ps 18491  df-tsr 18492  df-plusf 18532  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-subg 19021  df-ghm 19111  df-cntz 19215  df-od 19426  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-cring 20140  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-dvr 20305  df-rhm 20376  df-nzr 20417  df-subrng 20450  df-subrg 20474  df-drng 20635  df-abv 20713  df-lmod 20784  df-scaf 20785  df-sra 21096  df-rgmod 21097  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-metu 21279  df-cnfld 21281  df-zring 21373  df-zrh 21429  df-zlm 21430  df-chr 21431  df-refld 21531  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-t1 23218  df-haus 23219  df-reg 23220  df-cmp 23291  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-fcls 23845  df-cnext 23964  df-tmd 23976  df-tgp 23977  df-tsms 24031  df-trg 24064  df-ust 24105  df-utop 24136  df-uss 24161  df-usp 24162  df-ucn 24180  df-cfilu 24191  df-cusp 24202  df-xms 24225  df-ms 24226  df-tms 24227  df-nm 24487  df-ngp 24488  df-nrg 24490  df-nlm 24491  df-ii 24787  df-cncf 24788  df-cfil 25172  df-cmet 25174  df-cms 25252  df-limc 25784  df-dv 25785  df-log 26482  df-slmd 33162  df-resv 33284  df-qqh 33957  df-rrh 33981  df-rrext 33985  df-esum 34014  df-siga 34095  df-sigagen 34125  df-meas 34182  df-mbfm 34236  df-sitg 34317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator