| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvmul 30949 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
| 2 | 1 | fovcl 7477 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 ℋchba 30863 ·ℎ csm 30865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-hfvmul 30949 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: hvmulcli 30958 hvsubf 30959 hvsubcl 30961 hv2neg 30972 hvaddsubval 30977 hvsub4 30981 hvaddsub12 30982 hvpncan 30983 hvaddsubass 30985 hvsubass 30988 hvsubdistr1 30993 hvsubdistr2 30994 hvaddeq0 31013 hvmulcan 31016 hvmulcan2 31017 hvsubcan 31018 his5 31030 his35 31032 hiassdi 31035 his2sub 31036 hilablo 31104 helch 31187 ocsh 31227 h1de2ci 31500 spansncol 31512 spanunsni 31523 mayete3i 31672 homcl 31690 homulcl 31703 unoplin 31864 hmoplin 31886 bramul 31890 bralnfn 31892 brafnmul 31895 kbop 31897 kbmul 31899 lnopmul 31911 lnopaddmuli 31917 lnopsubmuli 31919 lnopmulsubi 31920 0lnfn 31929 nmlnop0iALT 31939 lnopmi 31944 lnophsi 31945 lnopcoi 31947 lnopeq0i 31951 nmbdoplbi 31968 nmcexi 31970 nmcoplbi 31972 lnfnmuli 31988 lnfnaddmuli 31989 nmbdfnlbi 31993 nmcfnlbi 31996 nlelshi 32004 riesz3i 32006 cnlnadjlem2 32012 cnlnadjlem6 32016 adjlnop 32030 nmopcoi 32039 branmfn 32049 cnvbramul 32059 kbass2 32061 kbass5 32064 superpos 32298 cdj1i 32377 |
| Copyright terms: Public domain | W3C validator |