| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvmul 30907 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
| 2 | 1 | fovcl 7497 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 ℋchba 30821 ·ℎ csm 30823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-hfvmul 30907 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: hvmulcli 30916 hvsubf 30917 hvsubcl 30919 hv2neg 30930 hvaddsubval 30935 hvsub4 30939 hvaddsub12 30940 hvpncan 30941 hvaddsubass 30943 hvsubass 30946 hvsubdistr1 30951 hvsubdistr2 30952 hvaddeq0 30971 hvmulcan 30974 hvmulcan2 30975 hvsubcan 30976 his5 30988 his35 30990 hiassdi 30993 his2sub 30994 hilablo 31062 helch 31145 ocsh 31185 h1de2ci 31458 spansncol 31470 spanunsni 31481 mayete3i 31630 homcl 31648 homulcl 31661 unoplin 31822 hmoplin 31844 bramul 31848 bralnfn 31850 brafnmul 31853 kbop 31855 kbmul 31857 lnopmul 31869 lnopaddmuli 31875 lnopsubmuli 31877 lnopmulsubi 31878 0lnfn 31887 nmlnop0iALT 31897 lnopmi 31902 lnophsi 31903 lnopcoi 31905 lnopeq0i 31909 nmbdoplbi 31926 nmcexi 31928 nmcoplbi 31930 lnfnmuli 31946 lnfnaddmuli 31947 nmbdfnlbi 31951 nmcfnlbi 31954 nlelshi 31962 riesz3i 31964 cnlnadjlem2 31970 cnlnadjlem6 31974 adjlnop 31988 nmopcoi 31997 branmfn 32007 cnvbramul 32017 kbass2 32019 kbass5 32022 superpos 32256 cdj1i 32335 |
| Copyright terms: Public domain | W3C validator |