| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvmul 30932 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
| 2 | 1 | fovcl 7533 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 ℋchba 30846 ·ℎ csm 30848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-hfvmul 30932 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 |
| This theorem is referenced by: hvmulcli 30941 hvsubf 30942 hvsubcl 30944 hv2neg 30955 hvaddsubval 30960 hvsub4 30964 hvaddsub12 30965 hvpncan 30966 hvaddsubass 30968 hvsubass 30971 hvsubdistr1 30976 hvsubdistr2 30977 hvaddeq0 30996 hvmulcan 30999 hvmulcan2 31000 hvsubcan 31001 his5 31013 his35 31015 hiassdi 31018 his2sub 31019 hilablo 31087 helch 31170 ocsh 31210 h1de2ci 31483 spansncol 31495 spanunsni 31506 mayete3i 31655 homcl 31673 homulcl 31686 unoplin 31847 hmoplin 31869 bramul 31873 bralnfn 31875 brafnmul 31878 kbop 31880 kbmul 31882 lnopmul 31894 lnopaddmuli 31900 lnopsubmuli 31902 lnopmulsubi 31903 0lnfn 31912 nmlnop0iALT 31922 lnopmi 31927 lnophsi 31928 lnopcoi 31930 lnopeq0i 31934 nmbdoplbi 31951 nmcexi 31953 nmcoplbi 31955 lnfnmuli 31971 lnfnaddmuli 31972 nmbdfnlbi 31976 nmcfnlbi 31979 nlelshi 31987 riesz3i 31989 cnlnadjlem2 31995 cnlnadjlem6 31999 adjlnop 32013 nmopcoi 32022 branmfn 32032 cnvbramul 32042 kbass2 32044 kbass5 32047 superpos 32281 cdj1i 32360 |
| Copyright terms: Public domain | W3C validator |