| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvmul 30934 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
| 2 | 1 | fovcl 7517 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 ℋchba 30848 ·ℎ csm 30850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-hfvmul 30934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: hvmulcli 30943 hvsubf 30944 hvsubcl 30946 hv2neg 30957 hvaddsubval 30962 hvsub4 30966 hvaddsub12 30967 hvpncan 30968 hvaddsubass 30970 hvsubass 30973 hvsubdistr1 30978 hvsubdistr2 30979 hvaddeq0 30998 hvmulcan 31001 hvmulcan2 31002 hvsubcan 31003 his5 31015 his35 31017 hiassdi 31020 his2sub 31021 hilablo 31089 helch 31172 ocsh 31212 h1de2ci 31485 spansncol 31497 spanunsni 31508 mayete3i 31657 homcl 31675 homulcl 31688 unoplin 31849 hmoplin 31871 bramul 31875 bralnfn 31877 brafnmul 31880 kbop 31882 kbmul 31884 lnopmul 31896 lnopaddmuli 31902 lnopsubmuli 31904 lnopmulsubi 31905 0lnfn 31914 nmlnop0iALT 31924 lnopmi 31929 lnophsi 31930 lnopcoi 31932 lnopeq0i 31936 nmbdoplbi 31953 nmcexi 31955 nmcoplbi 31957 lnfnmuli 31973 lnfnaddmuli 31974 nmbdfnlbi 31978 nmcfnlbi 31981 nlelshi 31989 riesz3i 31991 cnlnadjlem2 31997 cnlnadjlem6 32001 adjlnop 32015 nmopcoi 32024 branmfn 32034 cnvbramul 32044 kbass2 32046 kbass5 32049 superpos 32283 cdj1i 32362 |
| Copyright terms: Public domain | W3C validator |