Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version |
Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfvmul 29346 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
2 | 1 | fovcl 7393 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7268 ℂcc 10853 ℋchba 29260 ·ℎ csm 29262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-hfvmul 29346 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 |
This theorem is referenced by: hvmulcli 29355 hvsubf 29356 hvsubcl 29358 hv2neg 29369 hvaddsubval 29374 hvsub4 29378 hvaddsub12 29379 hvpncan 29380 hvaddsubass 29382 hvsubass 29385 hvsubdistr1 29390 hvsubdistr2 29391 hvaddeq0 29410 hvmulcan 29413 hvmulcan2 29414 hvsubcan 29415 his5 29427 his35 29429 hiassdi 29432 his2sub 29433 hilablo 29501 helch 29584 ocsh 29624 h1de2ci 29897 spansncol 29909 spanunsni 29920 mayete3i 30069 homcl 30087 homulcl 30100 unoplin 30261 hmoplin 30283 bramul 30287 bralnfn 30289 brafnmul 30292 kbop 30294 kbmul 30296 lnopmul 30308 lnopaddmuli 30314 lnopsubmuli 30316 lnopmulsubi 30317 0lnfn 30326 nmlnop0iALT 30336 lnopmi 30341 lnophsi 30342 lnopcoi 30344 lnopeq0i 30348 nmbdoplbi 30365 nmcexi 30367 nmcoplbi 30369 lnfnmuli 30385 lnfnaddmuli 30386 nmbdfnlbi 30390 nmcfnlbi 30393 nlelshi 30401 riesz3i 30403 cnlnadjlem2 30409 cnlnadjlem6 30413 adjlnop 30427 nmopcoi 30436 branmfn 30446 cnvbramul 30456 kbass2 30458 kbass5 30461 superpos 30695 cdj1i 30774 |
Copyright terms: Public domain | W3C validator |