![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version |
Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfvmul 31033 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
2 | 1 | fovcl 7560 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 ℋchba 30947 ·ℎ csm 30949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-hfvmul 31033 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 |
This theorem is referenced by: hvmulcli 31042 hvsubf 31043 hvsubcl 31045 hv2neg 31056 hvaddsubval 31061 hvsub4 31065 hvaddsub12 31066 hvpncan 31067 hvaddsubass 31069 hvsubass 31072 hvsubdistr1 31077 hvsubdistr2 31078 hvaddeq0 31097 hvmulcan 31100 hvmulcan2 31101 hvsubcan 31102 his5 31114 his35 31116 hiassdi 31119 his2sub 31120 hilablo 31188 helch 31271 ocsh 31311 h1de2ci 31584 spansncol 31596 spanunsni 31607 mayete3i 31756 homcl 31774 homulcl 31787 unoplin 31948 hmoplin 31970 bramul 31974 bralnfn 31976 brafnmul 31979 kbop 31981 kbmul 31983 lnopmul 31995 lnopaddmuli 32001 lnopsubmuli 32003 lnopmulsubi 32004 0lnfn 32013 nmlnop0iALT 32023 lnopmi 32028 lnophsi 32029 lnopcoi 32031 lnopeq0i 32035 nmbdoplbi 32052 nmcexi 32054 nmcoplbi 32056 lnfnmuli 32072 lnfnaddmuli 32073 nmbdfnlbi 32077 nmcfnlbi 32080 nlelshi 32088 riesz3i 32090 cnlnadjlem2 32096 cnlnadjlem6 32100 adjlnop 32114 nmopcoi 32123 branmfn 32133 cnvbramul 32143 kbass2 32145 kbass5 32148 superpos 32382 cdj1i 32461 |
Copyright terms: Public domain | W3C validator |