| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvmul 30977 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
| 2 | 1 | fovcl 7469 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 ℋchba 30891 ·ℎ csm 30893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-hfvmul 30977 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 |
| This theorem is referenced by: hvmulcli 30986 hvsubf 30987 hvsubcl 30989 hv2neg 31000 hvaddsubval 31005 hvsub4 31009 hvaddsub12 31010 hvpncan 31011 hvaddsubass 31013 hvsubass 31016 hvsubdistr1 31021 hvsubdistr2 31022 hvaddeq0 31041 hvmulcan 31044 hvmulcan2 31045 hvsubcan 31046 his5 31058 his35 31060 hiassdi 31063 his2sub 31064 hilablo 31132 helch 31215 ocsh 31255 h1de2ci 31528 spansncol 31540 spanunsni 31551 mayete3i 31700 homcl 31718 homulcl 31731 unoplin 31892 hmoplin 31914 bramul 31918 bralnfn 31920 brafnmul 31923 kbop 31925 kbmul 31927 lnopmul 31939 lnopaddmuli 31945 lnopsubmuli 31947 lnopmulsubi 31948 0lnfn 31957 nmlnop0iALT 31967 lnopmi 31972 lnophsi 31973 lnopcoi 31975 lnopeq0i 31979 nmbdoplbi 31996 nmcexi 31998 nmcoplbi 32000 lnfnmuli 32016 lnfnaddmuli 32017 nmbdfnlbi 32021 nmcfnlbi 32024 nlelshi 32032 riesz3i 32034 cnlnadjlem2 32040 cnlnadjlem6 32044 adjlnop 32058 nmopcoi 32067 branmfn 32077 cnvbramul 32087 kbass2 32089 kbass5 32092 superpos 32326 cdj1i 32405 |
| Copyright terms: Public domain | W3C validator |