| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvmul 30941 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
| 2 | 1 | fovcl 7520 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 ℋchba 30855 ·ℎ csm 30857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-hfvmul 30941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: hvmulcli 30950 hvsubf 30951 hvsubcl 30953 hv2neg 30964 hvaddsubval 30969 hvsub4 30973 hvaddsub12 30974 hvpncan 30975 hvaddsubass 30977 hvsubass 30980 hvsubdistr1 30985 hvsubdistr2 30986 hvaddeq0 31005 hvmulcan 31008 hvmulcan2 31009 hvsubcan 31010 his5 31022 his35 31024 hiassdi 31027 his2sub 31028 hilablo 31096 helch 31179 ocsh 31219 h1de2ci 31492 spansncol 31504 spanunsni 31515 mayete3i 31664 homcl 31682 homulcl 31695 unoplin 31856 hmoplin 31878 bramul 31882 bralnfn 31884 brafnmul 31887 kbop 31889 kbmul 31891 lnopmul 31903 lnopaddmuli 31909 lnopsubmuli 31911 lnopmulsubi 31912 0lnfn 31921 nmlnop0iALT 31931 lnopmi 31936 lnophsi 31937 lnopcoi 31939 lnopeq0i 31943 nmbdoplbi 31960 nmcexi 31962 nmcoplbi 31964 lnfnmuli 31980 lnfnaddmuli 31981 nmbdfnlbi 31985 nmcfnlbi 31988 nlelshi 31996 riesz3i 31998 cnlnadjlem2 32004 cnlnadjlem6 32008 adjlnop 32022 nmopcoi 32031 branmfn 32041 cnvbramul 32051 kbass2 32053 kbass5 32056 superpos 32290 cdj1i 32369 |
| Copyright terms: Public domain | W3C validator |