![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version |
Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfvmul 30693 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
2 | 1 | fovcl 7529 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 (class class class)co 7401 ℂcc 11103 ℋchba 30607 ·ℎ csm 30609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-hfvmul 30693 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 |
This theorem is referenced by: hvmulcli 30702 hvsubf 30703 hvsubcl 30705 hv2neg 30716 hvaddsubval 30721 hvsub4 30725 hvaddsub12 30726 hvpncan 30727 hvaddsubass 30729 hvsubass 30732 hvsubdistr1 30737 hvsubdistr2 30738 hvaddeq0 30757 hvmulcan 30760 hvmulcan2 30761 hvsubcan 30762 his5 30774 his35 30776 hiassdi 30779 his2sub 30780 hilablo 30848 helch 30931 ocsh 30971 h1de2ci 31244 spansncol 31256 spanunsni 31267 mayete3i 31416 homcl 31434 homulcl 31447 unoplin 31608 hmoplin 31630 bramul 31634 bralnfn 31636 brafnmul 31639 kbop 31641 kbmul 31643 lnopmul 31655 lnopaddmuli 31661 lnopsubmuli 31663 lnopmulsubi 31664 0lnfn 31673 nmlnop0iALT 31683 lnopmi 31688 lnophsi 31689 lnopcoi 31691 lnopeq0i 31695 nmbdoplbi 31712 nmcexi 31714 nmcoplbi 31716 lnfnmuli 31732 lnfnaddmuli 31733 nmbdfnlbi 31737 nmcfnlbi 31740 nlelshi 31748 riesz3i 31750 cnlnadjlem2 31756 cnlnadjlem6 31760 adjlnop 31774 nmopcoi 31783 branmfn 31793 cnvbramul 31803 kbass2 31805 kbass5 31808 superpos 32042 cdj1i 32121 |
Copyright terms: Public domain | W3C validator |