Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version |
Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfvmul 29412 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
2 | 1 | fovcl 7434 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 (class class class)co 7307 ℂcc 10915 ℋchba 29326 ·ℎ csm 29328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-hfvmul 29412 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-ov 7310 |
This theorem is referenced by: hvmulcli 29421 hvsubf 29422 hvsubcl 29424 hv2neg 29435 hvaddsubval 29440 hvsub4 29444 hvaddsub12 29445 hvpncan 29446 hvaddsubass 29448 hvsubass 29451 hvsubdistr1 29456 hvsubdistr2 29457 hvaddeq0 29476 hvmulcan 29479 hvmulcan2 29480 hvsubcan 29481 his5 29493 his35 29495 hiassdi 29498 his2sub 29499 hilablo 29567 helch 29650 ocsh 29690 h1de2ci 29963 spansncol 29975 spanunsni 29986 mayete3i 30135 homcl 30153 homulcl 30166 unoplin 30327 hmoplin 30349 bramul 30353 bralnfn 30355 brafnmul 30358 kbop 30360 kbmul 30362 lnopmul 30374 lnopaddmuli 30380 lnopsubmuli 30382 lnopmulsubi 30383 0lnfn 30392 nmlnop0iALT 30402 lnopmi 30407 lnophsi 30408 lnopcoi 30410 lnopeq0i 30414 nmbdoplbi 30431 nmcexi 30433 nmcoplbi 30435 lnfnmuli 30451 lnfnaddmuli 30452 nmbdfnlbi 30456 nmcfnlbi 30459 nlelshi 30467 riesz3i 30469 cnlnadjlem2 30475 cnlnadjlem6 30479 adjlnop 30493 nmopcoi 30502 branmfn 30512 cnvbramul 30522 kbass2 30524 kbass5 30527 superpos 30761 cdj1i 30840 |
Copyright terms: Public domain | W3C validator |