Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version |
Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfvmul 28892 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
2 | 1 | fovcl 7279 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 (class class class)co 7155 ℂcc 10578 ℋchba 28806 ·ℎ csm 28808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-hfvmul 28892 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-ov 7158 |
This theorem is referenced by: hvmulcli 28901 hvsubf 28902 hvsubcl 28904 hv2neg 28915 hvaddsubval 28920 hvsub4 28924 hvaddsub12 28925 hvpncan 28926 hvaddsubass 28928 hvsubass 28931 hvsubdistr1 28936 hvsubdistr2 28937 hvaddeq0 28956 hvmulcan 28959 hvmulcan2 28960 hvsubcan 28961 his5 28973 his35 28975 hiassdi 28978 his2sub 28979 hilablo 29047 helch 29130 ocsh 29170 h1de2ci 29443 spansncol 29455 spanunsni 29466 mayete3i 29615 homcl 29633 homulcl 29646 unoplin 29807 hmoplin 29829 bramul 29833 bralnfn 29835 brafnmul 29838 kbop 29840 kbmul 29842 lnopmul 29854 lnopaddmuli 29860 lnopsubmuli 29862 lnopmulsubi 29863 0lnfn 29872 nmlnop0iALT 29882 lnopmi 29887 lnophsi 29888 lnopcoi 29890 lnopeq0i 29894 nmbdoplbi 29911 nmcexi 29913 nmcoplbi 29915 lnfnmuli 29931 lnfnaddmuli 29932 nmbdfnlbi 29936 nmcfnlbi 29939 nlelshi 29947 riesz3i 29949 cnlnadjlem2 29955 cnlnadjlem6 29959 adjlnop 29973 nmopcoi 29982 branmfn 29992 cnvbramul 30002 kbass2 30004 kbass5 30007 superpos 30241 cdj1i 30320 |
Copyright terms: Public domain | W3C validator |