![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version |
Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfvmul 31037 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
2 | 1 | fovcl 7578 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 ℋchba 30951 ·ℎ csm 30953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-hfvmul 31037 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 |
This theorem is referenced by: hvmulcli 31046 hvsubf 31047 hvsubcl 31049 hv2neg 31060 hvaddsubval 31065 hvsub4 31069 hvaddsub12 31070 hvpncan 31071 hvaddsubass 31073 hvsubass 31076 hvsubdistr1 31081 hvsubdistr2 31082 hvaddeq0 31101 hvmulcan 31104 hvmulcan2 31105 hvsubcan 31106 his5 31118 his35 31120 hiassdi 31123 his2sub 31124 hilablo 31192 helch 31275 ocsh 31315 h1de2ci 31588 spansncol 31600 spanunsni 31611 mayete3i 31760 homcl 31778 homulcl 31791 unoplin 31952 hmoplin 31974 bramul 31978 bralnfn 31980 brafnmul 31983 kbop 31985 kbmul 31987 lnopmul 31999 lnopaddmuli 32005 lnopsubmuli 32007 lnopmulsubi 32008 0lnfn 32017 nmlnop0iALT 32027 lnopmi 32032 lnophsi 32033 lnopcoi 32035 lnopeq0i 32039 nmbdoplbi 32056 nmcexi 32058 nmcoplbi 32060 lnfnmuli 32076 lnfnaddmuli 32077 nmbdfnlbi 32081 nmcfnlbi 32084 nlelshi 32092 riesz3i 32094 cnlnadjlem2 32100 cnlnadjlem6 32104 adjlnop 32118 nmopcoi 32127 branmfn 32137 cnvbramul 32147 kbass2 32149 kbass5 32152 superpos 32386 cdj1i 32465 |
Copyright terms: Public domain | W3C validator |