| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 431. (Revised by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4a 431 exp43 436 somo 5585 tz7.7 6358 f1oweALT 7951 soseq 8138 onfununi 8310 odi 8543 omeu 8549 nndi 8587 inf3lem2 9582 axdc3lem2 10404 genpnmax 10960 mulclprlem 10972 distrlem5pr 10980 reclem4pr 11003 lemul12a 12040 sup2 12139 nnmulcl 12210 zbtwnre 12905 elfz0fzfz0 13594 fzofzim 13670 fzo1fzo0n0 13676 elincfzoext 13684 elfzodifsumelfzo 13692 le2sq2 14100 expnbnd 14197 swrdswrd 14670 swrdccat3blem 14704 climbdd 15638 dvdslegcd 16474 oddprmgt2 16669 unbenlem 16879 infpnlem1 16881 prmgaplem6 17027 lmodvsdi 20791 lspsolvlem 21052 lbsextlem2 21069 gsummoncoe1 22195 cpmatmcllem 22605 mp2pm2mplem4 22696 1stccnp 23349 itg2le 25640 ewlkle 29533 clwlkclwwlklem2a 29927 3vfriswmgr 30207 frgrwopreg 30252 frgr2wwlk1 30258 frgrreg 30323 spansneleq 31499 elspansn4 31502 cvmdi 32253 atcvat3i 32325 mdsymlem3 32334 slmdvsdi 33168 satfv0 35345 satffunlem1lem1 35389 satffunlem2lem1 35391 mclsppslem 35570 dfon2lem8 35778 heicant 37649 areacirclem1 37702 areacirclem2 37703 areacirclem4 37705 areacirc 37707 fzmul 37735 cvlexch1 39321 hlrelat2 39397 cvrat3 39436 snatpsubN 39744 pmaple 39755 sn-sup2 42479 fzopredsuc 47324 gbegt5 47762 |
| Copyright terms: Public domain | W3C validator |