| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 431. (Revised by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4a 431 exp43 436 somo 5563 tz7.7 6332 f1oweALT 7904 soseq 8089 onfununi 8261 odi 8494 omeu 8500 nndi 8538 inf3lem2 9519 axdc3lem2 10339 genpnmax 10895 mulclprlem 10907 distrlem5pr 10915 reclem4pr 10938 lemul12a 11976 sup2 12075 nnmulcl 12146 zbtwnre 12841 elfz0fzfz0 13530 fzofzim 13606 fzo1fzo0n0 13612 elincfzoext 13620 elfzodifsumelfzo 13628 le2sq2 14039 expnbnd 14136 swrdswrd 14609 swrdccat3blem 14643 climbdd 15576 dvdslegcd 16412 oddprmgt2 16607 unbenlem 16817 infpnlem1 16819 prmgaplem6 16965 lmodvsdi 20816 lspsolvlem 21077 lbsextlem2 21094 gsummoncoe1 22221 cpmatmcllem 22631 mp2pm2mplem4 22722 1stccnp 23375 itg2le 25665 ewlkle 29582 clwlkclwwlklem2a 29973 3vfriswmgr 30253 frgrwopreg 30298 frgr2wwlk1 30304 frgrreg 30369 spansneleq 31545 elspansn4 31548 cvmdi 32299 atcvat3i 32371 mdsymlem3 32380 slmdvsdi 33179 satfv0 35390 satffunlem1lem1 35434 satffunlem2lem1 35436 mclsppslem 35615 dfon2lem8 35823 heicant 37694 areacirclem1 37747 areacirclem2 37748 areacirclem4 37750 areacirc 37752 fzmul 37780 cvlexch1 39366 hlrelat2 39441 cvrat3 39480 snatpsubN 39788 pmaple 39799 sn-sup2 42523 fzopredsuc 47353 gbegt5 47791 |
| Copyright terms: Public domain | W3C validator |