| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 431. (Revised by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4a 431 exp43 436 somo 5611 tz7.7 6389 f1oweALT 7979 soseq 8166 onfununi 8363 odi 8599 omeu 8605 nndi 8643 inf3lem2 9651 axdc3lem2 10473 genpnmax 11029 mulclprlem 11041 distrlem5pr 11049 reclem4pr 11072 lemul12a 12107 sup2 12206 nnmulcl 12272 zbtwnre 12970 elfz0fzfz0 13655 fzofzim 13731 fzo1fzo0n0 13736 elincfzoext 13744 elfzodifsumelfzo 13752 le2sq2 14158 expnbnd 14254 swrdswrd 14726 swrdccat3blem 14760 climbdd 15691 dvdslegcd 16524 oddprmgt2 16719 unbenlem 16929 infpnlem1 16931 prmgaplem6 17077 lmodvsdi 20852 lspsolvlem 21113 lbsextlem2 21130 gsummoncoe1 22261 cpmatmcllem 22673 mp2pm2mplem4 22764 1stccnp 23417 itg2le 25711 ewlkle 29552 clwlkclwwlklem2a 29946 3vfriswmgr 30226 frgrwopreg 30271 frgr2wwlk1 30277 frgrreg 30342 spansneleq 31518 elspansn4 31521 cvmdi 32272 atcvat3i 32344 mdsymlem3 32353 slmdvsdi 33165 satfv0 35338 satffunlem1lem1 35382 satffunlem2lem1 35384 mclsppslem 35563 dfon2lem8 35766 heicant 37637 areacirclem1 37690 areacirclem2 37691 areacirclem4 37693 areacirc 37695 fzmul 37723 cvlexch1 39304 hlrelat2 39380 cvrat3 39419 snatpsubN 39727 pmaple 39738 sn-sup2 42480 fzopredsuc 47308 gbegt5 47721 |
| Copyright terms: Public domain | W3C validator |