Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 432. (Revised by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | expd 416 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | ex 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: exp4a 432 exp43 437 somo 5541 tz7.7 6291 f1oweALT 7808 onfununi 8163 odi 8395 omeu 8401 nndi 8439 inf3lem2 9365 axdc3lem2 10208 genpnmax 10764 mulclprlem 10776 distrlem5pr 10784 reclem4pr 10807 lemul12a 11833 sup2 11931 nnmulcl 11997 zbtwnre 12685 elfz0fzfz0 13360 fzofzim 13432 fzo1fzo0n0 13436 elincfzoext 13443 elfzodifsumelfzo 13451 le2sq2 13852 expnbnd 13945 swrdswrd 14416 swrdccat3blem 14450 climbdd 15381 dvdslegcd 16209 oddprmgt2 16402 unbenlem 16607 infpnlem1 16609 prmgaplem6 16755 lmodvsdi 20144 lspsolvlem 20402 lbsextlem2 20419 gsummoncoe1 21473 cpmatmcllem 21865 mp2pm2mplem4 21956 1stccnp 22611 itg2le 24902 ewlkle 27970 clwlkclwwlklem2a 28358 3vfriswmgr 28638 frgrwopreg 28683 frgr2wwlk1 28689 frgrreg 28754 spansneleq 29928 elspansn4 29931 cvmdi 30682 atcvat3i 30754 mdsymlem3 30763 slmdvsdi 31464 satfv0 33316 satffunlem1lem1 33360 satffunlem2lem1 33362 mclsppslem 33541 dfon2lem8 33762 soseq 33799 heicant 35808 areacirclem1 35861 areacirclem2 35862 areacirclem4 35864 areacirc 35866 fzmul 35895 cvlexch1 37338 hlrelat2 37413 cvrat3 37452 snatpsubN 37760 pmaple 37771 sn-sup2 40436 fzopredsuc 44784 gbegt5 45182 |
Copyright terms: Public domain | W3C validator |