Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 432. (Revised by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | expd 416 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | ex 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: exp4a 432 exp43 437 somo 5541 tz7.7 6296 f1oweALT 7824 onfununi 8181 odi 8419 omeu 8425 nndi 8463 inf3lem2 9396 axdc3lem2 10216 genpnmax 10772 mulclprlem 10784 distrlem5pr 10792 reclem4pr 10815 lemul12a 11842 sup2 11940 nnmulcl 12006 zbtwnre 12695 elfz0fzfz0 13370 fzofzim 13443 fzo1fzo0n0 13447 elincfzoext 13454 elfzodifsumelfzo 13462 le2sq2 13863 expnbnd 13956 swrdswrd 14427 swrdccat3blem 14461 climbdd 15392 dvdslegcd 16220 oddprmgt2 16413 unbenlem 16618 infpnlem1 16620 prmgaplem6 16766 lmodvsdi 20155 lspsolvlem 20413 lbsextlem2 20430 gsummoncoe1 21484 cpmatmcllem 21876 mp2pm2mplem4 21967 1stccnp 22622 itg2le 24913 ewlkle 27981 clwlkclwwlklem2a 28371 3vfriswmgr 28651 frgrwopreg 28696 frgr2wwlk1 28702 frgrreg 28767 spansneleq 29941 elspansn4 29944 cvmdi 30695 atcvat3i 30767 mdsymlem3 30776 slmdvsdi 31477 satfv0 33329 satffunlem1lem1 33373 satffunlem2lem1 33375 mclsppslem 33554 dfon2lem8 33775 soseq 33812 heicant 35821 areacirclem1 35874 areacirclem2 35875 areacirclem4 35877 areacirc 35879 fzmul 35908 cvlexch1 37349 hlrelat2 37424 cvrat3 37463 snatpsubN 37771 pmaple 37782 sn-sup2 40446 fzopredsuc 44826 gbegt5 45224 |
Copyright terms: Public domain | W3C validator |