| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 431. (Revised by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4a 431 exp43 436 somo 5600 tz7.7 6378 f1oweALT 7971 soseq 8158 onfununi 8355 odi 8591 omeu 8597 nndi 8635 inf3lem2 9643 axdc3lem2 10465 genpnmax 11021 mulclprlem 11033 distrlem5pr 11041 reclem4pr 11064 lemul12a 12099 sup2 12198 nnmulcl 12264 zbtwnre 12962 elfz0fzfz0 13650 fzofzim 13726 fzo1fzo0n0 13731 elincfzoext 13739 elfzodifsumelfzo 13747 le2sq2 14153 expnbnd 14250 swrdswrd 14723 swrdccat3blem 14757 climbdd 15688 dvdslegcd 16523 oddprmgt2 16718 unbenlem 16928 infpnlem1 16930 prmgaplem6 17076 lmodvsdi 20842 lspsolvlem 21103 lbsextlem2 21120 gsummoncoe1 22246 cpmatmcllem 22656 mp2pm2mplem4 22747 1stccnp 23400 itg2le 25692 ewlkle 29585 clwlkclwwlklem2a 29979 3vfriswmgr 30259 frgrwopreg 30304 frgr2wwlk1 30310 frgrreg 30375 spansneleq 31551 elspansn4 31554 cvmdi 32305 atcvat3i 32377 mdsymlem3 32386 slmdvsdi 33212 satfv0 35380 satffunlem1lem1 35424 satffunlem2lem1 35426 mclsppslem 35605 dfon2lem8 35808 heicant 37679 areacirclem1 37732 areacirclem2 37733 areacirclem4 37735 areacirc 37737 fzmul 37765 cvlexch1 39346 hlrelat2 39422 cvrat3 39461 snatpsubN 39769 pmaple 39780 sn-sup2 42514 fzopredsuc 47352 gbegt5 47775 |
| Copyright terms: Public domain | W3C validator |