| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 431. (Revised by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4a 431 exp43 436 somo 5570 tz7.7 6337 f1oweALT 7914 soseq 8099 onfununi 8271 odi 8504 omeu 8510 nndi 8548 inf3lem2 9544 axdc3lem2 10364 genpnmax 10920 mulclprlem 10932 distrlem5pr 10940 reclem4pr 10963 lemul12a 12000 sup2 12099 nnmulcl 12170 zbtwnre 12865 elfz0fzfz0 13554 fzofzim 13630 fzo1fzo0n0 13636 elincfzoext 13644 elfzodifsumelfzo 13652 le2sq2 14060 expnbnd 14157 swrdswrd 14629 swrdccat3blem 14663 climbdd 15597 dvdslegcd 16433 oddprmgt2 16628 unbenlem 16838 infpnlem1 16840 prmgaplem6 16986 lmodvsdi 20806 lspsolvlem 21067 lbsextlem2 21084 gsummoncoe1 22211 cpmatmcllem 22621 mp2pm2mplem4 22712 1stccnp 23365 itg2le 25656 ewlkle 29569 clwlkclwwlklem2a 29960 3vfriswmgr 30240 frgrwopreg 30285 frgr2wwlk1 30291 frgrreg 30356 spansneleq 31532 elspansn4 31535 cvmdi 32286 atcvat3i 32358 mdsymlem3 32367 slmdvsdi 33167 satfv0 35330 satffunlem1lem1 35374 satffunlem2lem1 35376 mclsppslem 35555 dfon2lem8 35763 heicant 37634 areacirclem1 37687 areacirclem2 37688 areacirclem4 37690 areacirc 37692 fzmul 37720 cvlexch1 39306 hlrelat2 39382 cvrat3 39421 snatpsubN 39729 pmaple 39740 sn-sup2 42464 fzopredsuc 47308 gbegt5 47746 |
| Copyright terms: Public domain | W3C validator |