Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 431. (Revised by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | expd 415 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: exp4a 431 exp43 436 somo 5531 tz7.7 6277 f1oweALT 7788 onfununi 8143 odi 8372 omeu 8378 nndi 8416 inf3lem2 9317 axdc3lem2 10138 genpnmax 10694 mulclprlem 10706 distrlem5pr 10714 reclem4pr 10737 lemul12a 11763 sup2 11861 nnmulcl 11927 zbtwnre 12615 elfz0fzfz0 13290 fzofzim 13362 fzo1fzo0n0 13366 elincfzoext 13373 elfzodifsumelfzo 13381 le2sq2 13782 expnbnd 13875 swrdswrd 14346 swrdccat3blem 14380 climbdd 15311 dvdslegcd 16139 oddprmgt2 16332 unbenlem 16537 infpnlem1 16539 prmgaplem6 16685 lmodvsdi 20061 lspsolvlem 20319 lbsextlem2 20336 gsummoncoe1 21385 cpmatmcllem 21775 mp2pm2mplem4 21866 1stccnp 22521 itg2le 24809 ewlkle 27875 clwlkclwwlklem2a 28263 3vfriswmgr 28543 frgrwopreg 28588 frgr2wwlk1 28594 frgrreg 28659 spansneleq 29833 elspansn4 29836 cvmdi 30587 atcvat3i 30659 mdsymlem3 30668 slmdvsdi 31370 satfv0 33220 satffunlem1lem1 33264 satffunlem2lem1 33266 mclsppslem 33445 dfon2lem8 33672 soseq 33730 heicant 35739 areacirclem1 35792 areacirclem2 35793 areacirclem4 35795 areacirc 35797 fzmul 35826 cvlexch1 37269 hlrelat2 37344 cvrat3 37383 snatpsubN 37691 pmaple 37702 sn-sup2 40360 fzopredsuc 44703 gbegt5 45101 |
Copyright terms: Public domain | W3C validator |