![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 431. (Revised by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | expd 415 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: exp4a 431 exp43 436 somo 5634 tz7.7 6411 f1oweALT 7995 soseq 8182 onfununi 8379 odi 8615 omeu 8621 nndi 8659 inf3lem2 9666 axdc3lem2 10488 genpnmax 11044 mulclprlem 11056 distrlem5pr 11064 reclem4pr 11087 lemul12a 12122 sup2 12221 nnmulcl 12287 zbtwnre 12985 elfz0fzfz0 13669 fzofzim 13745 fzo1fzo0n0 13750 elincfzoext 13758 elfzodifsumelfzo 13766 le2sq2 14171 expnbnd 14267 swrdswrd 14739 swrdccat3blem 14773 climbdd 15704 dvdslegcd 16537 oddprmgt2 16732 unbenlem 16941 infpnlem1 16943 prmgaplem6 17089 lmodvsdi 20899 lspsolvlem 21161 lbsextlem2 21178 gsummoncoe1 22327 cpmatmcllem 22739 mp2pm2mplem4 22830 1stccnp 23485 itg2le 25788 ewlkle 29637 clwlkclwwlklem2a 30026 3vfriswmgr 30306 frgrwopreg 30351 frgr2wwlk1 30357 frgrreg 30422 spansneleq 31598 elspansn4 31601 cvmdi 32352 atcvat3i 32424 mdsymlem3 32433 slmdvsdi 33203 satfv0 35342 satffunlem1lem1 35386 satffunlem2lem1 35388 mclsppslem 35567 dfon2lem8 35771 heicant 37641 areacirclem1 37694 areacirclem2 37695 areacirclem4 37697 areacirc 37699 fzmul 37727 cvlexch1 39309 hlrelat2 39385 cvrat3 39424 snatpsubN 39732 pmaple 39743 sn-sup2 42477 fzopredsuc 47272 gbegt5 47685 |
Copyright terms: Public domain | W3C validator |