![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 433. (Revised by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | expd 417 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
3 | 2 | ex 414 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: exp4a 433 exp43 438 somo 5626 tz7.7 6391 f1oweALT 7959 soseq 8145 onfununi 8341 odi 8579 omeu 8585 nndi 8623 inf3lem2 9624 axdc3lem2 10446 genpnmax 11002 mulclprlem 11014 distrlem5pr 11022 reclem4pr 11045 lemul12a 12072 sup2 12170 nnmulcl 12236 zbtwnre 12930 elfz0fzfz0 13606 fzofzim 13679 fzo1fzo0n0 13683 elincfzoext 13690 elfzodifsumelfzo 13698 le2sq2 14100 expnbnd 14195 swrdswrd 14655 swrdccat3blem 14689 climbdd 15618 dvdslegcd 16445 oddprmgt2 16636 unbenlem 16841 infpnlem1 16843 prmgaplem6 16989 lmodvsdi 20495 lspsolvlem 20755 lbsextlem2 20772 gsummoncoe1 21828 cpmatmcllem 22220 mp2pm2mplem4 22311 1stccnp 22966 itg2le 25257 ewlkle 28862 clwlkclwwlklem2a 29251 3vfriswmgr 29531 frgrwopreg 29576 frgr2wwlk1 29582 frgrreg 29647 spansneleq 30823 elspansn4 30826 cvmdi 31577 atcvat3i 31649 mdsymlem3 31658 slmdvsdi 32360 satfv0 34349 satffunlem1lem1 34393 satffunlem2lem1 34395 mclsppslem 34574 dfon2lem8 34762 heicant 36523 areacirclem1 36576 areacirclem2 36577 areacirclem4 36579 areacirc 36581 fzmul 36609 cvlexch1 38198 hlrelat2 38274 cvrat3 38313 snatpsubN 38621 pmaple 38632 sn-sup2 41342 fzopredsuc 46031 gbegt5 46429 |
Copyright terms: Public domain | W3C validator |