| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 431. (Revised by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4a 431 exp43 436 somo 5566 tz7.7 6337 f1oweALT 7910 soseq 8095 onfununi 8267 odi 8500 omeu 8506 nndi 8544 inf3lem2 9526 axdc3lem2 10349 genpnmax 10905 mulclprlem 10917 distrlem5pr 10925 reclem4pr 10948 lemul12a 11986 sup2 12085 nnmulcl 12156 zbtwnre 12846 elfz0fzfz0 13535 fzofzim 13611 fzo1fzo0n0 13617 elincfzoext 13625 elfzodifsumelfzo 13633 le2sq2 14044 expnbnd 14141 swrdswrd 14614 swrdccat3blem 14648 climbdd 15581 dvdslegcd 16417 oddprmgt2 16612 unbenlem 16822 infpnlem1 16824 prmgaplem6 16970 lmodvsdi 20820 lspsolvlem 21081 lbsextlem2 21098 gsummoncoe1 22224 cpmatmcllem 22634 mp2pm2mplem4 22725 1stccnp 23378 itg2le 25668 ewlkle 29586 clwlkclwwlklem2a 29980 3vfriswmgr 30260 frgrwopreg 30305 frgr2wwlk1 30311 frgrreg 30376 spansneleq 31552 elspansn4 31555 cvmdi 32306 atcvat3i 32378 mdsymlem3 32387 slmdvsdi 33191 satfv0 35423 satffunlem1lem1 35467 satffunlem2lem1 35469 mclsppslem 35648 dfon2lem8 35853 heicant 37715 areacirclem1 37768 areacirclem2 37769 areacirclem4 37771 areacirc 37773 fzmul 37801 cvlexch1 39447 hlrelat2 39522 cvrat3 39561 snatpsubN 39869 pmaple 39880 sn-sup2 42609 fzopredsuc 47447 gbegt5 47885 |
| Copyright terms: Public domain | W3C validator |