| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4b | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 431. (Revised by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4b.1 | ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| exp4b | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4b.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | expd 415 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → (𝜃 → 𝜏))) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4a 431 exp43 436 somo 5588 tz7.7 6361 f1oweALT 7954 soseq 8141 onfununi 8313 odi 8546 omeu 8552 nndi 8590 inf3lem2 9589 axdc3lem2 10411 genpnmax 10967 mulclprlem 10979 distrlem5pr 10987 reclem4pr 11010 lemul12a 12047 sup2 12146 nnmulcl 12217 zbtwnre 12912 elfz0fzfz0 13601 fzofzim 13677 fzo1fzo0n0 13683 elincfzoext 13691 elfzodifsumelfzo 13699 le2sq2 14107 expnbnd 14204 swrdswrd 14677 swrdccat3blem 14711 climbdd 15645 dvdslegcd 16481 oddprmgt2 16676 unbenlem 16886 infpnlem1 16888 prmgaplem6 17034 lmodvsdi 20798 lspsolvlem 21059 lbsextlem2 21076 gsummoncoe1 22202 cpmatmcllem 22612 mp2pm2mplem4 22703 1stccnp 23356 itg2le 25647 ewlkle 29540 clwlkclwwlklem2a 29934 3vfriswmgr 30214 frgrwopreg 30259 frgr2wwlk1 30265 frgrreg 30330 spansneleq 31506 elspansn4 31509 cvmdi 32260 atcvat3i 32332 mdsymlem3 32341 slmdvsdi 33175 satfv0 35352 satffunlem1lem1 35396 satffunlem2lem1 35398 mclsppslem 35577 dfon2lem8 35785 heicant 37656 areacirclem1 37709 areacirclem2 37710 areacirclem4 37712 areacirc 37714 fzmul 37742 cvlexch1 39328 hlrelat2 39404 cvrat3 39443 snatpsubN 39751 pmaple 39762 sn-sup2 42486 fzopredsuc 47328 gbegt5 47766 |
| Copyright terms: Public domain | W3C validator |