MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalgmod Structured version   Visualization version   GIF version

Theorem divalgmod 15930
Description: The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 15929 and divalgb 15928). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
Assertion
Ref Expression
divalgmod ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))

Proof of Theorem divalgmod
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ovex 7224 . . . . . 6 (𝑁 mod 𝐷) ∈ V
21snid 4563 . . . . 5 (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)}
3 eleq1 2818 . . . . 5 (𝑅 = (𝑁 mod 𝐷) → (𝑅 ∈ {(𝑁 mod 𝐷)} ↔ (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)}))
42, 3mpbiri 261 . . . 4 (𝑅 = (𝑁 mod 𝐷) → 𝑅 ∈ {(𝑁 mod 𝐷)})
5 elsni 4544 . . . 4 (𝑅 ∈ {(𝑁 mod 𝐷)} → 𝑅 = (𝑁 mod 𝐷))
64, 5impbii 212 . . 3 (𝑅 = (𝑁 mod 𝐷) ↔ 𝑅 ∈ {(𝑁 mod 𝐷)})
7 zre 12145 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 nnrp 12562 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
9 modlt 13418 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑁 mod 𝐷) < 𝐷)
107, 8, 9syl2an 599 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < 𝐷)
11 nnre 11802 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
12 nnne0 11829 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ≠ 0)
13 redivcl 11516 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0) → (𝑁 / 𝐷) ∈ ℝ)
147, 11, 12, 13syl3an 1162 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℝ)
15143anidm23 1423 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℝ)
1615flcld 13338 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℤ)
17 nnz 12164 . . . . . . . . . 10 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
1817adantl 485 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℤ)
19 zmodcl 13429 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℕ0)
2019nn0zd 12245 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℤ)
21 zsubcl 12184 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁 mod 𝐷) ∈ ℤ) → (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ)
2220, 21syldan 594 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ)
23 nncn 11803 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
2423adantl 485 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℂ)
2516zcnd 12248 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℂ)
2624, 25mulcomd 10819 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) = ((⌊‘(𝑁 / 𝐷)) · 𝐷))
27 modval 13409 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))))
287, 8, 27syl2an 599 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))))
2919nn0cnd 12117 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℂ)
30 zmulcl 12191 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℤ ∧ (⌊‘(𝑁 / 𝐷)) ∈ ℤ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℤ)
3117, 16, 30syl2an2 686 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℤ)
3231zcnd 12248 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℂ)
33 zcn 12146 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3433adantr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℂ)
3529, 32, 34subexsub 11215 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))) ↔ (𝐷 · (⌊‘(𝑁 / 𝐷))) = (𝑁 − (𝑁 mod 𝐷))))
3628, 35mpbid 235 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) = (𝑁 − (𝑁 mod 𝐷)))
3726, 36eqtr3d 2773 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((⌊‘(𝑁 / 𝐷)) · 𝐷) = (𝑁 − (𝑁 mod 𝐷)))
38 dvds0lem 15791 . . . . . . . . 9 ((((⌊‘(𝑁 / 𝐷)) ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ) ∧ ((⌊‘(𝑁 / 𝐷)) · 𝐷) = (𝑁 − (𝑁 mod 𝐷))) → 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))
3916, 18, 22, 37, 38syl31anc 1375 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))
40 divalg2 15929 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))
41 breq1 5042 . . . . . . . . . . 11 (𝑧 = (𝑁 mod 𝐷) → (𝑧 < 𝐷 ↔ (𝑁 mod 𝐷) < 𝐷))
42 oveq2 7199 . . . . . . . . . . . 12 (𝑧 = (𝑁 mod 𝐷) → (𝑁𝑧) = (𝑁 − (𝑁 mod 𝐷)))
4342breq2d 5051 . . . . . . . . . . 11 (𝑧 = (𝑁 mod 𝐷) → (𝐷 ∥ (𝑁𝑧) ↔ 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))))
4441, 43anbi12d 634 . . . . . . . . . 10 (𝑧 = (𝑁 mod 𝐷) → ((𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) ↔ ((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))))
4544riota2 7174 . . . . . . . . 9 (((𝑁 mod 𝐷) ∈ ℕ0 ∧ ∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) → (((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) ↔ (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷)))
4619, 40, 45syl2anc 587 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) ↔ (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷)))
4710, 39, 46mpbi2and 712 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷))
4847eqcomd 2742 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))))
4948sneqd 4539 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {(𝑁 mod 𝐷)} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
50 snriota 7182 . . . . . 6 (∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) → {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
5140, 50syl 17 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
5249, 51eqtr4d 2774 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {(𝑁 mod 𝐷)} = {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))})
5352eleq2d 2816 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 ∈ {(𝑁 mod 𝐷)} ↔ 𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))}))
546, 53syl5bb 286 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ 𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))}))
55 breq1 5042 . . . 4 (𝑧 = 𝑅 → (𝑧 < 𝐷𝑅 < 𝐷))
56 oveq2 7199 . . . . 5 (𝑧 = 𝑅 → (𝑁𝑧) = (𝑁𝑅))
5756breq2d 5051 . . . 4 (𝑧 = 𝑅 → (𝐷 ∥ (𝑁𝑧) ↔ 𝐷 ∥ (𝑁𝑅)))
5855, 57anbi12d 634 . . 3 (𝑧 = 𝑅 → ((𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
5958elrab 3591 . 2 (𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
6054, 59bitrdi 290 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  ∃!wreu 3053  {crab 3055  {csn 4527   class class class wbr 5039  cfv 6358  crio 7147  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694   · cmul 10699   < clt 10832  cmin 11027   / cdiv 11454  cn 11795  0cn0 12055  cz 12141  +crp 12551  cfl 13330   mod cmo 13407  cdvds 15778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-dvds 15779
This theorem is referenced by:  divalgmodcl  15931
  Copyright terms: Public domain W3C validator