MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalgmod Structured version   Visualization version   GIF version

Theorem divalgmod 15751
Description: The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 15750 and divalgb 15749). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
Assertion
Ref Expression
divalgmod ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))

Proof of Theorem divalgmod
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ovex 7172 . . . . . 6 (𝑁 mod 𝐷) ∈ V
21snid 4564 . . . . 5 (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)}
3 eleq1 2880 . . . . 5 (𝑅 = (𝑁 mod 𝐷) → (𝑅 ∈ {(𝑁 mod 𝐷)} ↔ (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)}))
42, 3mpbiri 261 . . . 4 (𝑅 = (𝑁 mod 𝐷) → 𝑅 ∈ {(𝑁 mod 𝐷)})
5 elsni 4545 . . . 4 (𝑅 ∈ {(𝑁 mod 𝐷)} → 𝑅 = (𝑁 mod 𝐷))
64, 5impbii 212 . . 3 (𝑅 = (𝑁 mod 𝐷) ↔ 𝑅 ∈ {(𝑁 mod 𝐷)})
7 zre 11977 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 nnrp 12392 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
9 modlt 13247 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑁 mod 𝐷) < 𝐷)
107, 8, 9syl2an 598 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < 𝐷)
11 nnre 11636 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
12 nnne0 11663 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ≠ 0)
13 redivcl 11352 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0) → (𝑁 / 𝐷) ∈ ℝ)
147, 11, 12, 13syl3an 1157 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℝ)
15143anidm23 1418 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℝ)
1615flcld 13167 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℤ)
17 nnz 11996 . . . . . . . . . 10 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
1817adantl 485 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℤ)
19 zmodcl 13258 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℕ0)
2019nn0zd 12077 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℤ)
21 zsubcl 12016 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁 mod 𝐷) ∈ ℤ) → (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ)
2220, 21syldan 594 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ)
23 nncn 11637 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
2423adantl 485 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℂ)
2516zcnd 12080 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℂ)
2624, 25mulcomd 10655 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) = ((⌊‘(𝑁 / 𝐷)) · 𝐷))
27 modval 13238 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))))
287, 8, 27syl2an 598 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))))
2919nn0cnd 11949 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℂ)
30 zmulcl 12023 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℤ ∧ (⌊‘(𝑁 / 𝐷)) ∈ ℤ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℤ)
3117, 16, 30syl2an2 685 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℤ)
3231zcnd 12080 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℂ)
33 zcn 11978 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3433adantr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℂ)
3529, 32, 34subexsub 11051 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))) ↔ (𝐷 · (⌊‘(𝑁 / 𝐷))) = (𝑁 − (𝑁 mod 𝐷))))
3628, 35mpbid 235 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) = (𝑁 − (𝑁 mod 𝐷)))
3726, 36eqtr3d 2838 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((⌊‘(𝑁 / 𝐷)) · 𝐷) = (𝑁 − (𝑁 mod 𝐷)))
38 dvds0lem 15616 . . . . . . . . 9 ((((⌊‘(𝑁 / 𝐷)) ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ) ∧ ((⌊‘(𝑁 / 𝐷)) · 𝐷) = (𝑁 − (𝑁 mod 𝐷))) → 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))
3916, 18, 22, 37, 38syl31anc 1370 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))
40 divalg2 15750 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))
41 breq1 5036 . . . . . . . . . . 11 (𝑧 = (𝑁 mod 𝐷) → (𝑧 < 𝐷 ↔ (𝑁 mod 𝐷) < 𝐷))
42 oveq2 7147 . . . . . . . . . . . 12 (𝑧 = (𝑁 mod 𝐷) → (𝑁𝑧) = (𝑁 − (𝑁 mod 𝐷)))
4342breq2d 5045 . . . . . . . . . . 11 (𝑧 = (𝑁 mod 𝐷) → (𝐷 ∥ (𝑁𝑧) ↔ 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))))
4441, 43anbi12d 633 . . . . . . . . . 10 (𝑧 = (𝑁 mod 𝐷) → ((𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) ↔ ((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))))
4544riota2 7122 . . . . . . . . 9 (((𝑁 mod 𝐷) ∈ ℕ0 ∧ ∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) → (((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) ↔ (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷)))
4619, 40, 45syl2anc 587 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) ↔ (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷)))
4710, 39, 46mpbi2and 711 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷))
4847eqcomd 2807 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))))
4948sneqd 4540 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {(𝑁 mod 𝐷)} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
50 snriota 7130 . . . . . 6 (∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) → {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
5140, 50syl 17 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
5249, 51eqtr4d 2839 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {(𝑁 mod 𝐷)} = {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))})
5352eleq2d 2878 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 ∈ {(𝑁 mod 𝐷)} ↔ 𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))}))
546, 53syl5bb 286 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ 𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))}))
55 breq1 5036 . . . 4 (𝑧 = 𝑅 → (𝑧 < 𝐷𝑅 < 𝐷))
56 oveq2 7147 . . . . 5 (𝑧 = 𝑅 → (𝑁𝑧) = (𝑁𝑅))
5756breq2d 5045 . . . 4 (𝑧 = 𝑅 → (𝐷 ∥ (𝑁𝑧) ↔ 𝐷 ∥ (𝑁𝑅)))
5855, 57anbi12d 633 . . 3 (𝑧 = 𝑅 → ((𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
5958elrab 3631 . 2 (𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
6054, 59syl6bb 290 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  ∃!wreu 3111  {crab 3113  {csn 4528   class class class wbr 5033  cfv 6328  crio 7096  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530   · cmul 10535   < clt 10668  cmin 10863   / cdiv 11290  cn 11629  0cn0 11889  cz 11973  +crp 12381  cfl 13159   mod cmo 13236  cdvds 15603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-dvds 15604
This theorem is referenced by:  divalgmodcl  15752
  Copyright terms: Public domain W3C validator