MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalgmod Structured version   Visualization version   GIF version

Theorem divalgmod 16443
Description: The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 16442 and divalgb 16441). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
Assertion
Ref Expression
divalgmod ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))

Proof of Theorem divalgmod
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ovex 7464 . . . . . 6 (𝑁 mod 𝐷) ∈ V
21snid 4662 . . . . 5 (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)}
3 eleq1 2829 . . . . 5 (𝑅 = (𝑁 mod 𝐷) → (𝑅 ∈ {(𝑁 mod 𝐷)} ↔ (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)}))
42, 3mpbiri 258 . . . 4 (𝑅 = (𝑁 mod 𝐷) → 𝑅 ∈ {(𝑁 mod 𝐷)})
5 elsni 4643 . . . 4 (𝑅 ∈ {(𝑁 mod 𝐷)} → 𝑅 = (𝑁 mod 𝐷))
64, 5impbii 209 . . 3 (𝑅 = (𝑁 mod 𝐷) ↔ 𝑅 ∈ {(𝑁 mod 𝐷)})
7 zre 12617 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 nnrp 13046 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
9 modlt 13920 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑁 mod 𝐷) < 𝐷)
107, 8, 9syl2an 596 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < 𝐷)
11 nnre 12273 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
12 nnne0 12300 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ≠ 0)
13 redivcl 11986 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0) → (𝑁 / 𝐷) ∈ ℝ)
147, 11, 12, 13syl3an 1161 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℝ)
15143anidm23 1423 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℝ)
1615flcld 13838 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℤ)
17 nnz 12634 . . . . . . . . . 10 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
1817adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℤ)
19 zmodcl 13931 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℕ0)
2019nn0zd 12639 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℤ)
21 zsubcl 12659 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁 mod 𝐷) ∈ ℤ) → (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ)
2220, 21syldan 591 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ)
23 nncn 12274 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
2423adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℂ)
2516zcnd 12723 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℂ)
2624, 25mulcomd 11282 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) = ((⌊‘(𝑁 / 𝐷)) · 𝐷))
27 modval 13911 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))))
287, 8, 27syl2an 596 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))))
2919nn0cnd 12589 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℂ)
30 zmulcl 12666 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℤ ∧ (⌊‘(𝑁 / 𝐷)) ∈ ℤ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℤ)
3117, 16, 30syl2an2 686 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℤ)
3231zcnd 12723 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℂ)
33 zcn 12618 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3433adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℂ)
3529, 32, 34subexsub 11681 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))) ↔ (𝐷 · (⌊‘(𝑁 / 𝐷))) = (𝑁 − (𝑁 mod 𝐷))))
3628, 35mpbid 232 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) = (𝑁 − (𝑁 mod 𝐷)))
3726, 36eqtr3d 2779 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((⌊‘(𝑁 / 𝐷)) · 𝐷) = (𝑁 − (𝑁 mod 𝐷)))
38 dvds0lem 16304 . . . . . . . . 9 ((((⌊‘(𝑁 / 𝐷)) ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ) ∧ ((⌊‘(𝑁 / 𝐷)) · 𝐷) = (𝑁 − (𝑁 mod 𝐷))) → 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))
3916, 18, 22, 37, 38syl31anc 1375 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))
40 divalg2 16442 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))
41 breq1 5146 . . . . . . . . . . 11 (𝑧 = (𝑁 mod 𝐷) → (𝑧 < 𝐷 ↔ (𝑁 mod 𝐷) < 𝐷))
42 oveq2 7439 . . . . . . . . . . . 12 (𝑧 = (𝑁 mod 𝐷) → (𝑁𝑧) = (𝑁 − (𝑁 mod 𝐷)))
4342breq2d 5155 . . . . . . . . . . 11 (𝑧 = (𝑁 mod 𝐷) → (𝐷 ∥ (𝑁𝑧) ↔ 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))))
4441, 43anbi12d 632 . . . . . . . . . 10 (𝑧 = (𝑁 mod 𝐷) → ((𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) ↔ ((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))))
4544riota2 7413 . . . . . . . . 9 (((𝑁 mod 𝐷) ∈ ℕ0 ∧ ∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) → (((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) ↔ (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷)))
4619, 40, 45syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) ↔ (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷)))
4710, 39, 46mpbi2and 712 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷))
4847eqcomd 2743 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))))
4948sneqd 4638 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {(𝑁 mod 𝐷)} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
50 snriota 7421 . . . . . 6 (∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) → {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
5140, 50syl 17 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
5249, 51eqtr4d 2780 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {(𝑁 mod 𝐷)} = {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))})
5352eleq2d 2827 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 ∈ {(𝑁 mod 𝐷)} ↔ 𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))}))
546, 53bitrid 283 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ 𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))}))
55 breq1 5146 . . . 4 (𝑧 = 𝑅 → (𝑧 < 𝐷𝑅 < 𝐷))
56 oveq2 7439 . . . . 5 (𝑧 = 𝑅 → (𝑁𝑧) = (𝑁𝑅))
5756breq2d 5155 . . . 4 (𝑧 = 𝑅 → (𝐷 ∥ (𝑁𝑧) ↔ 𝐷 ∥ (𝑁𝑅)))
5855, 57anbi12d 632 . . 3 (𝑧 = 𝑅 → ((𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
5958elrab 3692 . 2 (𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
6054, 59bitrdi 287 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  ∃!wreu 3378  {crab 3436  {csn 4626   class class class wbr 5143  cfv 6561  crio 7387  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   · cmul 11160   < clt 11295  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  +crp 13034  cfl 13830   mod cmo 13909  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291
This theorem is referenced by:  divalgmodcl  16444
  Copyright terms: Public domain W3C validator