MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalgmod Structured version   Visualization version   GIF version

Theorem divalgmod 16383
Description: The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 16382 and divalgb 16381). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
Assertion
Ref Expression
divalgmod ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))

Proof of Theorem divalgmod
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ovex 7423 . . . . . 6 (𝑁 mod 𝐷) ∈ V
21snid 4629 . . . . 5 (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)}
3 eleq1 2817 . . . . 5 (𝑅 = (𝑁 mod 𝐷) → (𝑅 ∈ {(𝑁 mod 𝐷)} ↔ (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)}))
42, 3mpbiri 258 . . . 4 (𝑅 = (𝑁 mod 𝐷) → 𝑅 ∈ {(𝑁 mod 𝐷)})
5 elsni 4609 . . . 4 (𝑅 ∈ {(𝑁 mod 𝐷)} → 𝑅 = (𝑁 mod 𝐷))
64, 5impbii 209 . . 3 (𝑅 = (𝑁 mod 𝐷) ↔ 𝑅 ∈ {(𝑁 mod 𝐷)})
7 zre 12540 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 nnrp 12970 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
9 modlt 13849 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑁 mod 𝐷) < 𝐷)
107, 8, 9syl2an 596 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < 𝐷)
11 nnre 12200 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
12 nnne0 12227 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ≠ 0)
13 redivcl 11908 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0) → (𝑁 / 𝐷) ∈ ℝ)
147, 11, 12, 13syl3an 1160 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℝ)
15143anidm23 1423 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℝ)
1615flcld 13767 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℤ)
17 nnz 12557 . . . . . . . . . 10 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
1817adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℤ)
19 zmodcl 13860 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℕ0)
2019nn0zd 12562 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℤ)
21 zsubcl 12582 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁 mod 𝐷) ∈ ℤ) → (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ)
2220, 21syldan 591 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ)
23 nncn 12201 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
2423adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℂ)
2516zcnd 12646 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℂ)
2624, 25mulcomd 11202 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) = ((⌊‘(𝑁 / 𝐷)) · 𝐷))
27 modval 13840 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))))
287, 8, 27syl2an 596 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))))
2919nn0cnd 12512 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℂ)
30 zmulcl 12589 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℤ ∧ (⌊‘(𝑁 / 𝐷)) ∈ ℤ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℤ)
3117, 16, 30syl2an2 686 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℤ)
3231zcnd 12646 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℂ)
33 zcn 12541 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3433adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℂ)
3529, 32, 34subexsub 11603 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))) ↔ (𝐷 · (⌊‘(𝑁 / 𝐷))) = (𝑁 − (𝑁 mod 𝐷))))
3628, 35mpbid 232 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) = (𝑁 − (𝑁 mod 𝐷)))
3726, 36eqtr3d 2767 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((⌊‘(𝑁 / 𝐷)) · 𝐷) = (𝑁 − (𝑁 mod 𝐷)))
38 dvds0lem 16243 . . . . . . . . 9 ((((⌊‘(𝑁 / 𝐷)) ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ) ∧ ((⌊‘(𝑁 / 𝐷)) · 𝐷) = (𝑁 − (𝑁 mod 𝐷))) → 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))
3916, 18, 22, 37, 38syl31anc 1375 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))
40 divalg2 16382 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))
41 breq1 5113 . . . . . . . . . . 11 (𝑧 = (𝑁 mod 𝐷) → (𝑧 < 𝐷 ↔ (𝑁 mod 𝐷) < 𝐷))
42 oveq2 7398 . . . . . . . . . . . 12 (𝑧 = (𝑁 mod 𝐷) → (𝑁𝑧) = (𝑁 − (𝑁 mod 𝐷)))
4342breq2d 5122 . . . . . . . . . . 11 (𝑧 = (𝑁 mod 𝐷) → (𝐷 ∥ (𝑁𝑧) ↔ 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))))
4441, 43anbi12d 632 . . . . . . . . . 10 (𝑧 = (𝑁 mod 𝐷) → ((𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) ↔ ((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))))
4544riota2 7372 . . . . . . . . 9 (((𝑁 mod 𝐷) ∈ ℕ0 ∧ ∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) → (((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) ↔ (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷)))
4619, 40, 45syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) ↔ (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷)))
4710, 39, 46mpbi2and 712 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷))
4847eqcomd 2736 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))))
4948sneqd 4604 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {(𝑁 mod 𝐷)} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
50 snriota 7380 . . . . . 6 (∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) → {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
5140, 50syl 17 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
5249, 51eqtr4d 2768 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {(𝑁 mod 𝐷)} = {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))})
5352eleq2d 2815 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 ∈ {(𝑁 mod 𝐷)} ↔ 𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))}))
546, 53bitrid 283 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ 𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))}))
55 breq1 5113 . . . 4 (𝑧 = 𝑅 → (𝑧 < 𝐷𝑅 < 𝐷))
56 oveq2 7398 . . . . 5 (𝑧 = 𝑅 → (𝑁𝑧) = (𝑁𝑅))
5756breq2d 5122 . . . 4 (𝑧 = 𝑅 → (𝐷 ∥ (𝑁𝑧) ↔ 𝐷 ∥ (𝑁𝑅)))
5855, 57anbi12d 632 . . 3 (𝑧 = 𝑅 → ((𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
5958elrab 3662 . 2 (𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
6054, 59bitrdi 287 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  ∃!wreu 3354  {crab 3408  {csn 4592   class class class wbr 5110  cfv 6514  crio 7346  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080   < clt 11215  cmin 11412   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  +crp 12958  cfl 13759   mod cmo 13838  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230
This theorem is referenced by:  divalgmodcl  16384
  Copyright terms: Public domain W3C validator