| Step | Hyp | Ref
| Expression |
| 1 | | ovex 7438 |
. . . . . 6
⊢ (𝑁 mod 𝐷) ∈ V |
| 2 | 1 | snid 4638 |
. . . . 5
⊢ (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)} |
| 3 | | eleq1 2822 |
. . . . 5
⊢ (𝑅 = (𝑁 mod 𝐷) → (𝑅 ∈ {(𝑁 mod 𝐷)} ↔ (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)})) |
| 4 | 2, 3 | mpbiri 258 |
. . . 4
⊢ (𝑅 = (𝑁 mod 𝐷) → 𝑅 ∈ {(𝑁 mod 𝐷)}) |
| 5 | | elsni 4618 |
. . . 4
⊢ (𝑅 ∈ {(𝑁 mod 𝐷)} → 𝑅 = (𝑁 mod 𝐷)) |
| 6 | 4, 5 | impbii 209 |
. . 3
⊢ (𝑅 = (𝑁 mod 𝐷) ↔ 𝑅 ∈ {(𝑁 mod 𝐷)}) |
| 7 | | zre 12592 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
| 8 | | nnrp 13020 |
. . . . . . . . 9
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℝ+) |
| 9 | | modlt 13897 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑁 mod 𝐷) < 𝐷) |
| 10 | 7, 8, 9 | syl2an 596 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < 𝐷) |
| 11 | | nnre 12247 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℝ) |
| 12 | | nnne0 12274 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ ℕ → 𝐷 ≠ 0) |
| 13 | | redivcl 11960 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0) → (𝑁 / 𝐷) ∈ ℝ) |
| 14 | 7, 11, 12, 13 | syl3an 1160 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℝ) |
| 15 | 14 | 3anidm23 1423 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℝ) |
| 16 | 15 | flcld 13815 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) →
(⌊‘(𝑁 / 𝐷)) ∈
ℤ) |
| 17 | | nnz 12609 |
. . . . . . . . . 10
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℤ) |
| 18 | 17 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈
ℤ) |
| 19 | | zmodcl 13908 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈
ℕ0) |
| 20 | 19 | nn0zd 12614 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℤ) |
| 21 | | zsubcl 12634 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 𝐷) ∈ ℤ) → (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ) |
| 22 | 20, 21 | syldan 591 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ) |
| 23 | | nncn 12248 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℂ) |
| 24 | 23 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈
ℂ) |
| 25 | 16 | zcnd 12698 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) →
(⌊‘(𝑁 / 𝐷)) ∈
ℂ) |
| 26 | 24, 25 | mulcomd 11256 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) = ((⌊‘(𝑁 / 𝐷)) · 𝐷)) |
| 27 | | modval 13888 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷))))) |
| 28 | 7, 8, 27 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷))))) |
| 29 | 19 | nn0cnd 12564 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℂ) |
| 30 | | zmulcl 12641 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ ℤ ∧
(⌊‘(𝑁 / 𝐷)) ∈ ℤ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℤ) |
| 31 | 17, 16, 30 | syl2an2 686 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℤ) |
| 32 | 31 | zcnd 12698 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℂ) |
| 33 | | zcn 12593 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈
ℂ) |
| 35 | 29, 32, 34 | subexsub 11655 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))) ↔ (𝐷 · (⌊‘(𝑁 / 𝐷))) = (𝑁 − (𝑁 mod 𝐷)))) |
| 36 | 28, 35 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) = (𝑁 − (𝑁 mod 𝐷))) |
| 37 | 26, 36 | eqtr3d 2772 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) →
((⌊‘(𝑁 / 𝐷)) · 𝐷) = (𝑁 − (𝑁 mod 𝐷))) |
| 38 | | dvds0lem 16286 |
. . . . . . . . 9
⊢
((((⌊‘(𝑁
/ 𝐷)) ∈ ℤ ∧
𝐷 ∈ ℤ ∧
(𝑁 − (𝑁 mod 𝐷)) ∈ ℤ) ∧
((⌊‘(𝑁 / 𝐷)) · 𝐷) = (𝑁 − (𝑁 mod 𝐷))) → 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) |
| 39 | 16, 18, 22, 37, 38 | syl31anc 1375 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) |
| 40 | | divalg2 16424 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) →
∃!𝑧 ∈
ℕ0 (𝑧 <
𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧))) |
| 41 | | breq1 5122 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑁 mod 𝐷) → (𝑧 < 𝐷 ↔ (𝑁 mod 𝐷) < 𝐷)) |
| 42 | | oveq2 7413 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑁 mod 𝐷) → (𝑁 − 𝑧) = (𝑁 − (𝑁 mod 𝐷))) |
| 43 | 42 | breq2d 5131 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑁 mod 𝐷) → (𝐷 ∥ (𝑁 − 𝑧) ↔ 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))) |
| 44 | 41, 43 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑁 mod 𝐷) → ((𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧)) ↔ ((𝑁 mod 𝐷) < 𝐷 ∧ 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))))) |
| 45 | 44 | riota2 7387 |
. . . . . . . . 9
⊢ (((𝑁 mod 𝐷) ∈ ℕ0 ∧
∃!𝑧 ∈
ℕ0 (𝑧 <
𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧))) → (((𝑁 mod 𝐷) < 𝐷 ∧ 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) ↔ (℩𝑧 ∈ ℕ0 (𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧))) = (𝑁 mod 𝐷))) |
| 46 | 19, 40, 45 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (((𝑁 mod 𝐷) < 𝐷 ∧ 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) ↔ (℩𝑧 ∈ ℕ0 (𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧))) = (𝑁 mod 𝐷))) |
| 47 | 10, 39, 46 | mpbi2and 712 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) →
(℩𝑧 ∈
ℕ0 (𝑧 <
𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧))) = (𝑁 mod 𝐷)) |
| 48 | 47 | eqcomd 2741 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (℩𝑧 ∈ ℕ0 (𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧)))) |
| 49 | 48 | sneqd 4613 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {(𝑁 mod 𝐷)} = {(℩𝑧 ∈ ℕ0 (𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧)))}) |
| 50 | | snriota 7395 |
. . . . . 6
⊢
(∃!𝑧 ∈
ℕ0 (𝑧 <
𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧)) → {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧))} = {(℩𝑧 ∈ ℕ0 (𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧)))}) |
| 51 | 40, 50 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {𝑧 ∈ ℕ0
∣ (𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧))} = {(℩𝑧 ∈ ℕ0 (𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧)))}) |
| 52 | 49, 51 | eqtr4d 2773 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {(𝑁 mod 𝐷)} = {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧))}) |
| 53 | 52 | eleq2d 2820 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 ∈ {(𝑁 mod 𝐷)} ↔ 𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧))})) |
| 54 | 6, 53 | bitrid 283 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ 𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧))})) |
| 55 | | breq1 5122 |
. . . 4
⊢ (𝑧 = 𝑅 → (𝑧 < 𝐷 ↔ 𝑅 < 𝐷)) |
| 56 | | oveq2 7413 |
. . . . 5
⊢ (𝑧 = 𝑅 → (𝑁 − 𝑧) = (𝑁 − 𝑅)) |
| 57 | 56 | breq2d 5131 |
. . . 4
⊢ (𝑧 = 𝑅 → (𝐷 ∥ (𝑁 − 𝑧) ↔ 𝐷 ∥ (𝑁 − 𝑅))) |
| 58 | 55, 57 | anbi12d 632 |
. . 3
⊢ (𝑧 = 𝑅 → ((𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧)) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
| 59 | 58 | elrab 3671 |
. 2
⊢ (𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑧))} ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) |
| 60 | 54, 59 | bitrdi 287 |
1
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅))))) |