![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sorpssin | Structured version Visualization version GIF version |
Description: A chain of sets is closed under binary intersection. (Contributed by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
sorpssin | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∩ 𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 770 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ 𝐴) | |
2 | df-ss 3928 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∩ 𝐶) = 𝐵) | |
3 | eleq1 2826 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
4 | 2, 3 | sylbi 216 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
5 | 1, 4 | syl5ibrcom 247 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 → (𝐵 ∩ 𝐶) ∈ 𝐴)) |
6 | simprr 772 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ 𝐴) | |
7 | sseqin2 4176 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐶) = 𝐶) | |
8 | eleq1 2826 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐶 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
9 | 7, 8 | sylbi 216 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
10 | 6, 9 | syl5ibrcom 247 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 ⊆ 𝐵 → (𝐵 ∩ 𝐶) ∈ 𝐴)) |
11 | sorpssi 7667 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
12 | 5, 10, 11 | mpjaod 859 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∩ 𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∩ cin 3910 ⊆ wss 3911 Or wor 5545 [⊊] crpss 7660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-so 5547 df-xp 5640 df-rel 5641 df-rpss 7661 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |