![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sorpssin | Structured version Visualization version GIF version |
Description: A chain of sets is closed under binary intersection. (Contributed by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
sorpssin | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∩ 𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 769 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ 𝐴) | |
2 | df-ss 3964 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∩ 𝐶) = 𝐵) | |
3 | eleq1 2821 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
4 | 2, 3 | sylbi 216 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
5 | 1, 4 | syl5ibrcom 246 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 → (𝐵 ∩ 𝐶) ∈ 𝐴)) |
6 | simprr 771 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ 𝐴) | |
7 | sseqin2 4214 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐶) = 𝐶) | |
8 | eleq1 2821 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐶 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
9 | 7, 8 | sylbi 216 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
10 | 6, 9 | syl5ibrcom 246 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 ⊆ 𝐵 → (𝐵 ∩ 𝐶) ∈ 𝐴)) |
11 | sorpssi 7715 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
12 | 5, 10, 11 | mpjaod 858 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∩ 𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3946 ⊆ wss 3947 Or wor 5586 [⊊] crpss 7708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-so 5588 df-xp 5681 df-rel 5682 df-rpss 7709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |