Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sorpssin | Structured version Visualization version GIF version |
Description: A chain of sets is closed under binary intersection. (Contributed by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
sorpssin | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∩ 𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 767 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ 𝐴) | |
2 | df-ss 3900 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∩ 𝐶) = 𝐵) | |
3 | eleq1 2826 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
4 | 2, 3 | sylbi 216 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
5 | 1, 4 | syl5ibrcom 246 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 → (𝐵 ∩ 𝐶) ∈ 𝐴)) |
6 | simprr 769 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ 𝐴) | |
7 | sseqin2 4146 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐶) = 𝐶) | |
8 | eleq1 2826 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐶 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
9 | 7, 8 | sylbi 216 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
10 | 6, 9 | syl5ibrcom 246 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 ⊆ 𝐵 → (𝐵 ∩ 𝐶) ∈ 𝐴)) |
11 | sorpssi 7560 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
12 | 5, 10, 11 | mpjaod 856 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∩ 𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 Or wor 5493 [⊊] crpss 7553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-so 5495 df-xp 5586 df-rel 5587 df-rpss 7554 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |