MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssin Structured version   Visualization version   GIF version

Theorem sorpssin 7562
Description: A chain of sets is closed under binary intersection. (Contributed by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
sorpssin (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶) ∈ 𝐴)

Proof of Theorem sorpssin
StepHypRef Expression
1 simprl 767 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐵𝐴)
2 df-ss 3900 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐵)
3 eleq1 2826 . . . 4 ((𝐵𝐶) = 𝐵 → ((𝐵𝐶) ∈ 𝐴𝐵𝐴))
42, 3sylbi 216 . . 3 (𝐵𝐶 → ((𝐵𝐶) ∈ 𝐴𝐵𝐴))
51, 4syl5ibrcom 246 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶 → (𝐵𝐶) ∈ 𝐴))
6 simprr 769 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐶𝐴)
7 sseqin2 4146 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐶)
8 eleq1 2826 . . . 4 ((𝐵𝐶) = 𝐶 → ((𝐵𝐶) ∈ 𝐴𝐶𝐴))
97, 8sylbi 216 . . 3 (𝐶𝐵 → ((𝐵𝐶) ∈ 𝐴𝐶𝐴))
106, 9syl5ibrcom 246 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶𝐵 → (𝐵𝐶) ∈ 𝐴))
11 sorpssi 7560 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))
125, 10, 11mpjaod 856 1 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cin 3882  wss 3883   Or wor 5493   [] crpss 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-so 5495  df-xp 5586  df-rel 5587  df-rpss 7554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator