| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sorpssin | Structured version Visualization version GIF version | ||
| Description: A chain of sets is closed under binary intersection. (Contributed by Mario Carneiro, 16-May-2015.) |
| Ref | Expression |
|---|---|
| sorpssin | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∩ 𝐶) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ 𝐴) | |
| 2 | dfss2 3949 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∩ 𝐶) = 𝐵) | |
| 3 | eleq1 2823 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐵 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
| 5 | 1, 4 | syl5ibrcom 247 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 → (𝐵 ∩ 𝐶) ∈ 𝐴)) |
| 6 | simprr 772 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ 𝐴) | |
| 7 | sseqin2 4203 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐶) = 𝐶) | |
| 8 | eleq1 2823 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) = 𝐶 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
| 9 | 7, 8 | sylbi 217 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐵 ∩ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
| 10 | 6, 9 | syl5ibrcom 247 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 ⊆ 𝐵 → (𝐵 ∩ 𝐶) ∈ 𝐴)) |
| 11 | sorpssi 7728 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
| 12 | 5, 10, 11 | mpjaod 860 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∩ 𝐶) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ⊆ wss 3931 Or wor 5565 [⊊] crpss 7721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-so 5567 df-xp 5665 df-rel 5666 df-rpss 7722 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |