![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sorpssi | Structured version Visualization version GIF version |
Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
sorpssi | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | solin 5575 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵)) | |
2 | elex 3466 | . . . . . 6 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
3 | 2 | ad2antll 728 | . . . . 5 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ V) |
4 | brrpssg 7667 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
6 | biidd 262 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ 𝐵 = 𝐶)) | |
7 | elex 3466 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) | |
8 | 7 | ad2antrl 727 | . . . . 5 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ V) |
9 | brrpssg 7667 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵)) |
11 | 5, 6, 10 | 3orbi123d 1436 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵) ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵))) |
12 | 1, 11 | mpbid 231 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵)) |
13 | sspsstri 4067 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵)) | |
14 | 12, 13 | sylibr 233 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∨ w3o 1087 = wceq 1542 ∈ wcel 2107 Vcvv 3448 ⊆ wss 3915 ⊊ wpss 3916 class class class wbr 5110 Or wor 5549 [⊊] crpss 7664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-so 5551 df-xp 5644 df-rel 5645 df-rpss 7665 |
This theorem is referenced by: sorpssun 7672 sorpssin 7673 sorpssuni 7674 sorpssint 7675 sorpsscmpl 7676 enfin2i 10264 fin1a2lem9 10351 fin1a2lem10 10352 fin1a2lem11 10353 fin1a2lem13 10355 ssmxidllem 32278 |
Copyright terms: Public domain | W3C validator |