MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssi Structured version   Visualization version   GIF version

Theorem sorpssi 7748
Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpssi (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))

Proof of Theorem sorpssi
StepHypRef Expression
1 solin 5623 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 [] 𝐶𝐵 = 𝐶𝐶 [] 𝐵))
2 elex 3499 . . . . . 6 (𝐶𝐴𝐶 ∈ V)
32ad2antll 729 . . . . 5 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐶 ∈ V)
4 brrpssg 7744 . . . . 5 (𝐶 ∈ V → (𝐵 [] 𝐶𝐵𝐶))
53, 4syl 17 . . . 4 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 [] 𝐶𝐵𝐶))
6 biidd 262 . . . 4 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶𝐵 = 𝐶))
7 elex 3499 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
87ad2antrl 728 . . . . 5 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐵 ∈ V)
9 brrpssg 7744 . . . . 5 (𝐵 ∈ V → (𝐶 [] 𝐵𝐶𝐵))
108, 9syl 17 . . . 4 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶 [] 𝐵𝐶𝐵))
115, 6, 103orbi123d 1434 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 [] 𝐶𝐵 = 𝐶𝐶 [] 𝐵) ↔ (𝐵𝐶𝐵 = 𝐶𝐶𝐵)))
121, 11mpbid 232 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐵 = 𝐶𝐶𝐵))
13 sspsstri 4115 . 2 ((𝐵𝐶𝐶𝐵) ↔ (𝐵𝐶𝐵 = 𝐶𝐶𝐵))
1412, 13sylibr 234 1 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  wpss 3964   class class class wbr 5148   Or wor 5596   [] crpss 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-so 5598  df-xp 5695  df-rel 5696  df-rpss 7742
This theorem is referenced by:  sorpssun  7749  sorpssin  7750  sorpssuni  7751  sorpssint  7752  sorpsscmpl  7753  enfin2i  10359  fin1a2lem9  10446  fin1a2lem10  10447  fin1a2lem11  10448  fin1a2lem13  10450  ssdifidllem  33464  ssmxidllem  33481
  Copyright terms: Public domain W3C validator