![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sorpssi | Structured version Visualization version GIF version |
Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
sorpssi | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | solin 5634 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵)) | |
2 | elex 3509 | . . . . . 6 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
3 | 2 | ad2antll 728 | . . . . 5 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ V) |
4 | brrpssg 7760 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
6 | biidd 262 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ 𝐵 = 𝐶)) | |
7 | elex 3509 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) | |
8 | 7 | ad2antrl 727 | . . . . 5 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ V) |
9 | brrpssg 7760 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵)) |
11 | 5, 6, 10 | 3orbi123d 1435 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵) ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵))) |
12 | 1, 11 | mpbid 232 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵)) |
13 | sspsstri 4128 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵)) | |
14 | 12, 13 | sylibr 234 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∨ w3o 1086 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ⊊ wpss 3977 class class class wbr 5166 Or wor 5606 [⊊] crpss 7757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-so 5608 df-xp 5706 df-rel 5707 df-rpss 7758 |
This theorem is referenced by: sorpssun 7765 sorpssin 7766 sorpssuni 7767 sorpssint 7768 sorpsscmpl 7769 enfin2i 10390 fin1a2lem9 10477 fin1a2lem10 10478 fin1a2lem11 10479 fin1a2lem13 10481 ssdifidllem 33449 ssmxidllem 33466 |
Copyright terms: Public domain | W3C validator |