| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sorpssi | Structured version Visualization version GIF version | ||
| Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| sorpssi | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | solin 5573 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵)) | |
| 2 | elex 3468 | . . . . . 6 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
| 3 | 2 | ad2antll 729 | . . . . 5 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ V) |
| 4 | brrpssg 7701 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
| 6 | biidd 262 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 7 | elex 3468 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) | |
| 8 | 7 | ad2antrl 728 | . . . . 5 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ V) |
| 9 | brrpssg 7701 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵)) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵)) |
| 11 | 5, 6, 10 | 3orbi123d 1437 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵) ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵))) |
| 12 | 1, 11 | mpbid 232 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵)) |
| 13 | sspsstri 4068 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵)) | |
| 14 | 12, 13 | sylibr 234 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ⊊ wpss 3915 class class class wbr 5107 Or wor 5545 [⊊] crpss 7698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-so 5547 df-xp 5644 df-rel 5645 df-rpss 7699 |
| This theorem is referenced by: sorpssun 7706 sorpssin 7707 sorpssuni 7708 sorpssint 7709 sorpsscmpl 7710 enfin2i 10274 fin1a2lem9 10361 fin1a2lem10 10362 fin1a2lem11 10363 fin1a2lem13 10365 ssdifidllem 33427 ssmxidllem 33444 |
| Copyright terms: Public domain | W3C validator |