![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sorpssi | Structured version Visualization version GIF version |
Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
sorpssi | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | solin 5391 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵)) | |
2 | elex 3455 | . . . . . 6 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
3 | 2 | ad2antll 725 | . . . . 5 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ V) |
4 | brrpssg 7314 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
6 | biidd 263 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ 𝐵 = 𝐶)) | |
7 | elex 3455 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) | |
8 | 7 | ad2antrl 724 | . . . . 5 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ V) |
9 | brrpssg 7314 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵)) |
11 | 5, 6, 10 | 3orbi123d 1427 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵) ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵))) |
12 | 1, 11 | mpbid 233 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵)) |
13 | sspsstri 4004 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵)) | |
14 | 12, 13 | sylibr 235 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 ∨ w3o 1079 = wceq 1522 ∈ wcel 2081 Vcvv 3437 ⊆ wss 3863 ⊊ wpss 3864 class class class wbr 4966 Or wor 5366 [⊊] crpss 7311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pr 5226 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-sn 4477 df-pr 4479 df-op 4483 df-br 4967 df-opab 5029 df-so 5368 df-xp 5454 df-rel 5455 df-rpss 7312 |
This theorem is referenced by: sorpssun 7319 sorpssin 7320 sorpssuni 7321 sorpssint 7322 sorpsscmpl 7323 enfin2i 9594 fin1a2lem9 9681 fin1a2lem10 9682 fin1a2lem11 9683 fin1a2lem13 9685 |
Copyright terms: Public domain | W3C validator |