Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sorpssi | Structured version Visualization version GIF version |
Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
sorpssi | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | solin 5519 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵)) | |
2 | elex 3440 | . . . . . 6 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
3 | 2 | ad2antll 725 | . . . . 5 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ V) |
4 | brrpssg 7556 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 [⊊] 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
6 | biidd 261 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ 𝐵 = 𝐶)) | |
7 | elex 3440 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) | |
8 | 7 | ad2antrl 724 | . . . . 5 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ V) |
9 | brrpssg 7556 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 [⊊] 𝐵 ↔ 𝐶 ⊊ 𝐵)) |
11 | 5, 6, 10 | 3orbi123d 1433 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵 [⊊] 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 [⊊] 𝐵) ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵))) |
12 | 1, 11 | mpbid 231 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵)) |
13 | sspsstri 4033 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 ⊊ 𝐵)) | |
14 | 12, 13 | sylibr 233 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ⊊ wpss 3884 class class class wbr 5070 Or wor 5493 [⊊] crpss 7553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-so 5495 df-xp 5586 df-rel 5587 df-rpss 7554 |
This theorem is referenced by: sorpssun 7561 sorpssin 7562 sorpssuni 7563 sorpssint 7564 sorpsscmpl 7565 enfin2i 10008 fin1a2lem9 10095 fin1a2lem10 10096 fin1a2lem11 10097 fin1a2lem13 10099 ssmxidllem 31543 |
Copyright terms: Public domain | W3C validator |