MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssi Structured version   Visualization version   GIF version

Theorem sorpssi 7705
Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpssi (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))

Proof of Theorem sorpssi
StepHypRef Expression
1 solin 5573 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 [] 𝐶𝐵 = 𝐶𝐶 [] 𝐵))
2 elex 3468 . . . . . 6 (𝐶𝐴𝐶 ∈ V)
32ad2antll 729 . . . . 5 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐶 ∈ V)
4 brrpssg 7701 . . . . 5 (𝐶 ∈ V → (𝐵 [] 𝐶𝐵𝐶))
53, 4syl 17 . . . 4 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 [] 𝐶𝐵𝐶))
6 biidd 262 . . . 4 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶𝐵 = 𝐶))
7 elex 3468 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
87ad2antrl 728 . . . . 5 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐵 ∈ V)
9 brrpssg 7701 . . . . 5 (𝐵 ∈ V → (𝐶 [] 𝐵𝐶𝐵))
108, 9syl 17 . . . 4 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶 [] 𝐵𝐶𝐵))
115, 6, 103orbi123d 1437 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 [] 𝐶𝐵 = 𝐶𝐶 [] 𝐵) ↔ (𝐵𝐶𝐵 = 𝐶𝐶𝐵)))
121, 11mpbid 232 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐵 = 𝐶𝐶𝐵))
13 sspsstri 4068 . 2 ((𝐵𝐶𝐶𝐵) ↔ (𝐵𝐶𝐵 = 𝐶𝐶𝐵))
1412, 13sylibr 234 1 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  wpss 3915   class class class wbr 5107   Or wor 5545   [] crpss 7698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-so 5547  df-xp 5644  df-rel 5645  df-rpss 7699
This theorem is referenced by:  sorpssun  7706  sorpssin  7707  sorpssuni  7708  sorpssint  7709  sorpsscmpl  7710  enfin2i  10274  fin1a2lem9  10361  fin1a2lem10  10362  fin1a2lem11  10363  fin1a2lem13  10365  ssdifidllem  33427  ssmxidllem  33444
  Copyright terms: Public domain W3C validator