MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssun Structured version   Visualization version   GIF version

Theorem sorpssun 7670
Description: A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
sorpssun (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶) ∈ 𝐴)

Proof of Theorem sorpssun
StepHypRef Expression
1 simprr 772 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐶𝐴)
2 ssequn1 4139 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
3 eleq1 2816 . . . 4 ((𝐵𝐶) = 𝐶 → ((𝐵𝐶) ∈ 𝐴𝐶𝐴))
42, 3sylbi 217 . . 3 (𝐵𝐶 → ((𝐵𝐶) ∈ 𝐴𝐶𝐴))
51, 4syl5ibrcom 247 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶 → (𝐵𝐶) ∈ 𝐴))
6 simprl 770 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐵𝐴)
7 ssequn2 4142 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
8 eleq1 2816 . . . 4 ((𝐵𝐶) = 𝐵 → ((𝐵𝐶) ∈ 𝐴𝐵𝐴))
97, 8sylbi 217 . . 3 (𝐶𝐵 → ((𝐵𝐶) ∈ 𝐴𝐵𝐴))
106, 9syl5ibrcom 247 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶𝐵 → (𝐵𝐶) ∈ 𝐴))
11 sorpssi 7669 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))
125, 10, 11mpjaod 860 1 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cun 3903  wss 3905   Or wor 5530   [] crpss 7662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-so 5532  df-xp 5629  df-rel 5630  df-rpss 7663
This theorem is referenced by:  finsschain  9268  lbsextlem2  21084  lbsextlem3  21085  filssufilg  23814
  Copyright terms: Public domain W3C validator