MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssun Structured version   Visualization version   GIF version

Theorem sorpssun 7743
Description: A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
sorpssun (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶) ∈ 𝐴)

Proof of Theorem sorpssun
StepHypRef Expression
1 simprr 771 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐶𝐴)
2 ssequn1 4182 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
3 eleq1 2817 . . . 4 ((𝐵𝐶) = 𝐶 → ((𝐵𝐶) ∈ 𝐴𝐶𝐴))
42, 3sylbi 216 . . 3 (𝐵𝐶 → ((𝐵𝐶) ∈ 𝐴𝐶𝐴))
51, 4syl5ibrcom 246 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶 → (𝐵𝐶) ∈ 𝐴))
6 simprl 769 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐵𝐴)
7 ssequn2 4185 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
8 eleq1 2817 . . . 4 ((𝐵𝐶) = 𝐵 → ((𝐵𝐶) ∈ 𝐴𝐵𝐴))
97, 8sylbi 216 . . 3 (𝐶𝐵 → ((𝐵𝐶) ∈ 𝐴𝐵𝐴))
106, 9syl5ibrcom 246 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶𝐵 → (𝐵𝐶) ∈ 𝐴))
11 sorpssi 7742 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))
125, 10, 11mpjaod 858 1 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  cun 3947  wss 3949   Or wor 5593   [] crpss 7735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-so 5595  df-xp 5688  df-rel 5689  df-rpss 7736
This theorem is referenced by:  finsschain  9393  lbsextlem2  21061  lbsextlem3  21062  filssufilg  23843
  Copyright terms: Public domain W3C validator