MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssun Structured version   Visualization version   GIF version

Theorem sorpssun 7615
Description: A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
sorpssun (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶) ∈ 𝐴)

Proof of Theorem sorpssun
StepHypRef Expression
1 simprr 771 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐶𝐴)
2 ssequn1 4120 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
3 eleq1 2824 . . . 4 ((𝐵𝐶) = 𝐶 → ((𝐵𝐶) ∈ 𝐴𝐶𝐴))
42, 3sylbi 216 . . 3 (𝐵𝐶 → ((𝐵𝐶) ∈ 𝐴𝐶𝐴))
51, 4syl5ibrcom 247 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶 → (𝐵𝐶) ∈ 𝐴))
6 simprl 769 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐵𝐴)
7 ssequn2 4123 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
8 eleq1 2824 . . . 4 ((𝐵𝐶) = 𝐵 → ((𝐵𝐶) ∈ 𝐴𝐵𝐴))
97, 8sylbi 216 . . 3 (𝐶𝐵 → ((𝐵𝐶) ∈ 𝐴𝐵𝐴))
106, 9syl5ibrcom 247 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶𝐵 → (𝐵𝐶) ∈ 𝐴))
11 sorpssi 7614 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))
125, 10, 11mpjaod 858 1 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  cun 3890  wss 3892   Or wor 5513   [] crpss 7607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-so 5515  df-xp 5606  df-rel 5607  df-rpss 7608
This theorem is referenced by:  finsschain  9170  lbsextlem2  20466  lbsextlem3  20467  filssufilg  23107
  Copyright terms: Public domain W3C validator