MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssun Structured version   Visualization version   GIF version

Theorem sorpssun 7718
Description: A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
sorpssun (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶) ∈ 𝐴)

Proof of Theorem sorpssun
StepHypRef Expression
1 simprr 772 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐶𝐴)
2 ssequn1 4159 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
3 eleq1 2821 . . . 4 ((𝐵𝐶) = 𝐶 → ((𝐵𝐶) ∈ 𝐴𝐶𝐴))
42, 3sylbi 217 . . 3 (𝐵𝐶 → ((𝐵𝐶) ∈ 𝐴𝐶𝐴))
51, 4syl5ibrcom 247 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶 → (𝐵𝐶) ∈ 𝐴))
6 simprl 770 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐵𝐴)
7 ssequn2 4162 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
8 eleq1 2821 . . . 4 ((𝐵𝐶) = 𝐵 → ((𝐵𝐶) ∈ 𝐴𝐵𝐴))
97, 8sylbi 217 . . 3 (𝐶𝐵 → ((𝐵𝐶) ∈ 𝐴𝐵𝐴))
106, 9syl5ibrcom 247 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶𝐵 → (𝐵𝐶) ∈ 𝐴))
11 sorpssi 7717 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))
125, 10, 11mpjaod 860 1 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cun 3922  wss 3924   Or wor 5557   [] crpss 7710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5117  df-opab 5179  df-so 5559  df-xp 5657  df-rel 5658  df-rpss 7711
This theorem is referenced by:  finsschain  9365  lbsextlem2  21105  lbsextlem3  21106  filssufilg  23834
  Copyright terms: Public domain W3C validator