| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sorpssun | Structured version Visualization version GIF version | ||
| Description: A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015.) |
| Ref | Expression |
|---|---|
| sorpssun | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ 𝐴) | |
| 2 | ssequn1 4136 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
| 3 | eleq1 2819 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) = 𝐶 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
| 5 | 1, 4 | syl5ibrcom 247 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 → (𝐵 ∪ 𝐶) ∈ 𝐴)) |
| 6 | simprl 770 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ 𝐴) | |
| 7 | ssequn2 4139 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
| 8 | eleq1 2819 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) = 𝐵 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 9 | 7, 8 | sylbi 217 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
| 10 | 6, 9 | syl5ibrcom 247 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 ⊆ 𝐵 → (𝐵 ∪ 𝐶) ∈ 𝐴)) |
| 11 | sorpssi 7662 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
| 12 | 5, 10, 11 | mpjaod 860 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 ⊆ wss 3902 Or wor 5523 [⊊] crpss 7655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-so 5525 df-xp 5622 df-rel 5623 df-rpss 7656 |
| This theorem is referenced by: finsschain 9243 lbsextlem2 21094 lbsextlem3 21095 filssufilg 23824 |
| Copyright terms: Public domain | W3C validator |