![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sorpssun | Structured version Visualization version GIF version |
Description: A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
sorpssun | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 771 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ 𝐴) | |
2 | ssequn1 4182 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
3 | eleq1 2817 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) = 𝐶 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
4 | 2, 3 | sylbi 216 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
5 | 1, 4 | syl5ibrcom 246 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 → (𝐵 ∪ 𝐶) ∈ 𝐴)) |
6 | simprl 769 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ 𝐴) | |
7 | ssequn2 4185 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
8 | eleq1 2817 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) = 𝐵 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
9 | 7, 8 | sylbi 216 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
10 | 6, 9 | syl5ibrcom 246 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 ⊆ 𝐵 → (𝐵 ∪ 𝐶) ∈ 𝐴)) |
11 | sorpssi 7742 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
12 | 5, 10, 11 | mpjaod 858 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∪ cun 3947 ⊆ wss 3949 Or wor 5593 [⊊] crpss 7735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-so 5595 df-xp 5688 df-rel 5689 df-rpss 7736 |
This theorem is referenced by: finsschain 9393 lbsextlem2 21061 lbsextlem3 21062 filssufilg 23843 |
Copyright terms: Public domain | W3C validator |