![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sorpssun | Structured version Visualization version GIF version |
Description: A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
sorpssun | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 789 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ 𝐴) | |
2 | ssequn1 4012 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
3 | eleq1 2894 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) = 𝐶 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
4 | 2, 3 | sylbi 209 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
5 | 1, 4 | syl5ibrcom 239 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 → (𝐵 ∪ 𝐶) ∈ 𝐴)) |
6 | simprl 787 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ 𝐴) | |
7 | ssequn2 4015 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
8 | eleq1 2894 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) = 𝐵 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
9 | 7, 8 | sylbi 209 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
10 | 6, 9 | syl5ibrcom 239 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 ⊆ 𝐵 → (𝐵 ∪ 𝐶) ∈ 𝐴)) |
11 | sorpssi 7208 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
12 | 5, 10, 11 | mpjaod 891 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∪ cun 3796 ⊆ wss 3798 Or wor 5264 [⊊] crpss 7201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-so 5266 df-xp 5352 df-rel 5353 df-rpss 7202 |
This theorem is referenced by: finsschain 8548 lbsextlem2 19527 lbsextlem3 19528 filssufilg 22092 |
Copyright terms: Public domain | W3C validator |