| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sorpssun | Structured version Visualization version GIF version | ||
| Description: A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015.) |
| Ref | Expression |
|---|---|
| sorpssun | ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐶 ∈ 𝐴) | |
| 2 | ssequn1 4135 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
| 3 | eleq1 2821 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) = 𝐶 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
| 5 | 1, 4 | syl5ibrcom 247 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 → (𝐵 ∪ 𝐶) ∈ 𝐴)) |
| 6 | simprl 770 | . . 3 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ 𝐴) | |
| 7 | ssequn2 4138 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
| 8 | eleq1 2821 | . . . 4 ⊢ ((𝐵 ∪ 𝐶) = 𝐵 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 9 | 7, 8 | sylbi 217 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐵 ∪ 𝐶) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
| 10 | 6, 9 | syl5ibrcom 247 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶 ⊆ 𝐵 → (𝐵 ∪ 𝐶) ∈ 𝐴)) |
| 11 | sorpssi 7668 | . 2 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
| 12 | 5, 10, 11 | mpjaod 860 | 1 ⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∪ 𝐶) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 ⊆ wss 3898 Or wor 5526 [⊊] crpss 7661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-so 5528 df-xp 5625 df-rel 5626 df-rpss 7662 |
| This theorem is referenced by: finsschain 9250 lbsextlem2 21098 lbsextlem3 21099 filssufilg 23827 |
| Copyright terms: Public domain | W3C validator |