Step | Hyp | Ref
| Expression |
1 | | iccssxr 13171 |
. . . 4
⊢ (-1[,]1)
⊆ ℝ* |
2 | | xrltso 12884 |
. . . 4
⊢ < Or
ℝ* |
3 | | soss 5524 |
. . . 4
⊢ ((-1[,]1)
⊆ ℝ* → ( < Or ℝ* → < Or
(-1[,]1))) |
4 | 1, 2, 3 | mp2 9 |
. . 3
⊢ < Or
(-1[,]1) |
5 | | sopo 5523 |
. . . 4
⊢ ( < Or
ℝ* → < Po ℝ*) |
6 | 2, 5 | ax-mp 5 |
. . 3
⊢ < Po
ℝ* |
7 | | xrhmeo.g |
. . . . 5
⊢ 𝐺 = (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
8 | | iccssxr 13171 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
9 | | neg1rr 12097 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℝ |
10 | | 1re 10984 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
11 | 9, 10 | elicc2i 13154 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (-1[,]1) ↔ (𝑦 ∈ ℝ ∧ -1 ≤
𝑦 ∧ 𝑦 ≤ 1)) |
12 | 11 | simp1bi 1144 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (-1[,]1) → 𝑦 ∈
ℝ) |
13 | 12 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (-1[,]1) ∧ 0 ≤
𝑦) → 𝑦 ∈
ℝ) |
14 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (-1[,]1) ∧ 0 ≤
𝑦) → 0 ≤ 𝑦) |
15 | 11 | simp3bi 1146 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (-1[,]1) → 𝑦 ≤ 1) |
16 | 15 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (-1[,]1) ∧ 0 ≤
𝑦) → 𝑦 ≤ 1) |
17 | | elicc01 13207 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0[,]1) ↔ (𝑦 ∈ ℝ ∧ 0 ≤
𝑦 ∧ 𝑦 ≤ 1)) |
18 | 13, 14, 16, 17 | syl3anbrc 1342 |
. . . . . . . 8
⊢ ((𝑦 ∈ (-1[,]1) ∧ 0 ≤
𝑦) → 𝑦 ∈
(0[,]1)) |
19 | | xrhmeo.f |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) |
20 | 19 | iccpnfcnv 24116 |
. . . . . . . . . . 11
⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑣 ∈ (0[,]+∞) ↦ if(𝑣 = +∞, 1, (𝑣 / (1 + 𝑣))))) |
21 | 20 | simpli 484 |
. . . . . . . . . 10
⊢ 𝐹:(0[,]1)–1-1-onto→(0[,]+∞) |
22 | | f1of 6725 |
. . . . . . . . . 10
⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞)) |
23 | 21, 22 | ax-mp 5 |
. . . . . . . . 9
⊢ 𝐹:(0[,]1)⟶(0[,]+∞) |
24 | 23 | ffvelrni 6969 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,]1) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
25 | 18, 24 | syl 17 |
. . . . . . 7
⊢ ((𝑦 ∈ (-1[,]1) ∧ 0 ≤
𝑦) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
26 | 8, 25 | sselid 3920 |
. . . . . 6
⊢ ((𝑦 ∈ (-1[,]1) ∧ 0 ≤
𝑦) → (𝐹‘𝑦) ∈
ℝ*) |
27 | 12 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → 𝑦 ∈
ℝ) |
28 | 27 | renegcld 11411 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → -𝑦 ∈
ℝ) |
29 | | 0re 10986 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
30 | | letric 11084 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 𝑦
∈ ℝ) → (0 ≤ 𝑦 ∨ 𝑦 ≤ 0)) |
31 | 29, 12, 30 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (-1[,]1) → (0 ≤
𝑦 ∨ 𝑦 ≤ 0)) |
32 | 31 | orcanai 1000 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → 𝑦 ≤ 0) |
33 | 27 | le0neg1d 11555 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → (𝑦 ≤ 0 ↔ 0 ≤ -𝑦)) |
34 | 32, 33 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → 0 ≤
-𝑦) |
35 | 11 | simp2bi 1145 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (-1[,]1) → -1 ≤
𝑦) |
36 | 35 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → -1 ≤
𝑦) |
37 | | lenegcon1 11488 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℝ ∧ 𝑦
∈ ℝ) → (-1 ≤ 𝑦 ↔ -𝑦 ≤ 1)) |
38 | 10, 27, 37 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → (-1 ≤
𝑦 ↔ -𝑦 ≤ 1)) |
39 | 36, 38 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → -𝑦 ≤ 1) |
40 | | elicc01 13207 |
. . . . . . . . . 10
⊢ (-𝑦 ∈ (0[,]1) ↔ (-𝑦 ∈ ℝ ∧ 0 ≤
-𝑦 ∧ -𝑦 ≤ 1)) |
41 | 28, 34, 39, 40 | syl3anbrc 1342 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → -𝑦 ∈
(0[,]1)) |
42 | 23 | ffvelrni 6969 |
. . . . . . . . 9
⊢ (-𝑦 ∈ (0[,]1) → (𝐹‘-𝑦) ∈ (0[,]+∞)) |
43 | 41, 42 | syl 17 |
. . . . . . . 8
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → (𝐹‘-𝑦) ∈ (0[,]+∞)) |
44 | 8, 43 | sselid 3920 |
. . . . . . 7
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → (𝐹‘-𝑦) ∈
ℝ*) |
45 | 44 | xnegcld 13043 |
. . . . . 6
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) →
-𝑒(𝐹‘-𝑦) ∈
ℝ*) |
46 | 26, 45 | ifclda 4495 |
. . . . 5
⊢ (𝑦 ∈ (-1[,]1) → if(0
≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) ∈
ℝ*) |
47 | 7, 46 | fmpti 6995 |
. . . 4
⊢ 𝐺:(-1[,]1)⟶ℝ* |
48 | | frn 6616 |
. . . . . 6
⊢ (𝐺:(-1[,]1)⟶ℝ* →
ran 𝐺 ⊆
ℝ*) |
49 | 47, 48 | ax-mp 5 |
. . . . 5
⊢ ran 𝐺 ⊆
ℝ* |
50 | | ssabral 3997 |
. . . . . . 7
⊢
(ℝ* ⊆ {𝑧 ∣ ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))} ↔ ∀𝑧 ∈ ℝ* ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
51 | | 0le1 11507 |
. . . . . . . . . . . . 13
⊢ 0 ≤
1 |
52 | | le0neg2 11493 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ → (0 ≤ 1 ↔ -1 ≤ 0)) |
53 | 10, 52 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (0 ≤ 1
↔ -1 ≤ 0) |
54 | 51, 53 | mpbi 229 |
. . . . . . . . . . . 12
⊢ -1 ≤
0 |
55 | | 1le1 11612 |
. . . . . . . . . . . 12
⊢ 1 ≤
1 |
56 | | iccss 13156 |
. . . . . . . . . . . 12
⊢ (((-1
∈ ℝ ∧ 1 ∈ ℝ) ∧ (-1 ≤ 0 ∧ 1 ≤ 1)) →
(0[,]1) ⊆ (-1[,]1)) |
57 | 9, 10, 54, 55, 56 | mp4an 690 |
. . . . . . . . . . 11
⊢ (0[,]1)
⊆ (-1[,]1) |
58 | | elxrge0 13198 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (0[,]+∞) ↔
(𝑧 ∈
ℝ* ∧ 0 ≤ 𝑧)) |
59 | | f1ocnv 6737 |
. . . . . . . . . . . . . 14
⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → ◡𝐹:(0[,]+∞)–1-1-onto→(0[,]1)) |
60 | | f1of 6725 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹:(0[,]+∞)–1-1-onto→(0[,]1) → ◡𝐹:(0[,]+∞)⟶(0[,]1)) |
61 | 21, 59, 60 | mp2b 10 |
. . . . . . . . . . . . 13
⊢ ◡𝐹:(0[,]+∞)⟶(0[,]1) |
62 | 61 | ffvelrni 6969 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (0[,]+∞) →
(◡𝐹‘𝑧) ∈ (0[,]1)) |
63 | 58, 62 | sylbir 234 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
(◡𝐹‘𝑧) ∈ (0[,]1)) |
64 | 57, 63 | sselid 3920 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
(◡𝐹‘𝑧) ∈ (-1[,]1)) |
65 | | elicc01 13207 |
. . . . . . . . . . . 12
⊢ ((◡𝐹‘𝑧) ∈ (0[,]1) ↔ ((◡𝐹‘𝑧) ∈ ℝ ∧ 0 ≤ (◡𝐹‘𝑧) ∧ (◡𝐹‘𝑧) ≤ 1)) |
66 | 65 | simp2bi 1145 |
. . . . . . . . . . 11
⊢ ((◡𝐹‘𝑧) ∈ (0[,]1) → 0 ≤ (◡𝐹‘𝑧)) |
67 | 63, 66 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) → 0
≤ (◡𝐹‘𝑧)) |
68 | 58 | biimpri 227 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
𝑧 ∈
(0[,]+∞)) |
69 | | f1ocnvfv2 7158 |
. . . . . . . . . . . 12
⊢ ((𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
70 | 21, 68, 69 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
(𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
71 | 70 | eqcomd 2745 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
𝑧 = (𝐹‘(◡𝐹‘𝑧))) |
72 | | breq2 5079 |
. . . . . . . . . . . 12
⊢ (𝑦 = (◡𝐹‘𝑧) → (0 ≤ 𝑦 ↔ 0 ≤ (◡𝐹‘𝑧))) |
73 | | fveq2 6783 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (◡𝐹‘𝑧) → (𝐹‘𝑦) = (𝐹‘(◡𝐹‘𝑧))) |
74 | 73 | eqeq2d 2750 |
. . . . . . . . . . . 12
⊢ (𝑦 = (◡𝐹‘𝑧) → (𝑧 = (𝐹‘𝑦) ↔ 𝑧 = (𝐹‘(◡𝐹‘𝑧)))) |
75 | 72, 74 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑦 = (◡𝐹‘𝑧) → ((0 ≤ 𝑦 ∧ 𝑧 = (𝐹‘𝑦)) ↔ (0 ≤ (◡𝐹‘𝑧) ∧ 𝑧 = (𝐹‘(◡𝐹‘𝑧))))) |
76 | 75 | rspcev 3562 |
. . . . . . . . . 10
⊢ (((◡𝐹‘𝑧) ∈ (-1[,]1) ∧ (0 ≤ (◡𝐹‘𝑧) ∧ 𝑧 = (𝐹‘(◡𝐹‘𝑧)))) → ∃𝑦 ∈ (-1[,]1)(0 ≤ 𝑦 ∧ 𝑧 = (𝐹‘𝑦))) |
77 | 64, 67, 71, 76 | syl12anc 834 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
∃𝑦 ∈ (-1[,]1)(0
≤ 𝑦 ∧ 𝑧 = (𝐹‘𝑦))) |
78 | | iftrue 4466 |
. . . . . . . . . . . 12
⊢ (0 ≤
𝑦 → if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) = (𝐹‘𝑦)) |
79 | 78 | eqeq2d 2750 |
. . . . . . . . . . 11
⊢ (0 ≤
𝑦 → (𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) ↔ 𝑧 = (𝐹‘𝑦))) |
80 | 79 | biimpar 478 |
. . . . . . . . . 10
⊢ ((0 ≤
𝑦 ∧ 𝑧 = (𝐹‘𝑦)) → 𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
81 | 80 | reximi 3179 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
(-1[,]1)(0 ≤ 𝑦 ∧
𝑧 = (𝐹‘𝑦)) → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
82 | 77, 81 | syl 17 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
∃𝑦 ∈
(-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
83 | | xnegcl 12956 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℝ*
→ -𝑒𝑧 ∈ ℝ*) |
84 | 83 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ -𝑒𝑧 ∈ ℝ*) |
85 | | 0xr 11031 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ* |
86 | | xrletri 12896 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (0 ≤
𝑧 ∨ 𝑧 ≤ 0)) |
87 | 85, 86 | mpan 687 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℝ*
→ (0 ≤ 𝑧 ∨ 𝑧 ≤ 0)) |
88 | 87 | ord 861 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℝ*
→ (¬ 0 ≤ 𝑧
→ 𝑧 ≤
0)) |
89 | | xle0neg1 12964 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℝ*
→ (𝑧 ≤ 0 ↔ 0
≤ -𝑒𝑧)) |
90 | 88, 89 | sylibd 238 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℝ*
→ (¬ 0 ≤ 𝑧
→ 0 ≤ -𝑒𝑧)) |
91 | 90 | imp 407 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ 0 ≤ -𝑒𝑧) |
92 | | elxrge0 13198 |
. . . . . . . . . . . . . . 15
⊢
(-𝑒𝑧 ∈ (0[,]+∞) ↔
(-𝑒𝑧
∈ ℝ* ∧ 0 ≤ -𝑒𝑧)) |
93 | 84, 91, 92 | sylanbrc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ -𝑒𝑧 ∈ (0[,]+∞)) |
94 | 61 | ffvelrni 6969 |
. . . . . . . . . . . . . 14
⊢
(-𝑒𝑧 ∈ (0[,]+∞) → (◡𝐹‘-𝑒𝑧) ∈
(0[,]1)) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (◡𝐹‘-𝑒𝑧) ∈
(0[,]1)) |
96 | 57, 95 | sselid 3920 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (◡𝐹‘-𝑒𝑧) ∈
(-1[,]1)) |
97 | | iccssre 13170 |
. . . . . . . . . . . . . . 15
⊢ ((-1
∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆
ℝ) |
98 | 9, 10, 97 | mp2an 689 |
. . . . . . . . . . . . . 14
⊢ (-1[,]1)
⊆ ℝ |
99 | 98, 96 | sselid 3920 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (◡𝐹‘-𝑒𝑧) ∈
ℝ) |
100 | | iccneg 13213 |
. . . . . . . . . . . . . 14
⊢ ((-1
∈ ℝ ∧ 1 ∈ ℝ ∧ (◡𝐹‘-𝑒𝑧) ∈ ℝ) → ((◡𝐹‘-𝑒𝑧) ∈ (-1[,]1) ↔ -(◡𝐹‘-𝑒𝑧) ∈
(-1[,]--1))) |
101 | 9, 10, 100 | mp3an12 1450 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹‘-𝑒𝑧) ∈ ℝ → ((◡𝐹‘-𝑒𝑧) ∈ (-1[,]1) ↔ -(◡𝐹‘-𝑒𝑧) ∈
(-1[,]--1))) |
102 | 99, 101 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ((◡𝐹‘-𝑒𝑧) ∈ (-1[,]1) ↔ -(◡𝐹‘-𝑒𝑧) ∈
(-1[,]--1))) |
103 | 96, 102 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ -(◡𝐹‘-𝑒𝑧) ∈
(-1[,]--1)) |
104 | | negneg1e1 12100 |
. . . . . . . . . . . 12
⊢ --1 =
1 |
105 | 104 | oveq2i 7295 |
. . . . . . . . . . 11
⊢
(-1[,]--1) = (-1[,]1) |
106 | 103, 105 | eleqtrdi 2850 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ -(◡𝐹‘-𝑒𝑧) ∈
(-1[,]1)) |
107 | | xle0neg2 12965 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ℝ*
→ (0 ≤ 𝑧 ↔
-𝑒𝑧 ≤
0)) |
108 | 107 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ℝ*
→ (¬ 0 ≤ 𝑧
↔ ¬ -𝑒𝑧 ≤ 0)) |
109 | 108 | biimpa 477 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ¬ -𝑒𝑧 ≤ 0) |
110 | | f1ocnvfv2 7158 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧
-𝑒𝑧
∈ (0[,]+∞)) → (𝐹‘(◡𝐹‘-𝑒𝑧)) = -𝑒𝑧) |
111 | 21, 93, 110 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (𝐹‘(◡𝐹‘-𝑒𝑧)) = -𝑒𝑧) |
112 | | 0elunit 13210 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
(0[,]1) |
113 | | ax-1ne0 10949 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ≠
0 |
114 | | neeq2 3008 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 0 → (1 ≠ 𝑥 ↔ 1 ≠
0)) |
115 | 113, 114 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 0 → 1 ≠ 𝑥) |
116 | 115 | necomd 3000 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 0 → 𝑥 ≠ 1) |
117 | | ifnefalse 4472 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ≠ 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥))) |
118 | 116, 117 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 0 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥))) |
119 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 0 → 𝑥 = 0) |
120 | | oveq2 7292 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 0 → (1 − 𝑥) = (1 −
0)) |
121 | | 1m0e1 12103 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1
− 0) = 1 |
122 | 120, 121 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 0 → (1 − 𝑥) = 1) |
123 | 119, 122 | oveq12d 7302 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 0 → (𝑥 / (1 − 𝑥)) = (0 / 1)) |
124 | | ax-1cn 10938 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
ℂ |
125 | 124, 113 | div0i 11718 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 / 1) =
0 |
126 | 123, 125 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 0 → (𝑥 / (1 − 𝑥)) = 0) |
127 | 118, 126 | eqtrd 2779 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 0 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = 0) |
128 | | c0ex 10978 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
129 | 127, 19, 128 | fvmpt 6884 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
(0[,]1) → (𝐹‘0)
= 0) |
130 | 112, 129 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘0) = 0 |
131 | 130 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (𝐹‘0) =
0) |
132 | 111, 131 | breq12d 5088 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ((𝐹‘(◡𝐹‘-𝑒𝑧)) ≤ (𝐹‘0) ↔ -𝑒𝑧 ≤ 0)) |
133 | 109, 132 | mtbird 325 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ¬ (𝐹‘(◡𝐹‘-𝑒𝑧)) ≤ (𝐹‘0)) |
134 | | eqid 2739 |
. . . . . . . . . . . . . . . 16
⊢
((ordTop‘ ≤ ) ↾t (0[,]+∞)) =
((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
135 | 19, 134 | iccpnfhmeo 24117 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) ∧ 𝐹
∈ (IIHomeo((ordTop‘ ≤ ) ↾t
(0[,]+∞)))) |
136 | 135 | simpli 484 |
. . . . . . . . . . . . . 14
⊢ 𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) |
137 | | iccssxr 13171 |
. . . . . . . . . . . . . . 15
⊢ (0[,]1)
⊆ ℝ* |
138 | 137, 8 | pm3.2i 471 |
. . . . . . . . . . . . . 14
⊢ ((0[,]1)
⊆ ℝ* ∧ (0[,]+∞) ⊆
ℝ*) |
139 | | leisorel 14183 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) ∧ ((0[,]1) ⊆ ℝ* ∧ (0[,]+∞)
⊆ ℝ*) ∧ ((◡𝐹‘-𝑒𝑧) ∈ (0[,]1) ∧ 0 ∈
(0[,]1))) → ((◡𝐹‘-𝑒𝑧) ≤ 0 ↔ (𝐹‘(◡𝐹‘-𝑒𝑧)) ≤ (𝐹‘0))) |
140 | 136, 138,
139 | mp3an12 1450 |
. . . . . . . . . . . . 13
⊢ (((◡𝐹‘-𝑒𝑧) ∈ (0[,]1) ∧ 0 ∈
(0[,]1)) → ((◡𝐹‘-𝑒𝑧) ≤ 0 ↔ (𝐹‘(◡𝐹‘-𝑒𝑧)) ≤ (𝐹‘0))) |
141 | 95, 112, 140 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ((◡𝐹‘-𝑒𝑧) ≤ 0 ↔ (𝐹‘(◡𝐹‘-𝑒𝑧)) ≤ (𝐹‘0))) |
142 | 133, 141 | mtbird 325 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ¬ (◡𝐹‘-𝑒𝑧) ≤ 0) |
143 | 99 | le0neg1d 11555 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ((◡𝐹‘-𝑒𝑧) ≤ 0 ↔ 0 ≤ -(◡𝐹‘-𝑒𝑧))) |
144 | 142, 143 | mtbid 324 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ¬ 0 ≤ -(◡𝐹‘-𝑒𝑧)) |
145 | | unitssre 13240 |
. . . . . . . . . . . . . . . . 17
⊢ (0[,]1)
⊆ ℝ |
146 | 145, 95 | sselid 3920 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (◡𝐹‘-𝑒𝑧) ∈
ℝ) |
147 | 146 | recnd 11012 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (◡𝐹‘-𝑒𝑧) ∈
ℂ) |
148 | 147 | negnegd 11332 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ --(◡𝐹‘-𝑒𝑧) = (◡𝐹‘-𝑒𝑧)) |
149 | 148 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (𝐹‘--(◡𝐹‘-𝑒𝑧)) = (𝐹‘(◡𝐹‘-𝑒𝑧))) |
150 | 149, 111 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (𝐹‘--(◡𝐹‘-𝑒𝑧)) = -𝑒𝑧) |
151 | | xnegeq 12950 |
. . . . . . . . . . . 12
⊢ ((𝐹‘--(◡𝐹‘-𝑒𝑧)) = -𝑒𝑧 →
-𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧)) =
-𝑒-𝑒𝑧) |
152 | 150, 151 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ -𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧)) =
-𝑒-𝑒𝑧) |
153 | | xnegneg 12957 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℝ*
→ -𝑒-𝑒𝑧 = 𝑧) |
154 | 153 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ -𝑒-𝑒𝑧 = 𝑧) |
155 | 152, 154 | eqtr2d 2780 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ 𝑧 =
-𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧))) |
156 | | breq2 5079 |
. . . . . . . . . . . . 13
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) → (0 ≤ 𝑦 ↔ 0 ≤ -(◡𝐹‘-𝑒𝑧))) |
157 | 156 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) → (¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ -(◡𝐹‘-𝑒𝑧))) |
158 | | negeq 11222 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) → -𝑦 = --(◡𝐹‘-𝑒𝑧)) |
159 | 158 | fveq2d 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) → (𝐹‘-𝑦) = (𝐹‘--(◡𝐹‘-𝑒𝑧))) |
160 | | xnegeq 12950 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘-𝑦) = (𝐹‘--(◡𝐹‘-𝑒𝑧)) →
-𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧))) |
161 | 159, 160 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) →
-𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧))) |
162 | 161 | eqeq2d 2750 |
. . . . . . . . . . . 12
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) → (𝑧 = -𝑒(𝐹‘-𝑦) ↔ 𝑧 = -𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧)))) |
163 | 157, 162 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) → ((¬ 0 ≤ 𝑦 ∧ 𝑧 = -𝑒(𝐹‘-𝑦)) ↔ (¬ 0 ≤ -(◡𝐹‘-𝑒𝑧) ∧ 𝑧 = -𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧))))) |
164 | 163 | rspcev 3562 |
. . . . . . . . . 10
⊢ ((-(◡𝐹‘-𝑒𝑧) ∈ (-1[,]1) ∧ (¬ 0
≤ -(◡𝐹‘-𝑒𝑧) ∧ 𝑧 = -𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧)))) → ∃𝑦 ∈ (-1[,]1)(¬ 0 ≤
𝑦 ∧ 𝑧 = -𝑒(𝐹‘-𝑦))) |
165 | 106, 144,
155, 164 | syl12anc 834 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ∃𝑦 ∈
(-1[,]1)(¬ 0 ≤ 𝑦
∧ 𝑧 =
-𝑒(𝐹‘-𝑦))) |
166 | | iffalse 4469 |
. . . . . . . . . . . 12
⊢ (¬ 0
≤ 𝑦 → if(0 ≤
𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) = -𝑒(𝐹‘-𝑦)) |
167 | 166 | eqeq2d 2750 |
. . . . . . . . . . 11
⊢ (¬ 0
≤ 𝑦 → (𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) ↔ 𝑧 = -𝑒(𝐹‘-𝑦))) |
168 | 167 | biimpar 478 |
. . . . . . . . . 10
⊢ ((¬ 0
≤ 𝑦 ∧ 𝑧 = -𝑒(𝐹‘-𝑦)) → 𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
169 | 168 | reximi 3179 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
(-1[,]1)(¬ 0 ≤ 𝑦
∧ 𝑧 =
-𝑒(𝐹‘-𝑦)) → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
170 | 165, 169 | syl 17 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ∃𝑦 ∈
(-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
171 | 82, 170 | pm2.61dan 810 |
. . . . . . 7
⊢ (𝑧 ∈ ℝ*
→ ∃𝑦 ∈
(-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
172 | 50, 171 | mprgbir 3080 |
. . . . . 6
⊢
ℝ* ⊆ {𝑧 ∣ ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))} |
173 | 7 | rnmpt 5867 |
. . . . . 6
⊢ ran 𝐺 = {𝑧 ∣ ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))} |
174 | 172, 173 | sseqtrri 3959 |
. . . . 5
⊢
ℝ* ⊆ ran 𝐺 |
175 | 49, 174 | eqssi 3938 |
. . . 4
⊢ ran 𝐺 =
ℝ* |
176 | | dffo2 6701 |
. . . 4
⊢ (𝐺:(-1[,]1)–onto→ℝ* ↔ (𝐺:(-1[,]1)⟶ℝ* ∧
ran 𝐺 =
ℝ*)) |
177 | 47, 175, 176 | mpbir2an 708 |
. . 3
⊢ 𝐺:(-1[,]1)–onto→ℝ* |
178 | | breq1 5078 |
. . . . . . 7
⊢ ((𝐹‘𝑧) = if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) → ((𝐹‘𝑧) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)) ↔ if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)))) |
179 | | breq1 5078 |
. . . . . . 7
⊢
(-𝑒(𝐹‘-𝑧) = if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) → (-𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)) ↔ if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)))) |
180 | | simpl3 1192 |
. . . . . . . . 9
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 < 𝑤) |
181 | | simpl1 1190 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ∈ (-1[,]1)) |
182 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 0 ≤ 𝑧) |
183 | | breq2 5079 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (0 ≤ 𝑦 ↔ 0 ≤ 𝑧)) |
184 | | eleq1w 2822 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑦 ∈ (0[,]1) ↔ 𝑧 ∈ (0[,]1))) |
185 | 183, 184 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → ((0 ≤ 𝑦 → 𝑦 ∈ (0[,]1)) ↔ (0 ≤ 𝑧 → 𝑧 ∈ (0[,]1)))) |
186 | 18 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (-1[,]1) → (0 ≤
𝑦 → 𝑦 ∈ (0[,]1))) |
187 | 185, 186 | vtoclga 3514 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (-1[,]1) → (0 ≤
𝑧 → 𝑧 ∈ (0[,]1))) |
188 | 181, 182,
187 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ∈ (0[,]1)) |
189 | | simpl2 1191 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑤 ∈ (-1[,]1)) |
190 | 29 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 0 ∈ ℝ) |
191 | 98, 181 | sselid 3920 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ∈ ℝ) |
192 | 98, 189 | sselid 3920 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑤 ∈ ℝ) |
193 | 191, 192,
180 | ltled 11132 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ≤ 𝑤) |
194 | 190, 191,
192, 182, 193 | letrd 11141 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 0 ≤ 𝑤) |
195 | | breq2 5079 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (0 ≤ 𝑦 ↔ 0 ≤ 𝑤)) |
196 | | eleq1w 2822 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑦 ∈ (0[,]1) ↔ 𝑤 ∈ (0[,]1))) |
197 | 195, 196 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → ((0 ≤ 𝑦 → 𝑦 ∈ (0[,]1)) ↔ (0 ≤ 𝑤 → 𝑤 ∈ (0[,]1)))) |
198 | 197, 186 | vtoclga 3514 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ (-1[,]1) → (0 ≤
𝑤 → 𝑤 ∈ (0[,]1))) |
199 | 189, 194,
198 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑤 ∈ (0[,]1)) |
200 | | isorel 7206 |
. . . . . . . . . . 11
⊢ ((𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) ∧ (𝑧
∈ (0[,]1) ∧ 𝑤
∈ (0[,]1))) → (𝑧
< 𝑤 ↔ (𝐹‘𝑧) < (𝐹‘𝑤))) |
201 | 136, 200 | mpan 687 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 ↔ (𝐹‘𝑧) < (𝐹‘𝑤))) |
202 | 188, 199,
201 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → (𝑧 < 𝑤 ↔ (𝐹‘𝑧) < (𝐹‘𝑤))) |
203 | 180, 202 | mpbid 231 |
. . . . . . . 8
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → (𝐹‘𝑧) < (𝐹‘𝑤)) |
204 | 194 | iftrued 4468 |
. . . . . . . 8
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)) = (𝐹‘𝑤)) |
205 | 203, 204 | breqtrrd 5103 |
. . . . . . 7
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → (𝐹‘𝑧) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤))) |
206 | | breq2 5079 |
. . . . . . . 8
⊢ ((𝐹‘𝑤) = if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)) → (-𝑒(𝐹‘-𝑧) < (𝐹‘𝑤) ↔ -𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)))) |
207 | | breq2 5079 |
. . . . . . . 8
⊢
(-𝑒(𝐹‘-𝑤) = if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)) → (-𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤) ↔ -𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)))) |
208 | | simpl1 1190 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → 𝑧 ∈ (-1[,]1)) |
209 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → ¬ 0 ≤ 𝑧) |
210 | 183 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑧)) |
211 | | negeq 11222 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → -𝑦 = -𝑧) |
212 | 211 | eleq1d 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (-𝑦 ∈ (0[,]1) ↔ -𝑧 ∈ (0[,]1))) |
213 | 210, 212 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → ((¬ 0 ≤ 𝑦 → -𝑦 ∈ (0[,]1)) ↔ (¬ 0 ≤ 𝑧 → -𝑧 ∈ (0[,]1)))) |
214 | 41 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (-1[,]1) → (¬ 0
≤ 𝑦 → -𝑦 ∈
(0[,]1))) |
215 | 213, 214 | vtoclga 3514 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (-1[,]1) → (¬ 0
≤ 𝑧 → -𝑧 ∈
(0[,]1))) |
216 | 208, 209,
215 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → -𝑧 ∈ (0[,]1)) |
217 | 216 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑧 ∈ (0[,]1)) |
218 | 23 | ffvelrni 6969 |
. . . . . . . . . . . 12
⊢ (-𝑧 ∈ (0[,]1) → (𝐹‘-𝑧) ∈ (0[,]+∞)) |
219 | 217, 218 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈ (0[,]+∞)) |
220 | 8, 219 | sselid 3920 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈
ℝ*) |
221 | 220 | xnegcld 13043 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) ∈
ℝ*) |
222 | 85 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 ∈
ℝ*) |
223 | | simpll2 1212 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑤 ∈ (-1[,]1)) |
224 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 ≤ 𝑤) |
225 | 223, 224,
198 | sylc 65 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑤 ∈ (0[,]1)) |
226 | 23 | ffvelrni 6969 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ (0[,]1) → (𝐹‘𝑤) ∈ (0[,]+∞)) |
227 | 225, 226 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘𝑤) ∈ (0[,]+∞)) |
228 | 8, 227 | sselid 3920 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘𝑤) ∈
ℝ*) |
229 | 209 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → ¬ 0 ≤ 𝑧) |
230 | | simpll1 1211 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑧 ∈ (-1[,]1)) |
231 | 98, 230 | sselid 3920 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑧 ∈ ℝ) |
232 | | ltnle 11063 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑧 < 0
↔ ¬ 0 ≤ 𝑧)) |
233 | 231, 29, 232 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝑧 < 0 ↔ ¬ 0 ≤ 𝑧)) |
234 | 229, 233 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑧 < 0) |
235 | 231 | lt0neg1d 11553 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝑧 < 0 ↔ 0 < -𝑧)) |
236 | 234, 235 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 < -𝑧) |
237 | | isorel 7206 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) ∧ (0 ∈ (0[,]1) ∧ -𝑧 ∈ (0[,]1))) → (0 < -𝑧 ↔ (𝐹‘0) < (𝐹‘-𝑧))) |
238 | 136, 237 | mpan 687 |
. . . . . . . . . . . . 13
⊢ ((0
∈ (0[,]1) ∧ -𝑧
∈ (0[,]1)) → (0 < -𝑧 ↔ (𝐹‘0) < (𝐹‘-𝑧))) |
239 | 112, 217,
238 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (0 < -𝑧 ↔ (𝐹‘0) < (𝐹‘-𝑧))) |
240 | 236, 239 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘0) < (𝐹‘-𝑧)) |
241 | 130, 240 | eqbrtrrid 5111 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 < (𝐹‘-𝑧)) |
242 | | xlt0neg2 12963 |
. . . . . . . . . . 11
⊢ ((𝐹‘-𝑧) ∈ ℝ* → (0 <
(𝐹‘-𝑧) ↔
-𝑒(𝐹‘-𝑧) < 0)) |
243 | 220, 242 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (0 < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < 0)) |
244 | 241, 243 | mpbid 231 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) < 0) |
245 | | elxrge0 13198 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) ↔ ((𝐹‘𝑤) ∈ ℝ* ∧ 0 ≤
(𝐹‘𝑤))) |
246 | 245 | simprbi 497 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝑤)) |
247 | 227, 246 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 ≤ (𝐹‘𝑤)) |
248 | 221, 222,
228, 244, 247 | xrltletrd 12904 |
. . . . . . . 8
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) < (𝐹‘𝑤)) |
249 | | simpll3 1213 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑧 < 𝑤) |
250 | | simpll1 1211 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑧 ∈ (-1[,]1)) |
251 | 98, 250 | sselid 3920 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑧 ∈ ℝ) |
252 | | simpll2 1212 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑤 ∈ (-1[,]1)) |
253 | 98, 252 | sselid 3920 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑤 ∈ ℝ) |
254 | 251, 253 | ltnegd 11562 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝑧 < 𝑤 ↔ -𝑤 < -𝑧)) |
255 | 249, 254 | mpbid 231 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑤 < -𝑧) |
256 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → ¬ 0 ≤ 𝑤) |
257 | 195 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑤)) |
258 | | negeq 11222 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑤 → -𝑦 = -𝑤) |
259 | 258 | eleq1d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (-𝑦 ∈ (0[,]1) ↔ -𝑤 ∈ (0[,]1))) |
260 | 257, 259 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → ((¬ 0 ≤ 𝑦 → -𝑦 ∈ (0[,]1)) ↔ (¬ 0 ≤ 𝑤 → -𝑤 ∈ (0[,]1)))) |
261 | 260, 214 | vtoclga 3514 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (-1[,]1) → (¬ 0
≤ 𝑤 → -𝑤 ∈
(0[,]1))) |
262 | 252, 256,
261 | sylc 65 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑤 ∈ (0[,]1)) |
263 | 216 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑧 ∈ (0[,]1)) |
264 | | isorel 7206 |
. . . . . . . . . . . 12
⊢ ((𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) ∧ (-𝑤
∈ (0[,]1) ∧ -𝑧
∈ (0[,]1))) → (-𝑤
< -𝑧 ↔ (𝐹‘-𝑤) < (𝐹‘-𝑧))) |
265 | 136, 264 | mpan 687 |
. . . . . . . . . . 11
⊢ ((-𝑤 ∈ (0[,]1) ∧ -𝑧 ∈ (0[,]1)) → (-𝑤 < -𝑧 ↔ (𝐹‘-𝑤) < (𝐹‘-𝑧))) |
266 | 262, 263,
265 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (-𝑤 < -𝑧 ↔ (𝐹‘-𝑤) < (𝐹‘-𝑧))) |
267 | 255, 266 | mpbid 231 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑤) < (𝐹‘-𝑧)) |
268 | 23 | ffvelrni 6969 |
. . . . . . . . . . . 12
⊢ (-𝑤 ∈ (0[,]1) → (𝐹‘-𝑤) ∈ (0[,]+∞)) |
269 | 262, 268 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑤) ∈ (0[,]+∞)) |
270 | 8, 269 | sselid 3920 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑤) ∈
ℝ*) |
271 | 263, 218 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈ (0[,]+∞)) |
272 | 8, 271 | sselid 3920 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈
ℝ*) |
273 | | xltneg 12960 |
. . . . . . . . . 10
⊢ (((𝐹‘-𝑤) ∈ ℝ* ∧ (𝐹‘-𝑧) ∈ ℝ*) → ((𝐹‘-𝑤) < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤))) |
274 | 270, 272,
273 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → ((𝐹‘-𝑤) < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤))) |
275 | 267, 274 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤)) |
276 | 206, 207,
248, 275 | ifbothda 4498 |
. . . . . . 7
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → -𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤))) |
277 | 178, 179,
205, 276 | ifbothda 4498 |
. . . . . 6
⊢ ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) → if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤))) |
278 | 277 | 3expia 1120 |
. . . . 5
⊢ ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1)) → (𝑧 < 𝑤 → if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)))) |
279 | | fveq2 6783 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
280 | 211 | fveq2d 6787 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝐹‘-𝑦) = (𝐹‘-𝑧)) |
281 | | xnegeq 12950 |
. . . . . . . . 9
⊢ ((𝐹‘-𝑦) = (𝐹‘-𝑧) → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑧)) |
282 | 280, 281 | syl 17 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑧)) |
283 | 183, 279,
282 | ifbieq12d 4488 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) = if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧))) |
284 | | fvex 6796 |
. . . . . . . 8
⊢ (𝐹‘𝑧) ∈ V |
285 | | xnegex 12951 |
. . . . . . . 8
⊢
-𝑒(𝐹‘-𝑧) ∈ V |
286 | 284, 285 | ifex 4510 |
. . . . . . 7
⊢ if(0 ≤
𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) ∈ V |
287 | 283, 7, 286 | fvmpt 6884 |
. . . . . 6
⊢ (𝑧 ∈ (-1[,]1) → (𝐺‘𝑧) = if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧))) |
288 | | fveq2 6783 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) |
289 | 258 | fveq2d 6787 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝐹‘-𝑦) = (𝐹‘-𝑤)) |
290 | | xnegeq 12950 |
. . . . . . . . 9
⊢ ((𝐹‘-𝑦) = (𝐹‘-𝑤) → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑤)) |
291 | 289, 290 | syl 17 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑤)) |
292 | 195, 288,
291 | ifbieq12d 4488 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) = if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤))) |
293 | | fvex 6796 |
. . . . . . . 8
⊢ (𝐹‘𝑤) ∈ V |
294 | | xnegex 12951 |
. . . . . . . 8
⊢
-𝑒(𝐹‘-𝑤) ∈ V |
295 | 293, 294 | ifex 4510 |
. . . . . . 7
⊢ if(0 ≤
𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)) ∈ V |
296 | 292, 7, 295 | fvmpt 6884 |
. . . . . 6
⊢ (𝑤 ∈ (-1[,]1) → (𝐺‘𝑤) = if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤))) |
297 | 287, 296 | breqan12d 5091 |
. . . . 5
⊢ ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1)) → ((𝐺‘𝑧) < (𝐺‘𝑤) ↔ if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)))) |
298 | 278, 297 | sylibrd 258 |
. . . 4
⊢ ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1)) → (𝑧 < 𝑤 → (𝐺‘𝑧) < (𝐺‘𝑤))) |
299 | 298 | rgen2 3121 |
. . 3
⊢
∀𝑧 ∈
(-1[,]1)∀𝑤 ∈
(-1[,]1)(𝑧 < 𝑤 → (𝐺‘𝑧) < (𝐺‘𝑤)) |
300 | | soisoi 7208 |
. . 3
⊢ ((( <
Or (-1[,]1) ∧ < Po ℝ*) ∧ (𝐺:(-1[,]1)–onto→ℝ* ∧ ∀𝑧 ∈ (-1[,]1)∀𝑤 ∈ (-1[,]1)(𝑧 < 𝑤 → (𝐺‘𝑧) < (𝐺‘𝑤)))) → 𝐺 Isom < , < ((-1[,]1),
ℝ*)) |
301 | 4, 6, 177, 299, 300 | mp4an 690 |
. 2
⊢ 𝐺 Isom < , < ((-1[,]1),
ℝ*) |
302 | | letsr 18320 |
. . . . . 6
⊢ ≤
∈ TosetRel |
303 | 302 | elexi 3452 |
. . . . 5
⊢ ≤
∈ V |
304 | 303 | inex1 5242 |
. . . 4
⊢ ( ≤
∩ ((-1[,]1) × (-1[,]1))) ∈ V |
305 | | ssid 3944 |
. . . . . . 7
⊢
ℝ* ⊆ ℝ* |
306 | | leiso 14182 |
. . . . . . 7
⊢
(((-1[,]1) ⊆ ℝ* ∧ ℝ* ⊆
ℝ*) → (𝐺 Isom < , < ((-1[,]1),
ℝ*) ↔ 𝐺 Isom ≤ , ≤ ((-1[,]1),
ℝ*))) |
307 | 1, 305, 306 | mp2an 689 |
. . . . . 6
⊢ (𝐺 Isom < , < ((-1[,]1),
ℝ*) ↔ 𝐺 Isom ≤ , ≤ ((-1[,]1),
ℝ*)) |
308 | 301, 307 | mpbi 229 |
. . . . 5
⊢ 𝐺 Isom ≤ , ≤ ((-1[,]1),
ℝ*) |
309 | | isores1 7214 |
. . . . 5
⊢ (𝐺 Isom ≤ , ≤ ((-1[,]1),
ℝ*) ↔ 𝐺 Isom ( ≤ ∩ ((-1[,]1) ×
(-1[,]1))), ≤ ((-1[,]1), ℝ*)) |
310 | 308, 309 | mpbi 229 |
. . . 4
⊢ 𝐺 Isom ( ≤ ∩ ((-1[,]1)
× (-1[,]1))), ≤ ((-1[,]1), ℝ*) |
311 | | tsrps 18314 |
. . . . . . . 8
⊢ ( ≤
∈ TosetRel → ≤ ∈ PosetRel) |
312 | 302, 311 | ax-mp 5 |
. . . . . . 7
⊢ ≤
∈ PosetRel |
313 | | ledm 18317 |
. . . . . . . 8
⊢
ℝ* = dom ≤ |
314 | 313 | psssdm 18309 |
. . . . . . 7
⊢ (( ≤
∈ PosetRel ∧ (-1[,]1) ⊆ ℝ*) → dom ( ≤
∩ ((-1[,]1) × (-1[,]1))) = (-1[,]1)) |
315 | 312, 1, 314 | mp2an 689 |
. . . . . 6
⊢ dom (
≤ ∩ ((-1[,]1) × (-1[,]1))) = (-1[,]1) |
316 | 315 | eqcomi 2748 |
. . . . 5
⊢ (-1[,]1)
= dom ( ≤ ∩ ((-1[,]1) × (-1[,]1))) |
317 | 316, 313 | ordthmeo 22962 |
. . . 4
⊢ ((( ≤
∩ ((-1[,]1) × (-1[,]1))) ∈ V ∧ ≤ ∈ TosetRel ∧
𝐺 Isom ( ≤ ∩
((-1[,]1) × (-1[,]1))), ≤ ((-1[,]1), ℝ*)) →
𝐺 ∈ ((ordTop‘(
≤ ∩ ((-1[,]1) × (-1[,]1))))Homeo(ordTop‘ ≤
))) |
318 | 304, 302,
310, 317 | mp3an 1460 |
. . 3
⊢ 𝐺 ∈ ((ordTop‘( ≤
∩ ((-1[,]1) × (-1[,]1))))Homeo(ordTop‘ ≤ )) |
319 | | xrhmeo.j |
. . . . . . 7
⊢ 𝐽 =
(TopOpen‘ℂfld) |
320 | | eqid 2739 |
. . . . . . 7
⊢
(ordTop‘ ≤ ) = (ordTop‘ ≤ ) |
321 | 319, 320 | xrrest2 23980 |
. . . . . 6
⊢ ((-1[,]1)
⊆ ℝ → (𝐽
↾t (-1[,]1)) = ((ordTop‘ ≤ ) ↾t
(-1[,]1))) |
322 | 98, 321 | ax-mp 5 |
. . . . 5
⊢ (𝐽 ↾t (-1[,]1)) =
((ordTop‘ ≤ ) ↾t (-1[,]1)) |
323 | | ordtresticc 22383 |
. . . . 5
⊢
((ordTop‘ ≤ ) ↾t (-1[,]1)) = (ordTop‘(
≤ ∩ ((-1[,]1) × (-1[,]1)))) |
324 | 322, 323 | eqtri 2767 |
. . . 4
⊢ (𝐽 ↾t (-1[,]1)) =
(ordTop‘( ≤ ∩ ((-1[,]1) × (-1[,]1)))) |
325 | 324 | oveq1i 7294 |
. . 3
⊢ ((𝐽 ↾t
(-1[,]1))Homeo(ordTop‘ ≤ )) = ((ordTop‘( ≤ ∩ ((-1[,]1)
× (-1[,]1))))Homeo(ordTop‘ ≤ )) |
326 | 318, 325 | eleqtrri 2839 |
. 2
⊢ 𝐺 ∈ ((𝐽 ↾t
(-1[,]1))Homeo(ordTop‘ ≤ )) |
327 | 301, 326 | pm3.2i 471 |
1
⊢ (𝐺 Isom < , < ((-1[,]1),
ℝ*) ∧ 𝐺 ∈ ((𝐽 ↾t
(-1[,]1))Homeo(ordTop‘ ≤ ))) |