MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrhmeo Structured version   Visualization version   GIF version

Theorem xrhmeo 24219
Description: The bijection from [-1, 1] to the extended reals is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
xrhmeo.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
xrhmeo.g 𝐺 = (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
xrhmeo.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
xrhmeo (𝐺 Isom < , < ((-1[,]1), ℝ*) ∧ 𝐺 ∈ ((𝐽t (-1[,]1))Homeo(ordTop‘ ≤ )))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥,𝑦)

Proof of Theorem xrhmeo
Dummy variables 𝑤 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 13272 . . . 4 (-1[,]1) ⊆ ℝ*
2 xrltso 12985 . . . 4 < Or ℝ*
3 soss 5559 . . . 4 ((-1[,]1) ⊆ ℝ* → ( < Or ℝ* → < Or (-1[,]1)))
41, 2, 3mp2 9 . . 3 < Or (-1[,]1)
5 sopo 5558 . . . 4 ( < Or ℝ* → < Po ℝ*)
62, 5ax-mp 5 . . 3 < Po ℝ*
7 xrhmeo.g . . . . 5 𝐺 = (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
8 iccssxr 13272 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
9 neg1rr 12198 . . . . . . . . . . . 12 -1 ∈ ℝ
10 1re 11085 . . . . . . . . . . . 12 1 ∈ ℝ
119, 10elicc2i 13255 . . . . . . . . . . 11 (𝑦 ∈ (-1[,]1) ↔ (𝑦 ∈ ℝ ∧ -1 ≤ 𝑦𝑦 ≤ 1))
1211simp1bi 1145 . . . . . . . . . 10 (𝑦 ∈ (-1[,]1) → 𝑦 ∈ ℝ)
1312adantr 482 . . . . . . . . 9 ((𝑦 ∈ (-1[,]1) ∧ 0 ≤ 𝑦) → 𝑦 ∈ ℝ)
14 simpr 486 . . . . . . . . 9 ((𝑦 ∈ (-1[,]1) ∧ 0 ≤ 𝑦) → 0 ≤ 𝑦)
1511simp3bi 1147 . . . . . . . . . 10 (𝑦 ∈ (-1[,]1) → 𝑦 ≤ 1)
1615adantr 482 . . . . . . . . 9 ((𝑦 ∈ (-1[,]1) ∧ 0 ≤ 𝑦) → 𝑦 ≤ 1)
17 elicc01 13308 . . . . . . . . 9 (𝑦 ∈ (0[,]1) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 ≤ 1))
1813, 14, 16, 17syl3anbrc 1343 . . . . . . . 8 ((𝑦 ∈ (-1[,]1) ∧ 0 ≤ 𝑦) → 𝑦 ∈ (0[,]1))
19 xrhmeo.f . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
2019iccpnfcnv 24217 . . . . . . . . . . 11 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑣 ∈ (0[,]+∞) ↦ if(𝑣 = +∞, 1, (𝑣 / (1 + 𝑣)))))
2120simpli 485 . . . . . . . . . 10 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
22 f1of 6776 . . . . . . . . . 10 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞))
2321, 22ax-mp 5 . . . . . . . . 9 𝐹:(0[,]1)⟶(0[,]+∞)
2423ffvelcdmi 7025 . . . . . . . 8 (𝑦 ∈ (0[,]1) → (𝐹𝑦) ∈ (0[,]+∞))
2518, 24syl 17 . . . . . . 7 ((𝑦 ∈ (-1[,]1) ∧ 0 ≤ 𝑦) → (𝐹𝑦) ∈ (0[,]+∞))
268, 25sselid 3937 . . . . . 6 ((𝑦 ∈ (-1[,]1) ∧ 0 ≤ 𝑦) → (𝐹𝑦) ∈ ℝ*)
2712adantr 482 . . . . . . . . . . 11 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → 𝑦 ∈ ℝ)
2827renegcld 11512 . . . . . . . . . 10 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → -𝑦 ∈ ℝ)
29 0re 11087 . . . . . . . . . . . . 13 0 ∈ ℝ
30 letric 11185 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 ≤ 𝑦𝑦 ≤ 0))
3129, 12, 30sylancr 588 . . . . . . . . . . . 12 (𝑦 ∈ (-1[,]1) → (0 ≤ 𝑦𝑦 ≤ 0))
3231orcanai 1001 . . . . . . . . . . 11 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → 𝑦 ≤ 0)
3327le0neg1d 11656 . . . . . . . . . . 11 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → (𝑦 ≤ 0 ↔ 0 ≤ -𝑦))
3432, 33mpbid 231 . . . . . . . . . 10 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → 0 ≤ -𝑦)
3511simp2bi 1146 . . . . . . . . . . . 12 (𝑦 ∈ (-1[,]1) → -1 ≤ 𝑦)
3635adantr 482 . . . . . . . . . . 11 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → -1 ≤ 𝑦)
37 lenegcon1 11589 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-1 ≤ 𝑦 ↔ -𝑦 ≤ 1))
3810, 27, 37sylancr 588 . . . . . . . . . . 11 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → (-1 ≤ 𝑦 ↔ -𝑦 ≤ 1))
3936, 38mpbid 231 . . . . . . . . . 10 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → -𝑦 ≤ 1)
40 elicc01 13308 . . . . . . . . . 10 (-𝑦 ∈ (0[,]1) ↔ (-𝑦 ∈ ℝ ∧ 0 ≤ -𝑦 ∧ -𝑦 ≤ 1))
4128, 34, 39, 40syl3anbrc 1343 . . . . . . . . 9 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → -𝑦 ∈ (0[,]1))
4223ffvelcdmi 7025 . . . . . . . . 9 (-𝑦 ∈ (0[,]1) → (𝐹‘-𝑦) ∈ (0[,]+∞))
4341, 42syl 17 . . . . . . . 8 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → (𝐹‘-𝑦) ∈ (0[,]+∞))
448, 43sselid 3937 . . . . . . 7 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → (𝐹‘-𝑦) ∈ ℝ*)
4544xnegcld 13144 . . . . . 6 ((𝑦 ∈ (-1[,]1) ∧ ¬ 0 ≤ 𝑦) → -𝑒(𝐹‘-𝑦) ∈ ℝ*)
4626, 45ifclda 4516 . . . . 5 (𝑦 ∈ (-1[,]1) → if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) ∈ ℝ*)
477, 46fmpti 7051 . . . 4 𝐺:(-1[,]1)⟶ℝ*
48 frn 6667 . . . . . 6 (𝐺:(-1[,]1)⟶ℝ* → ran 𝐺 ⊆ ℝ*)
4947, 48ax-mp 5 . . . . 5 ran 𝐺 ⊆ ℝ*
50 ssabral 4014 . . . . . . 7 (ℝ* ⊆ {𝑧 ∣ ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦))} ↔ ∀𝑧 ∈ ℝ*𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
51 0le1 11608 . . . . . . . . . . . . 13 0 ≤ 1
52 le0neg2 11594 . . . . . . . . . . . . . 14 (1 ∈ ℝ → (0 ≤ 1 ↔ -1 ≤ 0))
5310, 52ax-mp 5 . . . . . . . . . . . . 13 (0 ≤ 1 ↔ -1 ≤ 0)
5451, 53mpbi 229 . . . . . . . . . . . 12 -1 ≤ 0
55 1le1 11713 . . . . . . . . . . . 12 1 ≤ 1
56 iccss 13257 . . . . . . . . . . . 12 (((-1 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (-1 ≤ 0 ∧ 1 ≤ 1)) → (0[,]1) ⊆ (-1[,]1))
579, 10, 54, 55, 56mp4an 691 . . . . . . . . . . 11 (0[,]1) ⊆ (-1[,]1)
58 elxrge0 13299 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]+∞) ↔ (𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧))
59 f1ocnv 6788 . . . . . . . . . . . . . 14 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]+∞)–1-1-onto→(0[,]1))
60 f1of 6776 . . . . . . . . . . . . . 14 (𝐹:(0[,]+∞)–1-1-onto→(0[,]1) → 𝐹:(0[,]+∞)⟶(0[,]1))
6121, 59, 60mp2b 10 . . . . . . . . . . . . 13 𝐹:(0[,]+∞)⟶(0[,]1)
6261ffvelcdmi 7025 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]+∞) → (𝐹𝑧) ∈ (0[,]1))
6358, 62sylbir 234 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → (𝐹𝑧) ∈ (0[,]1))
6457, 63sselid 3937 . . . . . . . . . 10 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → (𝐹𝑧) ∈ (-1[,]1))
65 elicc01 13308 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ (0[,]1) ↔ ((𝐹𝑧) ∈ ℝ ∧ 0 ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ 1))
6665simp2bi 1146 . . . . . . . . . . 11 ((𝐹𝑧) ∈ (0[,]1) → 0 ≤ (𝐹𝑧))
6763, 66syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → 0 ≤ (𝐹𝑧))
6858biimpri 227 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → 𝑧 ∈ (0[,]+∞))
69 f1ocnvfv2 7214 . . . . . . . . . . . 12 ((𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → (𝐹‘(𝐹𝑧)) = 𝑧)
7021, 68, 69sylancr 588 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → (𝐹‘(𝐹𝑧)) = 𝑧)
7170eqcomd 2743 . . . . . . . . . 10 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → 𝑧 = (𝐹‘(𝐹𝑧)))
72 breq2 5104 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑧) → (0 ≤ 𝑦 ↔ 0 ≤ (𝐹𝑧)))
73 fveq2 6834 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑧) → (𝐹𝑦) = (𝐹‘(𝐹𝑧)))
7473eqeq2d 2748 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑧) → (𝑧 = (𝐹𝑦) ↔ 𝑧 = (𝐹‘(𝐹𝑧))))
7572, 74anbi12d 632 . . . . . . . . . . 11 (𝑦 = (𝐹𝑧) → ((0 ≤ 𝑦𝑧 = (𝐹𝑦)) ↔ (0 ≤ (𝐹𝑧) ∧ 𝑧 = (𝐹‘(𝐹𝑧)))))
7675rspcev 3576 . . . . . . . . . 10 (((𝐹𝑧) ∈ (-1[,]1) ∧ (0 ≤ (𝐹𝑧) ∧ 𝑧 = (𝐹‘(𝐹𝑧)))) → ∃𝑦 ∈ (-1[,]1)(0 ≤ 𝑦𝑧 = (𝐹𝑦)))
7764, 67, 71, 76syl12anc 835 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → ∃𝑦 ∈ (-1[,]1)(0 ≤ 𝑦𝑧 = (𝐹𝑦)))
78 iftrue 4487 . . . . . . . . . . . 12 (0 ≤ 𝑦 → if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) = (𝐹𝑦))
7978eqeq2d 2748 . . . . . . . . . . 11 (0 ≤ 𝑦 → (𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) ↔ 𝑧 = (𝐹𝑦)))
8079biimpar 479 . . . . . . . . . 10 ((0 ≤ 𝑦𝑧 = (𝐹𝑦)) → 𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
8180reximi 3085 . . . . . . . . 9 (∃𝑦 ∈ (-1[,]1)(0 ≤ 𝑦𝑧 = (𝐹𝑦)) → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
8277, 81syl 17 . . . . . . . 8 ((𝑧 ∈ ℝ* ∧ 0 ≤ 𝑧) → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
83 xnegcl 13057 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℝ* → -𝑒𝑧 ∈ ℝ*)
8483adantr 482 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → -𝑒𝑧 ∈ ℝ*)
85 0xr 11132 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
86 xrletri 12997 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ*𝑧 ∈ ℝ*) → (0 ≤ 𝑧𝑧 ≤ 0))
8785, 86mpan 688 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ* → (0 ≤ 𝑧𝑧 ≤ 0))
8887ord 862 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℝ* → (¬ 0 ≤ 𝑧𝑧 ≤ 0))
89 xle0neg1 13065 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℝ* → (𝑧 ≤ 0 ↔ 0 ≤ -𝑒𝑧))
9088, 89sylibd 238 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℝ* → (¬ 0 ≤ 𝑧 → 0 ≤ -𝑒𝑧))
9190imp 408 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → 0 ≤ -𝑒𝑧)
92 elxrge0 13299 . . . . . . . . . . . . . . 15 (-𝑒𝑧 ∈ (0[,]+∞) ↔ (-𝑒𝑧 ∈ ℝ* ∧ 0 ≤ -𝑒𝑧))
9384, 91, 92sylanbrc 584 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → -𝑒𝑧 ∈ (0[,]+∞))
9461ffvelcdmi 7025 . . . . . . . . . . . . . 14 (-𝑒𝑧 ∈ (0[,]+∞) → (𝐹‘-𝑒𝑧) ∈ (0[,]1))
9593, 94syl 17 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘-𝑒𝑧) ∈ (0[,]1))
9657, 95sselid 3937 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘-𝑒𝑧) ∈ (-1[,]1))
97 iccssre 13271 . . . . . . . . . . . . . . 15 ((-1 ∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆ ℝ)
989, 10, 97mp2an 690 . . . . . . . . . . . . . 14 (-1[,]1) ⊆ ℝ
9998, 96sselid 3937 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘-𝑒𝑧) ∈ ℝ)
100 iccneg 13314 . . . . . . . . . . . . . 14 ((-1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐹‘-𝑒𝑧) ∈ ℝ) → ((𝐹‘-𝑒𝑧) ∈ (-1[,]1) ↔ -(𝐹‘-𝑒𝑧) ∈ (-1[,]--1)))
1019, 10, 100mp3an12 1451 . . . . . . . . . . . . 13 ((𝐹‘-𝑒𝑧) ∈ ℝ → ((𝐹‘-𝑒𝑧) ∈ (-1[,]1) ↔ -(𝐹‘-𝑒𝑧) ∈ (-1[,]--1)))
10299, 101syl 17 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ((𝐹‘-𝑒𝑧) ∈ (-1[,]1) ↔ -(𝐹‘-𝑒𝑧) ∈ (-1[,]--1)))
10396, 102mpbid 231 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → -(𝐹‘-𝑒𝑧) ∈ (-1[,]--1))
104 negneg1e1 12201 . . . . . . . . . . . 12 --1 = 1
105104oveq2i 7357 . . . . . . . . . . 11 (-1[,]--1) = (-1[,]1)
106103, 105eleqtrdi 2848 . . . . . . . . . 10 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → -(𝐹‘-𝑒𝑧) ∈ (-1[,]1))
107 xle0neg2 13066 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ* → (0 ≤ 𝑧 ↔ -𝑒𝑧 ≤ 0))
108107notbid 318 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ* → (¬ 0 ≤ 𝑧 ↔ ¬ -𝑒𝑧 ≤ 0))
109108biimpa 478 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ¬ -𝑒𝑧 ≤ 0)
110 f1ocnvfv2 7214 . . . . . . . . . . . . . . 15 ((𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ -𝑒𝑧 ∈ (0[,]+∞)) → (𝐹‘(𝐹‘-𝑒𝑧)) = -𝑒𝑧)
11121, 93, 110sylancr 588 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘(𝐹‘-𝑒𝑧)) = -𝑒𝑧)
112 0elunit 13311 . . . . . . . . . . . . . . . 16 0 ∈ (0[,]1)
113 ax-1ne0 11050 . . . . . . . . . . . . . . . . . . . . 21 1 ≠ 0
114 neeq2 3005 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (1 ≠ 𝑥 ↔ 1 ≠ 0))
115113, 114mpbiri 258 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → 1 ≠ 𝑥)
116115necomd 2997 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → 𝑥 ≠ 1)
117 ifnefalse 4493 . . . . . . . . . . . . . . . . . . 19 (𝑥 ≠ 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥)))
118116, 117syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥)))
119 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → 𝑥 = 0)
120 oveq2 7354 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (1 − 𝑥) = (1 − 0))
121 1m0e1 12204 . . . . . . . . . . . . . . . . . . . . 21 (1 − 0) = 1
122120, 121eqtrdi 2793 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (1 − 𝑥) = 1)
123119, 122oveq12d 7364 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (𝑥 / (1 − 𝑥)) = (0 / 1))
124 ax-1cn 11039 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
125124, 113div0i 11819 . . . . . . . . . . . . . . . . . . 19 (0 / 1) = 0
126123, 125eqtrdi 2793 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑥 / (1 − 𝑥)) = 0)
127118, 126eqtrd 2777 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = 0)
128 c0ex 11079 . . . . . . . . . . . . . . . . 17 0 ∈ V
129127, 19, 128fvmpt 6940 . . . . . . . . . . . . . . . 16 (0 ∈ (0[,]1) → (𝐹‘0) = 0)
130112, 129ax-mp 5 . . . . . . . . . . . . . . 15 (𝐹‘0) = 0
131130a1i 11 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘0) = 0)
132111, 131breq12d 5113 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ((𝐹‘(𝐹‘-𝑒𝑧)) ≤ (𝐹‘0) ↔ -𝑒𝑧 ≤ 0))
133109, 132mtbird 325 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ¬ (𝐹‘(𝐹‘-𝑒𝑧)) ≤ (𝐹‘0))
134 eqid 2737 . . . . . . . . . . . . . . . 16 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
13519, 134iccpnfhmeo 24218 . . . . . . . . . . . . . . 15 (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo((ordTop‘ ≤ ) ↾t (0[,]+∞))))
136135simpli 485 . . . . . . . . . . . . . 14 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
137 iccssxr 13272 . . . . . . . . . . . . . . 15 (0[,]1) ⊆ ℝ*
138137, 8pm3.2i 472 . . . . . . . . . . . . . 14 ((0[,]1) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*)
139 leisorel 14283 . . . . . . . . . . . . . 14 ((𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ ((0[,]1) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) ∧ ((𝐹‘-𝑒𝑧) ∈ (0[,]1) ∧ 0 ∈ (0[,]1))) → ((𝐹‘-𝑒𝑧) ≤ 0 ↔ (𝐹‘(𝐹‘-𝑒𝑧)) ≤ (𝐹‘0)))
140136, 138, 139mp3an12 1451 . . . . . . . . . . . . 13 (((𝐹‘-𝑒𝑧) ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ((𝐹‘-𝑒𝑧) ≤ 0 ↔ (𝐹‘(𝐹‘-𝑒𝑧)) ≤ (𝐹‘0)))
14195, 112, 140sylancl 587 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ((𝐹‘-𝑒𝑧) ≤ 0 ↔ (𝐹‘(𝐹‘-𝑒𝑧)) ≤ (𝐹‘0)))
142133, 141mtbird 325 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ¬ (𝐹‘-𝑒𝑧) ≤ 0)
14399le0neg1d 11656 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ((𝐹‘-𝑒𝑧) ≤ 0 ↔ 0 ≤ -(𝐹‘-𝑒𝑧)))
144142, 143mtbid 324 . . . . . . . . . 10 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ¬ 0 ≤ -(𝐹‘-𝑒𝑧))
145 unitssre 13341 . . . . . . . . . . . . . . . . 17 (0[,]1) ⊆ ℝ
146145, 95sselid 3937 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘-𝑒𝑧) ∈ ℝ)
147146recnd 11113 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘-𝑒𝑧) ∈ ℂ)
148147negnegd 11433 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → --(𝐹‘-𝑒𝑧) = (𝐹‘-𝑒𝑧))
149148fveq2d 6838 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘--(𝐹‘-𝑒𝑧)) = (𝐹‘(𝐹‘-𝑒𝑧)))
150149, 111eqtrd 2777 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → (𝐹‘--(𝐹‘-𝑒𝑧)) = -𝑒𝑧)
151 xnegeq 13051 . . . . . . . . . . . 12 ((𝐹‘--(𝐹‘-𝑒𝑧)) = -𝑒𝑧 → -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)) = -𝑒-𝑒𝑧)
152150, 151syl 17 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)) = -𝑒-𝑒𝑧)
153 xnegneg 13058 . . . . . . . . . . . 12 (𝑧 ∈ ℝ* → -𝑒-𝑒𝑧 = 𝑧)
154153adantr 482 . . . . . . . . . . 11 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → -𝑒-𝑒𝑧 = 𝑧)
155152, 154eqtr2d 2778 . . . . . . . . . 10 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → 𝑧 = -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)))
156 breq2 5104 . . . . . . . . . . . . 13 (𝑦 = -(𝐹‘-𝑒𝑧) → (0 ≤ 𝑦 ↔ 0 ≤ -(𝐹‘-𝑒𝑧)))
157156notbid 318 . . . . . . . . . . . 12 (𝑦 = -(𝐹‘-𝑒𝑧) → (¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ -(𝐹‘-𝑒𝑧)))
158 negeq 11323 . . . . . . . . . . . . . . 15 (𝑦 = -(𝐹‘-𝑒𝑧) → -𝑦 = --(𝐹‘-𝑒𝑧))
159158fveq2d 6838 . . . . . . . . . . . . . 14 (𝑦 = -(𝐹‘-𝑒𝑧) → (𝐹‘-𝑦) = (𝐹‘--(𝐹‘-𝑒𝑧)))
160 xnegeq 13051 . . . . . . . . . . . . . 14 ((𝐹‘-𝑦) = (𝐹‘--(𝐹‘-𝑒𝑧)) → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)))
161159, 160syl 17 . . . . . . . . . . . . 13 (𝑦 = -(𝐹‘-𝑒𝑧) → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)))
162161eqeq2d 2748 . . . . . . . . . . . 12 (𝑦 = -(𝐹‘-𝑒𝑧) → (𝑧 = -𝑒(𝐹‘-𝑦) ↔ 𝑧 = -𝑒(𝐹‘--(𝐹‘-𝑒𝑧))))
163157, 162anbi12d 632 . . . . . . . . . . 11 (𝑦 = -(𝐹‘-𝑒𝑧) → ((¬ 0 ≤ 𝑦𝑧 = -𝑒(𝐹‘-𝑦)) ↔ (¬ 0 ≤ -(𝐹‘-𝑒𝑧) ∧ 𝑧 = -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)))))
164163rspcev 3576 . . . . . . . . . 10 ((-(𝐹‘-𝑒𝑧) ∈ (-1[,]1) ∧ (¬ 0 ≤ -(𝐹‘-𝑒𝑧) ∧ 𝑧 = -𝑒(𝐹‘--(𝐹‘-𝑒𝑧)))) → ∃𝑦 ∈ (-1[,]1)(¬ 0 ≤ 𝑦𝑧 = -𝑒(𝐹‘-𝑦)))
165106, 144, 155, 164syl12anc 835 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ∃𝑦 ∈ (-1[,]1)(¬ 0 ≤ 𝑦𝑧 = -𝑒(𝐹‘-𝑦)))
166 iffalse 4490 . . . . . . . . . . . 12 (¬ 0 ≤ 𝑦 → if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) = -𝑒(𝐹‘-𝑦))
167166eqeq2d 2748 . . . . . . . . . . 11 (¬ 0 ≤ 𝑦 → (𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) ↔ 𝑧 = -𝑒(𝐹‘-𝑦)))
168167biimpar 479 . . . . . . . . . 10 ((¬ 0 ≤ 𝑦𝑧 = -𝑒(𝐹‘-𝑦)) → 𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
169168reximi 3085 . . . . . . . . 9 (∃𝑦 ∈ (-1[,]1)(¬ 0 ≤ 𝑦𝑧 = -𝑒(𝐹‘-𝑦)) → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
170165, 169syl 17 . . . . . . . 8 ((𝑧 ∈ ℝ* ∧ ¬ 0 ≤ 𝑧) → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
17182, 170pm2.61dan 811 . . . . . . 7 (𝑧 ∈ ℝ* → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)))
17250, 171mprgbir 3069 . . . . . 6 * ⊆ {𝑧 ∣ ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦))}
1737rnmpt 5903 . . . . . 6 ran 𝐺 = {𝑧 ∣ ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦))}
174172, 173sseqtrri 3976 . . . . 5 * ⊆ ran 𝐺
17549, 174eqssi 3955 . . . 4 ran 𝐺 = ℝ*
176 dffo2 6752 . . . 4 (𝐺:(-1[,]1)–onto→ℝ* ↔ (𝐺:(-1[,]1)⟶ℝ* ∧ ran 𝐺 = ℝ*))
17747, 175, 176mpbir2an 709 . . 3 𝐺:(-1[,]1)–onto→ℝ*
178 breq1 5103 . . . . . . 7 ((𝐹𝑧) = if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) → ((𝐹𝑧) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)) ↔ if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤))))
179 breq1 5103 . . . . . . 7 (-𝑒(𝐹‘-𝑧) = if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) → (-𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)) ↔ if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤))))
180 simpl3 1193 . . . . . . . . 9 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 < 𝑤)
181 simpl1 1191 . . . . . . . . . . 11 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ∈ (-1[,]1))
182 simpr 486 . . . . . . . . . . 11 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 0 ≤ 𝑧)
183 breq2 5104 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (0 ≤ 𝑦 ↔ 0 ≤ 𝑧))
184 eleq1w 2820 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑦 ∈ (0[,]1) ↔ 𝑧 ∈ (0[,]1)))
185183, 184imbi12d 345 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((0 ≤ 𝑦𝑦 ∈ (0[,]1)) ↔ (0 ≤ 𝑧𝑧 ∈ (0[,]1))))
18618ex 414 . . . . . . . . . . . 12 (𝑦 ∈ (-1[,]1) → (0 ≤ 𝑦𝑦 ∈ (0[,]1)))
187185, 186vtoclga 3528 . . . . . . . . . . 11 (𝑧 ∈ (-1[,]1) → (0 ≤ 𝑧𝑧 ∈ (0[,]1)))
188181, 182, 187sylc 65 . . . . . . . . . 10 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ∈ (0[,]1))
189 simpl2 1192 . . . . . . . . . . 11 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑤 ∈ (-1[,]1))
19029a1i 11 . . . . . . . . . . . 12 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 0 ∈ ℝ)
19198, 181sselid 3937 . . . . . . . . . . . 12 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ∈ ℝ)
19298, 189sselid 3937 . . . . . . . . . . . 12 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑤 ∈ ℝ)
193191, 192, 180ltled 11233 . . . . . . . . . . . 12 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧𝑤)
194190, 191, 192, 182, 193letrd 11242 . . . . . . . . . . 11 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 0 ≤ 𝑤)
195 breq2 5104 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (0 ≤ 𝑦 ↔ 0 ≤ 𝑤))
196 eleq1w 2820 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑦 ∈ (0[,]1) ↔ 𝑤 ∈ (0[,]1)))
197195, 196imbi12d 345 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((0 ≤ 𝑦𝑦 ∈ (0[,]1)) ↔ (0 ≤ 𝑤𝑤 ∈ (0[,]1))))
198197, 186vtoclga 3528 . . . . . . . . . . 11 (𝑤 ∈ (-1[,]1) → (0 ≤ 𝑤𝑤 ∈ (0[,]1)))
199189, 194, 198sylc 65 . . . . . . . . . 10 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑤 ∈ (0[,]1))
200 isorel 7262 . . . . . . . . . . 11 ((𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1))) → (𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤)))
201136, 200mpan 688 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤)))
202188, 199, 201syl2anc 585 . . . . . . . . 9 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → (𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤)))
203180, 202mpbid 231 . . . . . . . 8 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → (𝐹𝑧) < (𝐹𝑤))
204194iftrued 4489 . . . . . . . 8 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)) = (𝐹𝑤))
205203, 204breqtrrd 5128 . . . . . . 7 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → (𝐹𝑧) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)))
206 breq2 5104 . . . . . . . 8 ((𝐹𝑤) = if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)) → (-𝑒(𝐹‘-𝑧) < (𝐹𝑤) ↔ -𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤))))
207 breq2 5104 . . . . . . . 8 (-𝑒(𝐹‘-𝑤) = if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)) → (-𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤) ↔ -𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤))))
208 simpl1 1191 . . . . . . . . . . . . . 14 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → 𝑧 ∈ (-1[,]1))
209 simpr 486 . . . . . . . . . . . . . 14 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → ¬ 0 ≤ 𝑧)
210183notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑧))
211 negeq 11323 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → -𝑦 = -𝑧)
212211eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (-𝑦 ∈ (0[,]1) ↔ -𝑧 ∈ (0[,]1)))
213210, 212imbi12d 345 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((¬ 0 ≤ 𝑦 → -𝑦 ∈ (0[,]1)) ↔ (¬ 0 ≤ 𝑧 → -𝑧 ∈ (0[,]1))))
21441ex 414 . . . . . . . . . . . . . . 15 (𝑦 ∈ (-1[,]1) → (¬ 0 ≤ 𝑦 → -𝑦 ∈ (0[,]1)))
215213, 214vtoclga 3528 . . . . . . . . . . . . . 14 (𝑧 ∈ (-1[,]1) → (¬ 0 ≤ 𝑧 → -𝑧 ∈ (0[,]1)))
216208, 209, 215sylc 65 . . . . . . . . . . . . 13 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → -𝑧 ∈ (0[,]1))
217216adantr 482 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑧 ∈ (0[,]1))
21823ffvelcdmi 7025 . . . . . . . . . . . 12 (-𝑧 ∈ (0[,]1) → (𝐹‘-𝑧) ∈ (0[,]+∞))
219217, 218syl 17 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈ (0[,]+∞))
2208, 219sselid 3937 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈ ℝ*)
221220xnegcld 13144 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) ∈ ℝ*)
22285a1i 11 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 ∈ ℝ*)
223 simpll2 1213 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑤 ∈ (-1[,]1))
224 simpr 486 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 ≤ 𝑤)
225223, 224, 198sylc 65 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑤 ∈ (0[,]1))
22623ffvelcdmi 7025 . . . . . . . . . . 11 (𝑤 ∈ (0[,]1) → (𝐹𝑤) ∈ (0[,]+∞))
227225, 226syl 17 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹𝑤) ∈ (0[,]+∞))
2288, 227sselid 3937 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹𝑤) ∈ ℝ*)
229209adantr 482 . . . . . . . . . . . . . 14 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → ¬ 0 ≤ 𝑧)
230 simpll1 1212 . . . . . . . . . . . . . . . 16 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑧 ∈ (-1[,]1))
23198, 230sselid 3937 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑧 ∈ ℝ)
232 ltnle 11164 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑧 < 0 ↔ ¬ 0 ≤ 𝑧))
233231, 29, 232sylancl 587 . . . . . . . . . . . . . 14 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝑧 < 0 ↔ ¬ 0 ≤ 𝑧))
234229, 233mpbird 257 . . . . . . . . . . . . 13 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑧 < 0)
235231lt0neg1d 11654 . . . . . . . . . . . . 13 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝑧 < 0 ↔ 0 < -𝑧))
236234, 235mpbid 231 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 < -𝑧)
237 isorel 7262 . . . . . . . . . . . . . 14 ((𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ (0 ∈ (0[,]1) ∧ -𝑧 ∈ (0[,]1))) → (0 < -𝑧 ↔ (𝐹‘0) < (𝐹‘-𝑧)))
238136, 237mpan 688 . . . . . . . . . . . . 13 ((0 ∈ (0[,]1) ∧ -𝑧 ∈ (0[,]1)) → (0 < -𝑧 ↔ (𝐹‘0) < (𝐹‘-𝑧)))
239112, 217, 238sylancr 588 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (0 < -𝑧 ↔ (𝐹‘0) < (𝐹‘-𝑧)))
240236, 239mpbid 231 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘0) < (𝐹‘-𝑧))
241130, 240eqbrtrrid 5136 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 < (𝐹‘-𝑧))
242 xlt0neg2 13064 . . . . . . . . . . 11 ((𝐹‘-𝑧) ∈ ℝ* → (0 < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < 0))
243220, 242syl 17 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (0 < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < 0))
244241, 243mpbid 231 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) < 0)
245 elxrge0 13299 . . . . . . . . . . 11 ((𝐹𝑤) ∈ (0[,]+∞) ↔ ((𝐹𝑤) ∈ ℝ* ∧ 0 ≤ (𝐹𝑤)))
246245simprbi 498 . . . . . . . . . 10 ((𝐹𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹𝑤))
247227, 246syl 17 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 ≤ (𝐹𝑤))
248221, 222, 228, 244, 247xrltletrd 13005 . . . . . . . 8 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) < (𝐹𝑤))
249 simpll3 1214 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑧 < 𝑤)
250 simpll1 1212 . . . . . . . . . . . . 13 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑧 ∈ (-1[,]1))
25198, 250sselid 3937 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑧 ∈ ℝ)
252 simpll2 1213 . . . . . . . . . . . . 13 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑤 ∈ (-1[,]1))
25398, 252sselid 3937 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑤 ∈ ℝ)
254251, 253ltnegd 11663 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝑧 < 𝑤 ↔ -𝑤 < -𝑧))
255249, 254mpbid 231 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑤 < -𝑧)
256 simpr 486 . . . . . . . . . . . 12 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → ¬ 0 ≤ 𝑤)
257195notbid 318 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑤))
258 negeq 11323 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → -𝑦 = -𝑤)
259258eleq1d 2822 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (-𝑦 ∈ (0[,]1) ↔ -𝑤 ∈ (0[,]1)))
260257, 259imbi12d 345 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → ((¬ 0 ≤ 𝑦 → -𝑦 ∈ (0[,]1)) ↔ (¬ 0 ≤ 𝑤 → -𝑤 ∈ (0[,]1))))
261260, 214vtoclga 3528 . . . . . . . . . . . 12 (𝑤 ∈ (-1[,]1) → (¬ 0 ≤ 𝑤 → -𝑤 ∈ (0[,]1)))
262252, 256, 261sylc 65 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑤 ∈ (0[,]1))
263216adantr 482 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑧 ∈ (0[,]1))
264 isorel 7262 . . . . . . . . . . . 12 ((𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ (-𝑤 ∈ (0[,]1) ∧ -𝑧 ∈ (0[,]1))) → (-𝑤 < -𝑧 ↔ (𝐹‘-𝑤) < (𝐹‘-𝑧)))
265136, 264mpan 688 . . . . . . . . . . 11 ((-𝑤 ∈ (0[,]1) ∧ -𝑧 ∈ (0[,]1)) → (-𝑤 < -𝑧 ↔ (𝐹‘-𝑤) < (𝐹‘-𝑧)))
266262, 263, 265syl2anc 585 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (-𝑤 < -𝑧 ↔ (𝐹‘-𝑤) < (𝐹‘-𝑧)))
267255, 266mpbid 231 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑤) < (𝐹‘-𝑧))
26823ffvelcdmi 7025 . . . . . . . . . . . 12 (-𝑤 ∈ (0[,]1) → (𝐹‘-𝑤) ∈ (0[,]+∞))
269262, 268syl 17 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑤) ∈ (0[,]+∞))
2708, 269sselid 3937 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑤) ∈ ℝ*)
271263, 218syl 17 . . . . . . . . . . 11 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈ (0[,]+∞))
2728, 271sselid 3937 . . . . . . . . . 10 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈ ℝ*)
273 xltneg 13061 . . . . . . . . . 10 (((𝐹‘-𝑤) ∈ ℝ* ∧ (𝐹‘-𝑧) ∈ ℝ*) → ((𝐹‘-𝑤) < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤)))
274270, 272, 273syl2anc 585 . . . . . . . . 9 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → ((𝐹‘-𝑤) < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤)))
275267, 274mpbid 231 . . . . . . . 8 ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤))
276206, 207, 248, 275ifbothda 4519 . . . . . . 7 (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → -𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)))
277178, 179, 205, 276ifbothda 4519 . . . . . 6 ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) → if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)))
2782773expia 1121 . . . . 5 ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1)) → (𝑧 < 𝑤 → if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤))))
279 fveq2 6834 . . . . . . . 8 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
280211fveq2d 6838 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐹‘-𝑦) = (𝐹‘-𝑧))
281 xnegeq 13051 . . . . . . . . 9 ((𝐹‘-𝑦) = (𝐹‘-𝑧) → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑧))
282280, 281syl 17 . . . . . . . 8 (𝑦 = 𝑧 → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑧))
283183, 279, 282ifbieq12d 4509 . . . . . . 7 (𝑦 = 𝑧 → if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) = if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)))
284 fvex 6847 . . . . . . . 8 (𝐹𝑧) ∈ V
285 xnegex 13052 . . . . . . . 8 -𝑒(𝐹‘-𝑧) ∈ V
286284, 285ifex 4531 . . . . . . 7 if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) ∈ V
287283, 7, 286fvmpt 6940 . . . . . 6 (𝑧 ∈ (-1[,]1) → (𝐺𝑧) = if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)))
288 fveq2 6834 . . . . . . . 8 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
289258fveq2d 6838 . . . . . . . . 9 (𝑦 = 𝑤 → (𝐹‘-𝑦) = (𝐹‘-𝑤))
290 xnegeq 13051 . . . . . . . . 9 ((𝐹‘-𝑦) = (𝐹‘-𝑤) → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑤))
291289, 290syl 17 . . . . . . . 8 (𝑦 = 𝑤 → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑤))
292195, 288, 291ifbieq12d 4509 . . . . . . 7 (𝑦 = 𝑤 → if(0 ≤ 𝑦, (𝐹𝑦), -𝑒(𝐹‘-𝑦)) = if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)))
293 fvex 6847 . . . . . . . 8 (𝐹𝑤) ∈ V
294 xnegex 13052 . . . . . . . 8 -𝑒(𝐹‘-𝑤) ∈ V
295293, 294ifex 4531 . . . . . . 7 if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)) ∈ V
296292, 7, 295fvmpt 6940 . . . . . 6 (𝑤 ∈ (-1[,]1) → (𝐺𝑤) = if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤)))
297287, 296breqan12d 5116 . . . . 5 ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1)) → ((𝐺𝑧) < (𝐺𝑤) ↔ if(0 ≤ 𝑧, (𝐹𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹𝑤), -𝑒(𝐹‘-𝑤))))
298278, 297sylibrd 259 . . . 4 ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1)) → (𝑧 < 𝑤 → (𝐺𝑧) < (𝐺𝑤)))
299298rgen2 3192 . . 3 𝑧 ∈ (-1[,]1)∀𝑤 ∈ (-1[,]1)(𝑧 < 𝑤 → (𝐺𝑧) < (𝐺𝑤))
300 soisoi 7264 . . 3 ((( < Or (-1[,]1) ∧ < Po ℝ*) ∧ (𝐺:(-1[,]1)–onto→ℝ* ∧ ∀𝑧 ∈ (-1[,]1)∀𝑤 ∈ (-1[,]1)(𝑧 < 𝑤 → (𝐺𝑧) < (𝐺𝑤)))) → 𝐺 Isom < , < ((-1[,]1), ℝ*))
3014, 6, 177, 299, 300mp4an 691 . 2 𝐺 Isom < , < ((-1[,]1), ℝ*)
302 letsr 18413 . . . . . 6 ≤ ∈ TosetRel
303302elexi 3462 . . . . 5 ≤ ∈ V
304303inex1 5269 . . . 4 ( ≤ ∩ ((-1[,]1) × (-1[,]1))) ∈ V
305 ssid 3961 . . . . . . 7 * ⊆ ℝ*
306 leiso 14282 . . . . . . 7 (((-1[,]1) ⊆ ℝ* ∧ ℝ* ⊆ ℝ*) → (𝐺 Isom < , < ((-1[,]1), ℝ*) ↔ 𝐺 Isom ≤ , ≤ ((-1[,]1), ℝ*)))
3071, 305, 306mp2an 690 . . . . . 6 (𝐺 Isom < , < ((-1[,]1), ℝ*) ↔ 𝐺 Isom ≤ , ≤ ((-1[,]1), ℝ*))
308301, 307mpbi 229 . . . . 5 𝐺 Isom ≤ , ≤ ((-1[,]1), ℝ*)
309 isores1 7270 . . . . 5 (𝐺 Isom ≤ , ≤ ((-1[,]1), ℝ*) ↔ 𝐺 Isom ( ≤ ∩ ((-1[,]1) × (-1[,]1))), ≤ ((-1[,]1), ℝ*))
310308, 309mpbi 229 . . . 4 𝐺 Isom ( ≤ ∩ ((-1[,]1) × (-1[,]1))), ≤ ((-1[,]1), ℝ*)
311 tsrps 18407 . . . . . . . 8 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
312302, 311ax-mp 5 . . . . . . 7 ≤ ∈ PosetRel
313 ledm 18410 . . . . . . . 8 * = dom ≤
314313psssdm 18402 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (-1[,]1) ⊆ ℝ*) → dom ( ≤ ∩ ((-1[,]1) × (-1[,]1))) = (-1[,]1))
315312, 1, 314mp2an 690 . . . . . 6 dom ( ≤ ∩ ((-1[,]1) × (-1[,]1))) = (-1[,]1)
316315eqcomi 2746 . . . . 5 (-1[,]1) = dom ( ≤ ∩ ((-1[,]1) × (-1[,]1)))
317316, 313ordthmeo 23063 . . . 4 ((( ≤ ∩ ((-1[,]1) × (-1[,]1))) ∈ V ∧ ≤ ∈ TosetRel ∧ 𝐺 Isom ( ≤ ∩ ((-1[,]1) × (-1[,]1))), ≤ ((-1[,]1), ℝ*)) → 𝐺 ∈ ((ordTop‘( ≤ ∩ ((-1[,]1) × (-1[,]1))))Homeo(ordTop‘ ≤ )))
318304, 302, 310, 317mp3an 1461 . . 3 𝐺 ∈ ((ordTop‘( ≤ ∩ ((-1[,]1) × (-1[,]1))))Homeo(ordTop‘ ≤ ))
319 xrhmeo.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
320 eqid 2737 . . . . . . 7 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
321319, 320xrrest2 24081 . . . . . 6 ((-1[,]1) ⊆ ℝ → (𝐽t (-1[,]1)) = ((ordTop‘ ≤ ) ↾t (-1[,]1)))
32298, 321ax-mp 5 . . . . 5 (𝐽t (-1[,]1)) = ((ordTop‘ ≤ ) ↾t (-1[,]1))
323 ordtresticc 22484 . . . . 5 ((ordTop‘ ≤ ) ↾t (-1[,]1)) = (ordTop‘( ≤ ∩ ((-1[,]1) × (-1[,]1))))
324322, 323eqtri 2765 . . . 4 (𝐽t (-1[,]1)) = (ordTop‘( ≤ ∩ ((-1[,]1) × (-1[,]1))))
325324oveq1i 7356 . . 3 ((𝐽t (-1[,]1))Homeo(ordTop‘ ≤ )) = ((ordTop‘( ≤ ∩ ((-1[,]1) × (-1[,]1))))Homeo(ordTop‘ ≤ ))
326318, 325eleqtrri 2837 . 2 𝐺 ∈ ((𝐽t (-1[,]1))Homeo(ordTop‘ ≤ ))
327301, 326pm3.2i 472 1 (𝐺 Isom < , < ((-1[,]1), ℝ*) ∧ 𝐺 ∈ ((𝐽t (-1[,]1))Homeo(ordTop‘ ≤ )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1541  wcel 2106  {cab 2714  wne 2941  wral 3062  wrex 3071  Vcvv 3443  cin 3904  wss 3905  ifcif 4481   class class class wbr 5100  cmpt 5183   Po wpo 5537   Or wor 5538   × cxp 5625  ccnv 5626  dom cdm 5627  ran crn 5628  wf 6484  ontowfo 6486  1-1-ontowf1o 6487  cfv 6488   Isom wiso 6489  (class class class)co 7346  cr 10980  0cc0 10981  1c1 10982   + caddc 10984  +∞cpnf 11116  *cxr 11118   < clt 11119  cle 11120  cmin 11315  -cneg 11316   / cdiv 11742  -𝑒cxne 12955  [,]cicc 13192  t crest 17233  TopOpenctopn 17234  ordTopcordt 17312  PosetRelcps 18384   TosetRel ctsr 18385  fldccnfld 20707  Homeochmeo 23014  IIcii 24148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-tp 4586  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-iin 4952  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-er 8578  df-map 8697  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-fi 9277  df-sup 9308  df-inf 9309  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-4 12148  df-5 12149  df-6 12150  df-7 12151  df-8 12152  df-9 12153  df-n0 12344  df-z 12430  df-dec 12548  df-uz 12693  df-q 12799  df-rp 12841  df-xneg 12958  df-xadd 12959  df-xmul 12960  df-ioo 13193  df-ioc 13194  df-ico 13195  df-icc 13196  df-fz 13350  df-seq 13832  df-exp 13893  df-cj 14914  df-re 14915  df-im 14916  df-sqrt 15050  df-abs 15051  df-struct 16950  df-slot 16985  df-ndx 16997  df-base 17015  df-plusg 17077  df-mulr 17078  df-starv 17079  df-tset 17083  df-ple 17084  df-ds 17086  df-unif 17087  df-rest 17235  df-topn 17236  df-topgen 17256  df-ordt 17314  df-ps 18386  df-tsr 18387  df-psmet 20699  df-xmet 20700  df-met 20701  df-bl 20702  df-mopn 20703  df-cnfld 20708  df-top 22153  df-topon 22170  df-topsp 22192  df-bases 22206  df-cn 22488  df-hmeo 23016  df-xms 23583  df-ms 23584  df-ii 24150
This theorem is referenced by:  xrhmph  24220
  Copyright terms: Public domain W3C validator