| Step | Hyp | Ref
| Expression |
| 1 | | iccssxr 13452 |
. . . 4
⊢ (-1[,]1)
⊆ ℝ* |
| 2 | | xrltso 13162 |
. . . 4
⊢ < Or
ℝ* |
| 3 | | soss 5586 |
. . . 4
⊢ ((-1[,]1)
⊆ ℝ* → ( < Or ℝ* → < Or
(-1[,]1))) |
| 4 | 1, 2, 3 | mp2 9 |
. . 3
⊢ < Or
(-1[,]1) |
| 5 | | sopo 5585 |
. . . 4
⊢ ( < Or
ℝ* → < Po ℝ*) |
| 6 | 2, 5 | ax-mp 5 |
. . 3
⊢ < Po
ℝ* |
| 7 | | xrhmeo.g |
. . . . 5
⊢ 𝐺 = (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
| 8 | | iccssxr 13452 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
| 9 | | neg1rr 12360 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℝ |
| 10 | | 1re 11240 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
| 11 | 9, 10 | elicc2i 13434 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (-1[,]1) ↔ (𝑦 ∈ ℝ ∧ -1 ≤
𝑦 ∧ 𝑦 ≤ 1)) |
| 12 | 11 | simp1bi 1145 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (-1[,]1) → 𝑦 ∈
ℝ) |
| 13 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (-1[,]1) ∧ 0 ≤
𝑦) → 𝑦 ∈
ℝ) |
| 14 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (-1[,]1) ∧ 0 ≤
𝑦) → 0 ≤ 𝑦) |
| 15 | 11 | simp3bi 1147 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (-1[,]1) → 𝑦 ≤ 1) |
| 16 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (-1[,]1) ∧ 0 ≤
𝑦) → 𝑦 ≤ 1) |
| 17 | | elicc01 13488 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0[,]1) ↔ (𝑦 ∈ ℝ ∧ 0 ≤
𝑦 ∧ 𝑦 ≤ 1)) |
| 18 | 13, 14, 16, 17 | syl3anbrc 1344 |
. . . . . . . 8
⊢ ((𝑦 ∈ (-1[,]1) ∧ 0 ≤
𝑦) → 𝑦 ∈
(0[,]1)) |
| 19 | | xrhmeo.f |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) |
| 20 | 19 | iccpnfcnv 24898 |
. . . . . . . . . . 11
⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑣 ∈ (0[,]+∞) ↦ if(𝑣 = +∞, 1, (𝑣 / (1 + 𝑣))))) |
| 21 | 20 | simpli 483 |
. . . . . . . . . 10
⊢ 𝐹:(0[,]1)–1-1-onto→(0[,]+∞) |
| 22 | | f1of 6823 |
. . . . . . . . . 10
⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞)) |
| 23 | 21, 22 | ax-mp 5 |
. . . . . . . . 9
⊢ 𝐹:(0[,]1)⟶(0[,]+∞) |
| 24 | 23 | ffvelcdmi 7078 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,]1) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
| 25 | 18, 24 | syl 17 |
. . . . . . 7
⊢ ((𝑦 ∈ (-1[,]1) ∧ 0 ≤
𝑦) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
| 26 | 8, 25 | sselid 3961 |
. . . . . 6
⊢ ((𝑦 ∈ (-1[,]1) ∧ 0 ≤
𝑦) → (𝐹‘𝑦) ∈
ℝ*) |
| 27 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → 𝑦 ∈
ℝ) |
| 28 | 27 | renegcld 11669 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → -𝑦 ∈
ℝ) |
| 29 | | 0re 11242 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
| 30 | | letric 11340 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 𝑦
∈ ℝ) → (0 ≤ 𝑦 ∨ 𝑦 ≤ 0)) |
| 31 | 29, 12, 30 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (-1[,]1) → (0 ≤
𝑦 ∨ 𝑦 ≤ 0)) |
| 32 | 31 | orcanai 1004 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → 𝑦 ≤ 0) |
| 33 | 27 | le0neg1d 11813 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → (𝑦 ≤ 0 ↔ 0 ≤ -𝑦)) |
| 34 | 32, 33 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → 0 ≤
-𝑦) |
| 35 | 11 | simp2bi 1146 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (-1[,]1) → -1 ≤
𝑦) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → -1 ≤
𝑦) |
| 37 | | lenegcon1 11746 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℝ ∧ 𝑦
∈ ℝ) → (-1 ≤ 𝑦 ↔ -𝑦 ≤ 1)) |
| 38 | 10, 27, 37 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → (-1 ≤
𝑦 ↔ -𝑦 ≤ 1)) |
| 39 | 36, 38 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → -𝑦 ≤ 1) |
| 40 | | elicc01 13488 |
. . . . . . . . . 10
⊢ (-𝑦 ∈ (0[,]1) ↔ (-𝑦 ∈ ℝ ∧ 0 ≤
-𝑦 ∧ -𝑦 ≤ 1)) |
| 41 | 28, 34, 39, 40 | syl3anbrc 1344 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → -𝑦 ∈
(0[,]1)) |
| 42 | 23 | ffvelcdmi 7078 |
. . . . . . . . 9
⊢ (-𝑦 ∈ (0[,]1) → (𝐹‘-𝑦) ∈ (0[,]+∞)) |
| 43 | 41, 42 | syl 17 |
. . . . . . . 8
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → (𝐹‘-𝑦) ∈ (0[,]+∞)) |
| 44 | 8, 43 | sselid 3961 |
. . . . . . 7
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) → (𝐹‘-𝑦) ∈
ℝ*) |
| 45 | 44 | xnegcld 13321 |
. . . . . 6
⊢ ((𝑦 ∈ (-1[,]1) ∧ ¬ 0
≤ 𝑦) →
-𝑒(𝐹‘-𝑦) ∈
ℝ*) |
| 46 | 26, 45 | ifclda 4541 |
. . . . 5
⊢ (𝑦 ∈ (-1[,]1) → if(0
≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) ∈
ℝ*) |
| 47 | 7, 46 | fmpti 7107 |
. . . 4
⊢ 𝐺:(-1[,]1)⟶ℝ* |
| 48 | | frn 6718 |
. . . . . 6
⊢ (𝐺:(-1[,]1)⟶ℝ* →
ran 𝐺 ⊆
ℝ*) |
| 49 | 47, 48 | ax-mp 5 |
. . . . 5
⊢ ran 𝐺 ⊆
ℝ* |
| 50 | | ssabral 4045 |
. . . . . . 7
⊢
(ℝ* ⊆ {𝑧 ∣ ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))} ↔ ∀𝑧 ∈ ℝ* ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
| 51 | | 0le1 11765 |
. . . . . . . . . . . . 13
⊢ 0 ≤
1 |
| 52 | | le0neg2 11751 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ → (0 ≤ 1 ↔ -1 ≤ 0)) |
| 53 | 10, 52 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (0 ≤ 1
↔ -1 ≤ 0) |
| 54 | 51, 53 | mpbi 230 |
. . . . . . . . . . . 12
⊢ -1 ≤
0 |
| 55 | | 1le1 11870 |
. . . . . . . . . . . 12
⊢ 1 ≤
1 |
| 56 | | iccss 13436 |
. . . . . . . . . . . 12
⊢ (((-1
∈ ℝ ∧ 1 ∈ ℝ) ∧ (-1 ≤ 0 ∧ 1 ≤ 1)) →
(0[,]1) ⊆ (-1[,]1)) |
| 57 | 9, 10, 54, 55, 56 | mp4an 693 |
. . . . . . . . . . 11
⊢ (0[,]1)
⊆ (-1[,]1) |
| 58 | | elxrge0 13479 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (0[,]+∞) ↔
(𝑧 ∈
ℝ* ∧ 0 ≤ 𝑧)) |
| 59 | | f1ocnv 6835 |
. . . . . . . . . . . . . 14
⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → ◡𝐹:(0[,]+∞)–1-1-onto→(0[,]1)) |
| 60 | | f1of 6823 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹:(0[,]+∞)–1-1-onto→(0[,]1) → ◡𝐹:(0[,]+∞)⟶(0[,]1)) |
| 61 | 21, 59, 60 | mp2b 10 |
. . . . . . . . . . . . 13
⊢ ◡𝐹:(0[,]+∞)⟶(0[,]1) |
| 62 | 61 | ffvelcdmi 7078 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (0[,]+∞) →
(◡𝐹‘𝑧) ∈ (0[,]1)) |
| 63 | 58, 62 | sylbir 235 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
(◡𝐹‘𝑧) ∈ (0[,]1)) |
| 64 | 57, 63 | sselid 3961 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
(◡𝐹‘𝑧) ∈ (-1[,]1)) |
| 65 | | elicc01 13488 |
. . . . . . . . . . . 12
⊢ ((◡𝐹‘𝑧) ∈ (0[,]1) ↔ ((◡𝐹‘𝑧) ∈ ℝ ∧ 0 ≤ (◡𝐹‘𝑧) ∧ (◡𝐹‘𝑧) ≤ 1)) |
| 66 | 65 | simp2bi 1146 |
. . . . . . . . . . 11
⊢ ((◡𝐹‘𝑧) ∈ (0[,]1) → 0 ≤ (◡𝐹‘𝑧)) |
| 67 | 63, 66 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) → 0
≤ (◡𝐹‘𝑧)) |
| 68 | 58 | biimpri 228 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
𝑧 ∈
(0[,]+∞)) |
| 69 | | f1ocnvfv2 7275 |
. . . . . . . . . . . 12
⊢ ((𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → (𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
| 70 | 21, 68, 69 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
(𝐹‘(◡𝐹‘𝑧)) = 𝑧) |
| 71 | 70 | eqcomd 2742 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
𝑧 = (𝐹‘(◡𝐹‘𝑧))) |
| 72 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ (𝑦 = (◡𝐹‘𝑧) → (0 ≤ 𝑦 ↔ 0 ≤ (◡𝐹‘𝑧))) |
| 73 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (◡𝐹‘𝑧) → (𝐹‘𝑦) = (𝐹‘(◡𝐹‘𝑧))) |
| 74 | 73 | eqeq2d 2747 |
. . . . . . . . . . . 12
⊢ (𝑦 = (◡𝐹‘𝑧) → (𝑧 = (𝐹‘𝑦) ↔ 𝑧 = (𝐹‘(◡𝐹‘𝑧)))) |
| 75 | 72, 74 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑦 = (◡𝐹‘𝑧) → ((0 ≤ 𝑦 ∧ 𝑧 = (𝐹‘𝑦)) ↔ (0 ≤ (◡𝐹‘𝑧) ∧ 𝑧 = (𝐹‘(◡𝐹‘𝑧))))) |
| 76 | 75 | rspcev 3606 |
. . . . . . . . . 10
⊢ (((◡𝐹‘𝑧) ∈ (-1[,]1) ∧ (0 ≤ (◡𝐹‘𝑧) ∧ 𝑧 = (𝐹‘(◡𝐹‘𝑧)))) → ∃𝑦 ∈ (-1[,]1)(0 ≤ 𝑦 ∧ 𝑧 = (𝐹‘𝑦))) |
| 77 | 64, 67, 71, 76 | syl12anc 836 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
∃𝑦 ∈ (-1[,]1)(0
≤ 𝑦 ∧ 𝑧 = (𝐹‘𝑦))) |
| 78 | | iftrue 4511 |
. . . . . . . . . . . 12
⊢ (0 ≤
𝑦 → if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) = (𝐹‘𝑦)) |
| 79 | 78 | eqeq2d 2747 |
. . . . . . . . . . 11
⊢ (0 ≤
𝑦 → (𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) ↔ 𝑧 = (𝐹‘𝑦))) |
| 80 | 79 | biimpar 477 |
. . . . . . . . . 10
⊢ ((0 ≤
𝑦 ∧ 𝑧 = (𝐹‘𝑦)) → 𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
| 81 | 80 | reximi 3075 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
(-1[,]1)(0 ≤ 𝑦 ∧
𝑧 = (𝐹‘𝑦)) → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
| 82 | 77, 81 | syl 17 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℝ*
∧ 0 ≤ 𝑧) →
∃𝑦 ∈
(-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
| 83 | | xnegcl 13234 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℝ*
→ -𝑒𝑧 ∈ ℝ*) |
| 84 | 83 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ -𝑒𝑧 ∈ ℝ*) |
| 85 | | 0xr 11287 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ* |
| 86 | | xrletri 13174 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (0 ≤
𝑧 ∨ 𝑧 ≤ 0)) |
| 87 | 85, 86 | mpan 690 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℝ*
→ (0 ≤ 𝑧 ∨ 𝑧 ≤ 0)) |
| 88 | 87 | ord 864 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℝ*
→ (¬ 0 ≤ 𝑧
→ 𝑧 ≤
0)) |
| 89 | | xle0neg1 13242 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℝ*
→ (𝑧 ≤ 0 ↔ 0
≤ -𝑒𝑧)) |
| 90 | 88, 89 | sylibd 239 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℝ*
→ (¬ 0 ≤ 𝑧
→ 0 ≤ -𝑒𝑧)) |
| 91 | 90 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ 0 ≤ -𝑒𝑧) |
| 92 | | elxrge0 13479 |
. . . . . . . . . . . . . . 15
⊢
(-𝑒𝑧 ∈ (0[,]+∞) ↔
(-𝑒𝑧
∈ ℝ* ∧ 0 ≤ -𝑒𝑧)) |
| 93 | 84, 91, 92 | sylanbrc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ -𝑒𝑧 ∈ (0[,]+∞)) |
| 94 | 61 | ffvelcdmi 7078 |
. . . . . . . . . . . . . 14
⊢
(-𝑒𝑧 ∈ (0[,]+∞) → (◡𝐹‘-𝑒𝑧) ∈
(0[,]1)) |
| 95 | 93, 94 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (◡𝐹‘-𝑒𝑧) ∈
(0[,]1)) |
| 96 | 57, 95 | sselid 3961 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (◡𝐹‘-𝑒𝑧) ∈
(-1[,]1)) |
| 97 | | iccssre 13451 |
. . . . . . . . . . . . . . 15
⊢ ((-1
∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆
ℝ) |
| 98 | 9, 10, 97 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢ (-1[,]1)
⊆ ℝ |
| 99 | 98, 96 | sselid 3961 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (◡𝐹‘-𝑒𝑧) ∈
ℝ) |
| 100 | | iccneg 13494 |
. . . . . . . . . . . . . 14
⊢ ((-1
∈ ℝ ∧ 1 ∈ ℝ ∧ (◡𝐹‘-𝑒𝑧) ∈ ℝ) → ((◡𝐹‘-𝑒𝑧) ∈ (-1[,]1) ↔ -(◡𝐹‘-𝑒𝑧) ∈
(-1[,]--1))) |
| 101 | 9, 10, 100 | mp3an12 1453 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹‘-𝑒𝑧) ∈ ℝ → ((◡𝐹‘-𝑒𝑧) ∈ (-1[,]1) ↔ -(◡𝐹‘-𝑒𝑧) ∈
(-1[,]--1))) |
| 102 | 99, 101 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ((◡𝐹‘-𝑒𝑧) ∈ (-1[,]1) ↔ -(◡𝐹‘-𝑒𝑧) ∈
(-1[,]--1))) |
| 103 | 96, 102 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ -(◡𝐹‘-𝑒𝑧) ∈
(-1[,]--1)) |
| 104 | | negneg1e1 12363 |
. . . . . . . . . . . 12
⊢ --1 =
1 |
| 105 | 104 | oveq2i 7421 |
. . . . . . . . . . 11
⊢
(-1[,]--1) = (-1[,]1) |
| 106 | 103, 105 | eleqtrdi 2845 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ -(◡𝐹‘-𝑒𝑧) ∈
(-1[,]1)) |
| 107 | | xle0neg2 13243 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ℝ*
→ (0 ≤ 𝑧 ↔
-𝑒𝑧 ≤
0)) |
| 108 | 107 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ℝ*
→ (¬ 0 ≤ 𝑧
↔ ¬ -𝑒𝑧 ≤ 0)) |
| 109 | 108 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ¬ -𝑒𝑧 ≤ 0) |
| 110 | | f1ocnvfv2 7275 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧
-𝑒𝑧
∈ (0[,]+∞)) → (𝐹‘(◡𝐹‘-𝑒𝑧)) = -𝑒𝑧) |
| 111 | 21, 93, 110 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (𝐹‘(◡𝐹‘-𝑒𝑧)) = -𝑒𝑧) |
| 112 | | 0elunit 13491 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
(0[,]1) |
| 113 | | ax-1ne0 11203 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ≠
0 |
| 114 | | neeq2 2996 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 0 → (1 ≠ 𝑥 ↔ 1 ≠
0)) |
| 115 | 113, 114 | mpbiri 258 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 0 → 1 ≠ 𝑥) |
| 116 | 115 | necomd 2988 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 0 → 𝑥 ≠ 1) |
| 117 | | ifnefalse 4517 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ≠ 1 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥))) |
| 118 | 116, 117 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 0 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = (𝑥 / (1 − 𝑥))) |
| 119 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 0 → 𝑥 = 0) |
| 120 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 0 → (1 − 𝑥) = (1 −
0)) |
| 121 | | 1m0e1 12366 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1
− 0) = 1 |
| 122 | 120, 121 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 0 → (1 − 𝑥) = 1) |
| 123 | 119, 122 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 0 → (𝑥 / (1 − 𝑥)) = (0 / 1)) |
| 124 | | ax-1cn 11192 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
ℂ |
| 125 | 124, 113 | div0i 11980 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 / 1) =
0 |
| 126 | 123, 125 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 0 → (𝑥 / (1 − 𝑥)) = 0) |
| 127 | 118, 126 | eqtrd 2771 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 0 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = 0) |
| 128 | | c0ex 11234 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
| 129 | 127, 19, 128 | fvmpt 6991 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
(0[,]1) → (𝐹‘0)
= 0) |
| 130 | 112, 129 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘0) = 0 |
| 131 | 130 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (𝐹‘0) =
0) |
| 132 | 111, 131 | breq12d 5137 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ((𝐹‘(◡𝐹‘-𝑒𝑧)) ≤ (𝐹‘0) ↔ -𝑒𝑧 ≤ 0)) |
| 133 | 109, 132 | mtbird 325 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ¬ (𝐹‘(◡𝐹‘-𝑒𝑧)) ≤ (𝐹‘0)) |
| 134 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢
((ordTop‘ ≤ ) ↾t (0[,]+∞)) =
((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
| 135 | 19, 134 | iccpnfhmeo 24899 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) ∧ 𝐹
∈ (IIHomeo((ordTop‘ ≤ ) ↾t
(0[,]+∞)))) |
| 136 | 135 | simpli 483 |
. . . . . . . . . . . . . 14
⊢ 𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) |
| 137 | | iccssxr 13452 |
. . . . . . . . . . . . . . 15
⊢ (0[,]1)
⊆ ℝ* |
| 138 | 137, 8 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ ((0[,]1)
⊆ ℝ* ∧ (0[,]+∞) ⊆
ℝ*) |
| 139 | | leisorel 14483 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) ∧ ((0[,]1) ⊆ ℝ* ∧ (0[,]+∞)
⊆ ℝ*) ∧ ((◡𝐹‘-𝑒𝑧) ∈ (0[,]1) ∧ 0 ∈
(0[,]1))) → ((◡𝐹‘-𝑒𝑧) ≤ 0 ↔ (𝐹‘(◡𝐹‘-𝑒𝑧)) ≤ (𝐹‘0))) |
| 140 | 136, 138,
139 | mp3an12 1453 |
. . . . . . . . . . . . 13
⊢ (((◡𝐹‘-𝑒𝑧) ∈ (0[,]1) ∧ 0 ∈
(0[,]1)) → ((◡𝐹‘-𝑒𝑧) ≤ 0 ↔ (𝐹‘(◡𝐹‘-𝑒𝑧)) ≤ (𝐹‘0))) |
| 141 | 95, 112, 140 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ((◡𝐹‘-𝑒𝑧) ≤ 0 ↔ (𝐹‘(◡𝐹‘-𝑒𝑧)) ≤ (𝐹‘0))) |
| 142 | 133, 141 | mtbird 325 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ¬ (◡𝐹‘-𝑒𝑧) ≤ 0) |
| 143 | 99 | le0neg1d 11813 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ((◡𝐹‘-𝑒𝑧) ≤ 0 ↔ 0 ≤ -(◡𝐹‘-𝑒𝑧))) |
| 144 | 142, 143 | mtbid 324 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ¬ 0 ≤ -(◡𝐹‘-𝑒𝑧)) |
| 145 | | unitssre 13521 |
. . . . . . . . . . . . . . . . 17
⊢ (0[,]1)
⊆ ℝ |
| 146 | 145, 95 | sselid 3961 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (◡𝐹‘-𝑒𝑧) ∈
ℝ) |
| 147 | 146 | recnd 11268 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (◡𝐹‘-𝑒𝑧) ∈
ℂ) |
| 148 | 147 | negnegd 11590 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ --(◡𝐹‘-𝑒𝑧) = (◡𝐹‘-𝑒𝑧)) |
| 149 | 148 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (𝐹‘--(◡𝐹‘-𝑒𝑧)) = (𝐹‘(◡𝐹‘-𝑒𝑧))) |
| 150 | 149, 111 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ (𝐹‘--(◡𝐹‘-𝑒𝑧)) = -𝑒𝑧) |
| 151 | | xnegeq 13228 |
. . . . . . . . . . . 12
⊢ ((𝐹‘--(◡𝐹‘-𝑒𝑧)) = -𝑒𝑧 →
-𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧)) =
-𝑒-𝑒𝑧) |
| 152 | 150, 151 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ -𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧)) =
-𝑒-𝑒𝑧) |
| 153 | | xnegneg 13235 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℝ*
→ -𝑒-𝑒𝑧 = 𝑧) |
| 154 | 153 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ -𝑒-𝑒𝑧 = 𝑧) |
| 155 | 152, 154 | eqtr2d 2772 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ 𝑧 =
-𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧))) |
| 156 | | breq2 5128 |
. . . . . . . . . . . . 13
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) → (0 ≤ 𝑦 ↔ 0 ≤ -(◡𝐹‘-𝑒𝑧))) |
| 157 | 156 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) → (¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ -(◡𝐹‘-𝑒𝑧))) |
| 158 | | negeq 11479 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) → -𝑦 = --(◡𝐹‘-𝑒𝑧)) |
| 159 | 158 | fveq2d 6885 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) → (𝐹‘-𝑦) = (𝐹‘--(◡𝐹‘-𝑒𝑧))) |
| 160 | | xnegeq 13228 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘-𝑦) = (𝐹‘--(◡𝐹‘-𝑒𝑧)) →
-𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧))) |
| 161 | 159, 160 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) →
-𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧))) |
| 162 | 161 | eqeq2d 2747 |
. . . . . . . . . . . 12
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) → (𝑧 = -𝑒(𝐹‘-𝑦) ↔ 𝑧 = -𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧)))) |
| 163 | 157, 162 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑦 = -(◡𝐹‘-𝑒𝑧) → ((¬ 0 ≤ 𝑦 ∧ 𝑧 = -𝑒(𝐹‘-𝑦)) ↔ (¬ 0 ≤ -(◡𝐹‘-𝑒𝑧) ∧ 𝑧 = -𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧))))) |
| 164 | 163 | rspcev 3606 |
. . . . . . . . . 10
⊢ ((-(◡𝐹‘-𝑒𝑧) ∈ (-1[,]1) ∧ (¬ 0
≤ -(◡𝐹‘-𝑒𝑧) ∧ 𝑧 = -𝑒(𝐹‘--(◡𝐹‘-𝑒𝑧)))) → ∃𝑦 ∈ (-1[,]1)(¬ 0 ≤
𝑦 ∧ 𝑧 = -𝑒(𝐹‘-𝑦))) |
| 165 | 106, 144,
155, 164 | syl12anc 836 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ∃𝑦 ∈
(-1[,]1)(¬ 0 ≤ 𝑦
∧ 𝑧 =
-𝑒(𝐹‘-𝑦))) |
| 166 | | iffalse 4514 |
. . . . . . . . . . . 12
⊢ (¬ 0
≤ 𝑦 → if(0 ≤
𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) = -𝑒(𝐹‘-𝑦)) |
| 167 | 166 | eqeq2d 2747 |
. . . . . . . . . . 11
⊢ (¬ 0
≤ 𝑦 → (𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) ↔ 𝑧 = -𝑒(𝐹‘-𝑦))) |
| 168 | 167 | biimpar 477 |
. . . . . . . . . 10
⊢ ((¬ 0
≤ 𝑦 ∧ 𝑧 = -𝑒(𝐹‘-𝑦)) → 𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
| 169 | 168 | reximi 3075 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
(-1[,]1)(¬ 0 ≤ 𝑦
∧ 𝑧 =
-𝑒(𝐹‘-𝑦)) → ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
| 170 | 165, 169 | syl 17 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℝ*
∧ ¬ 0 ≤ 𝑧)
→ ∃𝑦 ∈
(-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
| 171 | 82, 170 | pm2.61dan 812 |
. . . . . . 7
⊢ (𝑧 ∈ ℝ*
→ ∃𝑦 ∈
(-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) |
| 172 | 50, 171 | mprgbir 3059 |
. . . . . 6
⊢
ℝ* ⊆ {𝑧 ∣ ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))} |
| 173 | 7 | rnmpt 5942 |
. . . . . 6
⊢ ran 𝐺 = {𝑧 ∣ ∃𝑦 ∈ (-1[,]1)𝑧 = if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))} |
| 174 | 172, 173 | sseqtrri 4013 |
. . . . 5
⊢
ℝ* ⊆ ran 𝐺 |
| 175 | 49, 174 | eqssi 3980 |
. . . 4
⊢ ran 𝐺 =
ℝ* |
| 176 | | dffo2 6799 |
. . . 4
⊢ (𝐺:(-1[,]1)–onto→ℝ* ↔ (𝐺:(-1[,]1)⟶ℝ* ∧
ran 𝐺 =
ℝ*)) |
| 177 | 47, 175, 176 | mpbir2an 711 |
. . 3
⊢ 𝐺:(-1[,]1)–onto→ℝ* |
| 178 | | breq1 5127 |
. . . . . . 7
⊢ ((𝐹‘𝑧) = if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) → ((𝐹‘𝑧) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)) ↔ if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)))) |
| 179 | | breq1 5127 |
. . . . . . 7
⊢
(-𝑒(𝐹‘-𝑧) = if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) → (-𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)) ↔ if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)))) |
| 180 | | simpl3 1194 |
. . . . . . . . 9
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 < 𝑤) |
| 181 | | simpl1 1192 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ∈ (-1[,]1)) |
| 182 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 0 ≤ 𝑧) |
| 183 | | breq2 5128 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (0 ≤ 𝑦 ↔ 0 ≤ 𝑧)) |
| 184 | | eleq1w 2818 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑦 ∈ (0[,]1) ↔ 𝑧 ∈ (0[,]1))) |
| 185 | 183, 184 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → ((0 ≤ 𝑦 → 𝑦 ∈ (0[,]1)) ↔ (0 ≤ 𝑧 → 𝑧 ∈ (0[,]1)))) |
| 186 | 18 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (-1[,]1) → (0 ≤
𝑦 → 𝑦 ∈ (0[,]1))) |
| 187 | 185, 186 | vtoclga 3561 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (-1[,]1) → (0 ≤
𝑧 → 𝑧 ∈ (0[,]1))) |
| 188 | 181, 182,
187 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ∈ (0[,]1)) |
| 189 | | simpl2 1193 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑤 ∈ (-1[,]1)) |
| 190 | 29 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 0 ∈ ℝ) |
| 191 | 98, 181 | sselid 3961 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ∈ ℝ) |
| 192 | 98, 189 | sselid 3961 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑤 ∈ ℝ) |
| 193 | 191, 192,
180 | ltled 11388 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑧 ≤ 𝑤) |
| 194 | 190, 191,
192, 182, 193 | letrd 11397 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 0 ≤ 𝑤) |
| 195 | | breq2 5128 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (0 ≤ 𝑦 ↔ 0 ≤ 𝑤)) |
| 196 | | eleq1w 2818 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑦 ∈ (0[,]1) ↔ 𝑤 ∈ (0[,]1))) |
| 197 | 195, 196 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → ((0 ≤ 𝑦 → 𝑦 ∈ (0[,]1)) ↔ (0 ≤ 𝑤 → 𝑤 ∈ (0[,]1)))) |
| 198 | 197, 186 | vtoclga 3561 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ (-1[,]1) → (0 ≤
𝑤 → 𝑤 ∈ (0[,]1))) |
| 199 | 189, 194,
198 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → 𝑤 ∈ (0[,]1)) |
| 200 | | isorel 7324 |
. . . . . . . . . . 11
⊢ ((𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) ∧ (𝑧
∈ (0[,]1) ∧ 𝑤
∈ (0[,]1))) → (𝑧
< 𝑤 ↔ (𝐹‘𝑧) < (𝐹‘𝑤))) |
| 201 | 136, 200 | mpan 690 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 ↔ (𝐹‘𝑧) < (𝐹‘𝑤))) |
| 202 | 188, 199,
201 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → (𝑧 < 𝑤 ↔ (𝐹‘𝑧) < (𝐹‘𝑤))) |
| 203 | 180, 202 | mpbid 232 |
. . . . . . . 8
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → (𝐹‘𝑧) < (𝐹‘𝑤)) |
| 204 | 194 | iftrued 4513 |
. . . . . . . 8
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)) = (𝐹‘𝑤)) |
| 205 | 203, 204 | breqtrrd 5152 |
. . . . . . 7
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ 0 ≤ 𝑧) → (𝐹‘𝑧) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤))) |
| 206 | | breq2 5128 |
. . . . . . . 8
⊢ ((𝐹‘𝑤) = if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)) → (-𝑒(𝐹‘-𝑧) < (𝐹‘𝑤) ↔ -𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)))) |
| 207 | | breq2 5128 |
. . . . . . . 8
⊢
(-𝑒(𝐹‘-𝑤) = if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)) → (-𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤) ↔ -𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)))) |
| 208 | | simpl1 1192 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → 𝑧 ∈ (-1[,]1)) |
| 209 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → ¬ 0 ≤ 𝑧) |
| 210 | 183 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑧)) |
| 211 | | negeq 11479 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → -𝑦 = -𝑧) |
| 212 | 211 | eleq1d 2820 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (-𝑦 ∈ (0[,]1) ↔ -𝑧 ∈ (0[,]1))) |
| 213 | 210, 212 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → ((¬ 0 ≤ 𝑦 → -𝑦 ∈ (0[,]1)) ↔ (¬ 0 ≤ 𝑧 → -𝑧 ∈ (0[,]1)))) |
| 214 | 41 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (-1[,]1) → (¬ 0
≤ 𝑦 → -𝑦 ∈
(0[,]1))) |
| 215 | 213, 214 | vtoclga 3561 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (-1[,]1) → (¬ 0
≤ 𝑧 → -𝑧 ∈
(0[,]1))) |
| 216 | 208, 209,
215 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → -𝑧 ∈ (0[,]1)) |
| 217 | 216 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑧 ∈ (0[,]1)) |
| 218 | 23 | ffvelcdmi 7078 |
. . . . . . . . . . . 12
⊢ (-𝑧 ∈ (0[,]1) → (𝐹‘-𝑧) ∈ (0[,]+∞)) |
| 219 | 217, 218 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈ (0[,]+∞)) |
| 220 | 8, 219 | sselid 3961 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈
ℝ*) |
| 221 | 220 | xnegcld 13321 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) ∈
ℝ*) |
| 222 | 85 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 ∈
ℝ*) |
| 223 | | simpll2 1214 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑤 ∈ (-1[,]1)) |
| 224 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 ≤ 𝑤) |
| 225 | 223, 224,
198 | sylc 65 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑤 ∈ (0[,]1)) |
| 226 | 23 | ffvelcdmi 7078 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ (0[,]1) → (𝐹‘𝑤) ∈ (0[,]+∞)) |
| 227 | 225, 226 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘𝑤) ∈ (0[,]+∞)) |
| 228 | 8, 227 | sselid 3961 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘𝑤) ∈
ℝ*) |
| 229 | 209 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → ¬ 0 ≤ 𝑧) |
| 230 | | simpll1 1213 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑧 ∈ (-1[,]1)) |
| 231 | 98, 230 | sselid 3961 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑧 ∈ ℝ) |
| 232 | | ltnle 11319 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑧 < 0
↔ ¬ 0 ≤ 𝑧)) |
| 233 | 231, 29, 232 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝑧 < 0 ↔ ¬ 0 ≤ 𝑧)) |
| 234 | 229, 233 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 𝑧 < 0) |
| 235 | 231 | lt0neg1d 11811 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝑧 < 0 ↔ 0 < -𝑧)) |
| 236 | 234, 235 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 < -𝑧) |
| 237 | | isorel 7324 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) ∧ (0 ∈ (0[,]1) ∧ -𝑧 ∈ (0[,]1))) → (0 < -𝑧 ↔ (𝐹‘0) < (𝐹‘-𝑧))) |
| 238 | 136, 237 | mpan 690 |
. . . . . . . . . . . . 13
⊢ ((0
∈ (0[,]1) ∧ -𝑧
∈ (0[,]1)) → (0 < -𝑧 ↔ (𝐹‘0) < (𝐹‘-𝑧))) |
| 239 | 112, 217,
238 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (0 < -𝑧 ↔ (𝐹‘0) < (𝐹‘-𝑧))) |
| 240 | 236, 239 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (𝐹‘0) < (𝐹‘-𝑧)) |
| 241 | 130, 240 | eqbrtrrid 5160 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 < (𝐹‘-𝑧)) |
| 242 | | xlt0neg2 13241 |
. . . . . . . . . . 11
⊢ ((𝐹‘-𝑧) ∈ ℝ* → (0 <
(𝐹‘-𝑧) ↔
-𝑒(𝐹‘-𝑧) < 0)) |
| 243 | 220, 242 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → (0 < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < 0)) |
| 244 | 241, 243 | mpbid 232 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) < 0) |
| 245 | | elxrge0 13479 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) ↔ ((𝐹‘𝑤) ∈ ℝ* ∧ 0 ≤
(𝐹‘𝑤))) |
| 246 | 245 | simprbi 496 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝑤)) |
| 247 | 227, 246 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → 0 ≤ (𝐹‘𝑤)) |
| 248 | 221, 222,
228, 244, 247 | xrltletrd 13182 |
. . . . . . . 8
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) < (𝐹‘𝑤)) |
| 249 | | simpll3 1215 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑧 < 𝑤) |
| 250 | | simpll1 1213 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑧 ∈ (-1[,]1)) |
| 251 | 98, 250 | sselid 3961 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑧 ∈ ℝ) |
| 252 | | simpll2 1214 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑤 ∈ (-1[,]1)) |
| 253 | 98, 252 | sselid 3961 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → 𝑤 ∈ ℝ) |
| 254 | 251, 253 | ltnegd 11820 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝑧 < 𝑤 ↔ -𝑤 < -𝑧)) |
| 255 | 249, 254 | mpbid 232 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑤 < -𝑧) |
| 256 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → ¬ 0 ≤ 𝑤) |
| 257 | 195 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (¬ 0 ≤ 𝑦 ↔ ¬ 0 ≤ 𝑤)) |
| 258 | | negeq 11479 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑤 → -𝑦 = -𝑤) |
| 259 | 258 | eleq1d 2820 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (-𝑦 ∈ (0[,]1) ↔ -𝑤 ∈ (0[,]1))) |
| 260 | 257, 259 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → ((¬ 0 ≤ 𝑦 → -𝑦 ∈ (0[,]1)) ↔ (¬ 0 ≤ 𝑤 → -𝑤 ∈ (0[,]1)))) |
| 261 | 260, 214 | vtoclga 3561 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (-1[,]1) → (¬ 0
≤ 𝑤 → -𝑤 ∈
(0[,]1))) |
| 262 | 252, 256,
261 | sylc 65 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑤 ∈ (0[,]1)) |
| 263 | 216 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑧 ∈ (0[,]1)) |
| 264 | | isorel 7324 |
. . . . . . . . . . . 12
⊢ ((𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) ∧ (-𝑤
∈ (0[,]1) ∧ -𝑧
∈ (0[,]1))) → (-𝑤
< -𝑧 ↔ (𝐹‘-𝑤) < (𝐹‘-𝑧))) |
| 265 | 136, 264 | mpan 690 |
. . . . . . . . . . 11
⊢ ((-𝑤 ∈ (0[,]1) ∧ -𝑧 ∈ (0[,]1)) → (-𝑤 < -𝑧 ↔ (𝐹‘-𝑤) < (𝐹‘-𝑧))) |
| 266 | 262, 263,
265 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (-𝑤 < -𝑧 ↔ (𝐹‘-𝑤) < (𝐹‘-𝑧))) |
| 267 | 255, 266 | mpbid 232 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑤) < (𝐹‘-𝑧)) |
| 268 | 23 | ffvelcdmi 7078 |
. . . . . . . . . . . 12
⊢ (-𝑤 ∈ (0[,]1) → (𝐹‘-𝑤) ∈ (0[,]+∞)) |
| 269 | 262, 268 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑤) ∈ (0[,]+∞)) |
| 270 | 8, 269 | sselid 3961 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑤) ∈
ℝ*) |
| 271 | 263, 218 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈ (0[,]+∞)) |
| 272 | 8, 271 | sselid 3961 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → (𝐹‘-𝑧) ∈
ℝ*) |
| 273 | | xltneg 13238 |
. . . . . . . . . 10
⊢ (((𝐹‘-𝑤) ∈ ℝ* ∧ (𝐹‘-𝑧) ∈ ℝ*) → ((𝐹‘-𝑤) < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤))) |
| 274 | 270, 272,
273 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → ((𝐹‘-𝑤) < (𝐹‘-𝑧) ↔ -𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤))) |
| 275 | 267, 274 | mpbid 232 |
. . . . . . . 8
⊢ ((((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) ∧ ¬ 0 ≤ 𝑤) → -𝑒(𝐹‘-𝑧) < -𝑒(𝐹‘-𝑤)) |
| 276 | 206, 207,
248, 275 | ifbothda 4544 |
. . . . . . 7
⊢ (((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 0 ≤ 𝑧) → -𝑒(𝐹‘-𝑧) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤))) |
| 277 | 178, 179,
205, 276 | ifbothda 4544 |
. . . . . 6
⊢ ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1) ∧ 𝑧 < 𝑤) → if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤))) |
| 278 | 277 | 3expia 1121 |
. . . . 5
⊢ ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1)) → (𝑧 < 𝑤 → if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)))) |
| 279 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 280 | 211 | fveq2d 6885 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝐹‘-𝑦) = (𝐹‘-𝑧)) |
| 281 | | xnegeq 13228 |
. . . . . . . . 9
⊢ ((𝐹‘-𝑦) = (𝐹‘-𝑧) → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑧)) |
| 282 | 280, 281 | syl 17 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑧)) |
| 283 | 183, 279,
282 | ifbieq12d 4534 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) = if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧))) |
| 284 | | fvex 6894 |
. . . . . . . 8
⊢ (𝐹‘𝑧) ∈ V |
| 285 | | xnegex 13229 |
. . . . . . . 8
⊢
-𝑒(𝐹‘-𝑧) ∈ V |
| 286 | 284, 285 | ifex 4556 |
. . . . . . 7
⊢ if(0 ≤
𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) ∈ V |
| 287 | 283, 7, 286 | fvmpt 6991 |
. . . . . 6
⊢ (𝑧 ∈ (-1[,]1) → (𝐺‘𝑧) = if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧))) |
| 288 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) |
| 289 | 258 | fveq2d 6885 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝐹‘-𝑦) = (𝐹‘-𝑤)) |
| 290 | | xnegeq 13228 |
. . . . . . . . 9
⊢ ((𝐹‘-𝑦) = (𝐹‘-𝑤) → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑤)) |
| 291 | 289, 290 | syl 17 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → -𝑒(𝐹‘-𝑦) = -𝑒(𝐹‘-𝑤)) |
| 292 | 195, 288,
291 | ifbieq12d 4534 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦)) = if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤))) |
| 293 | | fvex 6894 |
. . . . . . . 8
⊢ (𝐹‘𝑤) ∈ V |
| 294 | | xnegex 13229 |
. . . . . . . 8
⊢
-𝑒(𝐹‘-𝑤) ∈ V |
| 295 | 293, 294 | ifex 4556 |
. . . . . . 7
⊢ if(0 ≤
𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)) ∈ V |
| 296 | 292, 7, 295 | fvmpt 6991 |
. . . . . 6
⊢ (𝑤 ∈ (-1[,]1) → (𝐺‘𝑤) = if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤))) |
| 297 | 287, 296 | breqan12d 5140 |
. . . . 5
⊢ ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1)) → ((𝐺‘𝑧) < (𝐺‘𝑤) ↔ if(0 ≤ 𝑧, (𝐹‘𝑧), -𝑒(𝐹‘-𝑧)) < if(0 ≤ 𝑤, (𝐹‘𝑤), -𝑒(𝐹‘-𝑤)))) |
| 298 | 278, 297 | sylibrd 259 |
. . . 4
⊢ ((𝑧 ∈ (-1[,]1) ∧ 𝑤 ∈ (-1[,]1)) → (𝑧 < 𝑤 → (𝐺‘𝑧) < (𝐺‘𝑤))) |
| 299 | 298 | rgen2 3185 |
. . 3
⊢
∀𝑧 ∈
(-1[,]1)∀𝑤 ∈
(-1[,]1)(𝑧 < 𝑤 → (𝐺‘𝑧) < (𝐺‘𝑤)) |
| 300 | | soisoi 7326 |
. . 3
⊢ ((( <
Or (-1[,]1) ∧ < Po ℝ*) ∧ (𝐺:(-1[,]1)–onto→ℝ* ∧ ∀𝑧 ∈ (-1[,]1)∀𝑤 ∈ (-1[,]1)(𝑧 < 𝑤 → (𝐺‘𝑧) < (𝐺‘𝑤)))) → 𝐺 Isom < , < ((-1[,]1),
ℝ*)) |
| 301 | 4, 6, 177, 299, 300 | mp4an 693 |
. 2
⊢ 𝐺 Isom < , < ((-1[,]1),
ℝ*) |
| 302 | | letsr 18608 |
. . . . . 6
⊢ ≤
∈ TosetRel |
| 303 | 302 | elexi 3487 |
. . . . 5
⊢ ≤
∈ V |
| 304 | 303 | inex1 5292 |
. . . 4
⊢ ( ≤
∩ ((-1[,]1) × (-1[,]1))) ∈ V |
| 305 | | ssid 3986 |
. . . . . . 7
⊢
ℝ* ⊆ ℝ* |
| 306 | | leiso 14482 |
. . . . . . 7
⊢
(((-1[,]1) ⊆ ℝ* ∧ ℝ* ⊆
ℝ*) → (𝐺 Isom < , < ((-1[,]1),
ℝ*) ↔ 𝐺 Isom ≤ , ≤ ((-1[,]1),
ℝ*))) |
| 307 | 1, 305, 306 | mp2an 692 |
. . . . . 6
⊢ (𝐺 Isom < , < ((-1[,]1),
ℝ*) ↔ 𝐺 Isom ≤ , ≤ ((-1[,]1),
ℝ*)) |
| 308 | 301, 307 | mpbi 230 |
. . . . 5
⊢ 𝐺 Isom ≤ , ≤ ((-1[,]1),
ℝ*) |
| 309 | | isores1 7332 |
. . . . 5
⊢ (𝐺 Isom ≤ , ≤ ((-1[,]1),
ℝ*) ↔ 𝐺 Isom ( ≤ ∩ ((-1[,]1) ×
(-1[,]1))), ≤ ((-1[,]1), ℝ*)) |
| 310 | 308, 309 | mpbi 230 |
. . . 4
⊢ 𝐺 Isom ( ≤ ∩ ((-1[,]1)
× (-1[,]1))), ≤ ((-1[,]1), ℝ*) |
| 311 | | tsrps 18602 |
. . . . . . . 8
⊢ ( ≤
∈ TosetRel → ≤ ∈ PosetRel) |
| 312 | 302, 311 | ax-mp 5 |
. . . . . . 7
⊢ ≤
∈ PosetRel |
| 313 | | ledm 18605 |
. . . . . . . 8
⊢
ℝ* = dom ≤ |
| 314 | 313 | psssdm 18597 |
. . . . . . 7
⊢ (( ≤
∈ PosetRel ∧ (-1[,]1) ⊆ ℝ*) → dom ( ≤
∩ ((-1[,]1) × (-1[,]1))) = (-1[,]1)) |
| 315 | 312, 1, 314 | mp2an 692 |
. . . . . 6
⊢ dom (
≤ ∩ ((-1[,]1) × (-1[,]1))) = (-1[,]1) |
| 316 | 315 | eqcomi 2745 |
. . . . 5
⊢ (-1[,]1)
= dom ( ≤ ∩ ((-1[,]1) × (-1[,]1))) |
| 317 | 316, 313 | ordthmeo 23745 |
. . . 4
⊢ ((( ≤
∩ ((-1[,]1) × (-1[,]1))) ∈ V ∧ ≤ ∈ TosetRel ∧
𝐺 Isom ( ≤ ∩
((-1[,]1) × (-1[,]1))), ≤ ((-1[,]1), ℝ*)) →
𝐺 ∈ ((ordTop‘(
≤ ∩ ((-1[,]1) × (-1[,]1))))Homeo(ordTop‘ ≤
))) |
| 318 | 304, 302,
310, 317 | mp3an 1463 |
. . 3
⊢ 𝐺 ∈ ((ordTop‘( ≤
∩ ((-1[,]1) × (-1[,]1))))Homeo(ordTop‘ ≤ )) |
| 319 | | xrhmeo.j |
. . . . . . 7
⊢ 𝐽 =
(TopOpen‘ℂfld) |
| 320 | | eqid 2736 |
. . . . . . 7
⊢
(ordTop‘ ≤ ) = (ordTop‘ ≤ ) |
| 321 | 319, 320 | xrrest2 24753 |
. . . . . 6
⊢ ((-1[,]1)
⊆ ℝ → (𝐽
↾t (-1[,]1)) = ((ordTop‘ ≤ ) ↾t
(-1[,]1))) |
| 322 | 98, 321 | ax-mp 5 |
. . . . 5
⊢ (𝐽 ↾t (-1[,]1)) =
((ordTop‘ ≤ ) ↾t (-1[,]1)) |
| 323 | | ordtresticc 23166 |
. . . . 5
⊢
((ordTop‘ ≤ ) ↾t (-1[,]1)) = (ordTop‘(
≤ ∩ ((-1[,]1) × (-1[,]1)))) |
| 324 | 322, 323 | eqtri 2759 |
. . . 4
⊢ (𝐽 ↾t (-1[,]1)) =
(ordTop‘( ≤ ∩ ((-1[,]1) × (-1[,]1)))) |
| 325 | 324 | oveq1i 7420 |
. . 3
⊢ ((𝐽 ↾t
(-1[,]1))Homeo(ordTop‘ ≤ )) = ((ordTop‘( ≤ ∩ ((-1[,]1)
× (-1[,]1))))Homeo(ordTop‘ ≤ )) |
| 326 | 318, 325 | eleqtrri 2834 |
. 2
⊢ 𝐺 ∈ ((𝐽 ↾t
(-1[,]1))Homeo(ordTop‘ ≤ )) |
| 327 | 301, 326 | pm3.2i 470 |
1
⊢ (𝐺 Isom < , < ((-1[,]1),
ℝ*) ∧ 𝐺 ∈ ((𝐽 ↾t
(-1[,]1))Homeo(ordTop‘ ≤ ))) |