Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd Structured version   Visualization version   GIF version

Theorem sstotbnd 37742
Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
sstotbnd ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Distinct variable groups:   𝑏,𝑑,𝑣,𝑥,𝑀   𝑋,𝑏,𝑑,𝑣,𝑥   𝑁,𝑑,𝑣,𝑥   𝑌,𝑏,𝑑,𝑣,𝑥
Allowed substitution hint:   𝑁(𝑏)

Proof of Theorem sstotbnd
Dummy variables 𝑓 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . 3 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
21sstotbnd2 37741 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑)))
3 elfpw 9281 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑢𝑋𝑢 ∈ Fin))
43simprbi 496 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → 𝑢 ∈ Fin)
5 mptfi 9278 . . . . . . . 8 (𝑢 ∈ Fin → (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
6 rnfi 9267 . . . . . . . 8 ((𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
74, 5, 63syl 18 . . . . . . 7 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
87ad2antrl 728 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
9 simprr 772 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
10 eqid 2729 . . . . . . . 8 (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) = (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑))
1110rnmpt 5910 . . . . . . 7 ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) = {𝑏 ∣ ∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑)}
123simplbi 497 . . . . . . . . . 10 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → 𝑢𝑋)
13 ssrexv 4013 . . . . . . . . . 10 (𝑢𝑋 → (∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
1412, 13syl 17 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → (∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
1514ad2antrl 728 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → (∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
1615ss2abdv 4026 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → {𝑏 ∣ ∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑)} ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})
1711, 16eqsstrid 3982 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})
18 unieq 4878 . . . . . . . . . 10 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → 𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)))
19 ovex 7402 . . . . . . . . . . 11 (𝑥(ball‘𝑀)𝑑) ∈ V
2019dfiun3 5922 . . . . . . . . . 10 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑))
2118, 20eqtr4di 2782 . . . . . . . . 9 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → 𝑣 = 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
2221sseq2d 3976 . . . . . . . 8 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑌 𝑣𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑)))
23 ssabral 4025 . . . . . . . . 9 (𝑣 ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))
24 sseq1 3969 . . . . . . . . 9 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑣 ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))
2523, 24bitr3id 285 . . . . . . . 8 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))
2622, 25anbi12d 632 . . . . . . 7 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → ((𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ (𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ∧ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})))
2726rspcev 3585 . . . . . 6 ((ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin ∧ (𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ∧ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) → ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
288, 9, 17, 27syl12anc 836 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2928rexlimdvaa 3135 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
30 oveq1 7376 . . . . . . . . . 10 (𝑥 = (𝑓𝑏) → (𝑥(ball‘𝑀)𝑑) = ((𝑓𝑏)(ball‘𝑀)𝑑))
3130eqeq2d 2740 . . . . . . . . 9 (𝑥 = (𝑓𝑏) → (𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
3231ac6sfi 9207 . . . . . . . 8 ((𝑣 ∈ Fin ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑓(𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
3332adantrl 716 . . . . . . 7 ((𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) → ∃𝑓(𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
3433adantl 481 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → ∃𝑓(𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
35 frn 6677 . . . . . . . . 9 (𝑓:𝑣𝑋 → ran 𝑓𝑋)
3635ad2antrl 728 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ran 𝑓𝑋)
37 simplrl 776 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑣 ∈ Fin)
38 ffn 6670 . . . . . . . . . . 11 (𝑓:𝑣𝑋𝑓 Fn 𝑣)
3938ad2antrl 728 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑓 Fn 𝑣)
40 dffn4 6760 . . . . . . . . . 10 (𝑓 Fn 𝑣𝑓:𝑣onto→ran 𝑓)
4139, 40sylib 218 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑓:𝑣onto→ran 𝑓)
42 fofi 9238 . . . . . . . . 9 ((𝑣 ∈ Fin ∧ 𝑓:𝑣onto→ran 𝑓) → ran 𝑓 ∈ Fin)
4337, 41, 42syl2anc 584 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ran 𝑓 ∈ Fin)
44 elfpw 9281 . . . . . . . 8 (ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ↔ (ran 𝑓𝑋 ∧ ran 𝑓 ∈ Fin))
4536, 43, 44sylanbrc 583 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin))
46 simprrl 780 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → 𝑌 𝑣)
4746adantr 480 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑌 𝑣)
48 uniiun 5017 . . . . . . . . . . 11 𝑣 = 𝑏𝑣 𝑏
49 iuneq2 4971 . . . . . . . . . . 11 (∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑) → 𝑏𝑣 𝑏 = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5048, 49eqtrid 2776 . . . . . . . . . 10 (∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑) → 𝑣 = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5150ad2antll 729 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑣 = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5247, 51sseqtrd 3980 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑌 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5330eleq2d 2814 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑏) → (𝑦 ∈ (𝑥(ball‘𝑀)𝑑) ↔ 𝑦 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
5453rexrn 7041 . . . . . . . . . . 11 (𝑓 Fn 𝑣 → (∃𝑥 ∈ ran 𝑓 𝑦 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏𝑣 𝑦 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
55 eliun 4955 . . . . . . . . . . 11 (𝑦 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥 ∈ ran 𝑓 𝑦 ∈ (𝑥(ball‘𝑀)𝑑))
56 eliun 4955 . . . . . . . . . . 11 (𝑦 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑) ↔ ∃𝑏𝑣 𝑦 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑))
5754, 55, 563bitr4g 314 . . . . . . . . . 10 (𝑓 Fn 𝑣 → (𝑦 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ 𝑦 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑)))
5857eqrdv 2727 . . . . . . . . 9 (𝑓 Fn 𝑣 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5939, 58syl 17 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
6052, 59sseqtrrd 3981 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑))
61 iuneq1 4968 . . . . . . . . 9 (𝑢 = ran 𝑓 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) = 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑))
6261sseq2d 3976 . . . . . . . 8 (𝑢 = ran 𝑓 → (𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ↔ 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)))
6362rspcev 3585 . . . . . . 7 ((ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
6445, 60, 63syl2anc 584 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
6534, 64exlimddv 1935 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
6665rexlimdvaa 3135 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑)))
6729, 66impbid 212 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
6867ralbidv 3156 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
692, 68bitrd 279 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  cin 3910  wss 3911  𝒫 cpw 4559   cuni 4867   ciun 4951  cmpt 5183   × cxp 5629  ran crn 5632  cres 5633   Fn wfn 6494  wf 6495  ontowfo 6497  cfv 6499  (class class class)co 7369  Fincfn 8895  +crp 12927  Metcmet 21226  ballcbl 21227  TotBndctotbnd 37733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-totbnd 37735
This theorem is referenced by:  totbndss  37744
  Copyright terms: Public domain W3C validator