Step | Hyp | Ref
| Expression |
1 | | sstotbnd.2 |
. . 3
⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) |
2 | 1 | sstotbnd2 35932 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑))) |
3 | | elfpw 9121 |
. . . . . . . . 9
⊢ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑢 ⊆ 𝑋 ∧ 𝑢 ∈ Fin)) |
4 | 3 | simprbi 497 |
. . . . . . . 8
⊢ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → 𝑢 ∈ Fin) |
5 | | mptfi 9118 |
. . . . . . . 8
⊢ (𝑢 ∈ Fin → (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin) |
6 | | rnfi 9102 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin → ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin) |
7 | 4, 5, 6 | 3syl 18 |
. . . . . . 7
⊢ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin) |
8 | 7 | ad2antrl 725 |
. . . . . 6
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑))) → ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin) |
9 | | simprr 770 |
. . . . . 6
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑))) → 𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑)) |
10 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) = (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) |
11 | 10 | rnmpt 5864 |
. . . . . . 7
⊢ ran
(𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) = {𝑏 ∣ ∃𝑥 ∈ 𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑)} |
12 | 3 | simplbi 498 |
. . . . . . . . . 10
⊢ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → 𝑢 ⊆ 𝑋) |
13 | | ssrexv 3988 |
. . . . . . . . . 10
⊢ (𝑢 ⊆ 𝑋 → (∃𝑥 ∈ 𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → (∃𝑥 ∈ 𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
15 | 14 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑))) → (∃𝑥 ∈ 𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
16 | 15 | ss2abdv 3997 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑))) → {𝑏 ∣ ∃𝑥 ∈ 𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑)} ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}) |
17 | 11, 16 | eqsstrid 3969 |
. . . . . 6
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑))) → ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}) |
18 | | unieq 4850 |
. . . . . . . . . 10
⊢ (𝑣 = ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → ∪ 𝑣 = ∪
ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑))) |
19 | | ovex 7308 |
. . . . . . . . . . 11
⊢ (𝑥(ball‘𝑀)𝑑) ∈ V |
20 | 19 | dfiun3 5875 |
. . . . . . . . . 10
⊢ ∪ 𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑) = ∪ ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) |
21 | 18, 20 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (𝑣 = ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → ∪ 𝑣 = ∪ 𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑)) |
22 | 21 | sseq2d 3953 |
. . . . . . . 8
⊢ (𝑣 = ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑌 ⊆ ∪ 𝑣 ↔ 𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑))) |
23 | | ssabral 3996 |
. . . . . . . . 9
⊢ (𝑣 ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) |
24 | | sseq1 3946 |
. . . . . . . . 9
⊢ (𝑣 = ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑣 ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) |
25 | 23, 24 | bitr3id 285 |
. . . . . . . 8
⊢ (𝑣 = ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) |
26 | 22, 25 | anbi12d 631 |
. . . . . . 7
⊢ (𝑣 = ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → ((𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ (𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑) ∧ ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))) |
27 | 26 | rspcev 3561 |
. . . . . 6
⊢ ((ran
(𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin ∧ (𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑) ∧ ran (𝑥 ∈ 𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) → ∃𝑣 ∈ Fin (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
28 | 8, 9, 17, 27 | syl12anc 834 |
. . . . 5
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑))) → ∃𝑣 ∈ Fin (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
29 | 28 | rexlimdvaa 3214 |
. . . 4
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ Fin (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
30 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑓‘𝑏) → (𝑥(ball‘𝑀)𝑑) = ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
31 | 30 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑥 = (𝑓‘𝑏) → (𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
32 | 31 | ac6sfi 9058 |
. . . . . . . 8
⊢ ((𝑣 ∈ Fin ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑓(𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
33 | 32 | adantrl 713 |
. . . . . . 7
⊢ ((𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣
∧ ∀𝑏 ∈
𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) → ∃𝑓(𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
34 | 33 | adantl 482 |
. . . . . 6
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → ∃𝑓(𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
35 | | frn 6607 |
. . . . . . . . 9
⊢ (𝑓:𝑣⟶𝑋 → ran 𝑓 ⊆ 𝑋) |
36 | 35 | ad2antrl 725 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) → ran 𝑓 ⊆ 𝑋) |
37 | | simplrl 774 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) → 𝑣 ∈ Fin) |
38 | | ffn 6600 |
. . . . . . . . . . 11
⊢ (𝑓:𝑣⟶𝑋 → 𝑓 Fn 𝑣) |
39 | 38 | ad2antrl 725 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) → 𝑓 Fn 𝑣) |
40 | | dffn4 6694 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑣 ↔ 𝑓:𝑣–onto→ran 𝑓) |
41 | 39, 40 | sylib 217 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) → 𝑓:𝑣–onto→ran 𝑓) |
42 | | fofi 9105 |
. . . . . . . . 9
⊢ ((𝑣 ∈ Fin ∧ 𝑓:𝑣–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
43 | 37, 41, 42 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) → ran 𝑓 ∈ Fin) |
44 | | elfpw 9121 |
. . . . . . . 8
⊢ (ran
𝑓 ∈ (𝒫 𝑋 ∩ Fin) ↔ (ran 𝑓 ⊆ 𝑋 ∧ ran 𝑓 ∈ Fin)) |
45 | 36, 43, 44 | sylanbrc 583 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) → ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin)) |
46 | | simprrl 778 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → 𝑌 ⊆ ∪ 𝑣) |
47 | 46 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) → 𝑌 ⊆ ∪ 𝑣) |
48 | | uniiun 4988 |
. . . . . . . . . . 11
⊢ ∪ 𝑣 =
∪ 𝑏 ∈ 𝑣 𝑏 |
49 | | iuneq2 4943 |
. . . . . . . . . . 11
⊢
(∀𝑏 ∈
𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑) → ∪
𝑏 ∈ 𝑣 𝑏 = ∪ 𝑏 ∈ 𝑣 ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
50 | 48, 49 | eqtrid 2790 |
. . . . . . . . . 10
⊢
(∀𝑏 ∈
𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑) → ∪ 𝑣 = ∪ 𝑏 ∈ 𝑣 ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
51 | 50 | ad2antll 726 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) → ∪ 𝑣 = ∪ 𝑏 ∈ 𝑣 ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
52 | 47, 51 | sseqtrd 3961 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) → 𝑌 ⊆ ∪
𝑏 ∈ 𝑣 ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
53 | 30 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑓‘𝑏) → (𝑦 ∈ (𝑥(ball‘𝑀)𝑑) ↔ 𝑦 ∈ ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
54 | 53 | rexrn 6963 |
. . . . . . . . . . 11
⊢ (𝑓 Fn 𝑣 → (∃𝑥 ∈ ran 𝑓 𝑦 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏 ∈ 𝑣 𝑦 ∈ ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
55 | | eliun 4928 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥 ∈ ran 𝑓 𝑦 ∈ (𝑥(ball‘𝑀)𝑑)) |
56 | | eliun 4928 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ∪ 𝑏 ∈ 𝑣 ((𝑓‘𝑏)(ball‘𝑀)𝑑) ↔ ∃𝑏 ∈ 𝑣 𝑦 ∈ ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
57 | 54, 55, 56 | 3bitr4g 314 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑣 → (𝑦 ∈ ∪
𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ 𝑦 ∈ ∪
𝑏 ∈ 𝑣 ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
58 | 57 | eqrdv 2736 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝑣 → ∪
𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = ∪ 𝑏 ∈ 𝑣 ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
59 | 39, 58 | syl 17 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) → ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = ∪ 𝑏 ∈ 𝑣 ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
60 | 52, 59 | sseqtrrd 3962 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) → 𝑌 ⊆ ∪
𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)) |
61 | | iuneq1 4940 |
. . . . . . . . 9
⊢ (𝑢 = ran 𝑓 → ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑) = ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)) |
62 | 61 | sseq2d 3953 |
. . . . . . . 8
⊢ (𝑢 = ran 𝑓 → (𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑) ↔ 𝑌 ⊆ ∪
𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑))) |
63 | 62 | rspcev 3561 |
. . . . . . 7
⊢ ((ran
𝑓 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑)) |
64 | 45, 60, 63 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣⟶𝑋 ∧ ∀𝑏 ∈ 𝑣 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑)) |
65 | 34, 64 | exlimddv 1938 |
. . . . 5
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑)) |
66 | 65 | rexlimdvaa 3214 |
. . . 4
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑣 ∈ Fin (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑))) |
67 | 29, 66 | impbid 211 |
. . 3
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑣 ∈ Fin (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
68 | 67 | ralbidv 3112 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∀𝑑 ∈ ℝ+ ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑢 (𝑥(ball‘𝑀)𝑑) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
69 | 2, 68 | bitrd 278 |
1
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |