Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd Structured version   Visualization version   GIF version

Theorem sstotbnd 37755
Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
sstotbnd ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Distinct variable groups:   𝑏,𝑑,𝑣,𝑥,𝑀   𝑋,𝑏,𝑑,𝑣,𝑥   𝑁,𝑑,𝑣,𝑥   𝑌,𝑏,𝑑,𝑣,𝑥
Allowed substitution hint:   𝑁(𝑏)

Proof of Theorem sstotbnd
Dummy variables 𝑓 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . 3 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
21sstotbnd2 37754 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑)))
3 elfpw 9244 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑢𝑋𝑢 ∈ Fin))
43simprbi 496 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → 𝑢 ∈ Fin)
5 mptfi 9241 . . . . . . . 8 (𝑢 ∈ Fin → (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
6 rnfi 9230 . . . . . . . 8 ((𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
74, 5, 63syl 18 . . . . . . 7 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
87ad2antrl 728 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
9 simprr 772 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
10 eqid 2729 . . . . . . . 8 (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) = (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑))
1110rnmpt 5899 . . . . . . 7 ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) = {𝑏 ∣ ∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑)}
123simplbi 497 . . . . . . . . . 10 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → 𝑢𝑋)
13 ssrexv 4005 . . . . . . . . . 10 (𝑢𝑋 → (∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
1412, 13syl 17 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → (∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
1514ad2antrl 728 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → (∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
1615ss2abdv 4018 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → {𝑏 ∣ ∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑)} ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})
1711, 16eqsstrid 3974 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})
18 unieq 4869 . . . . . . . . . 10 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → 𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)))
19 ovex 7382 . . . . . . . . . . 11 (𝑥(ball‘𝑀)𝑑) ∈ V
2019dfiun3 5911 . . . . . . . . . 10 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑))
2118, 20eqtr4di 2782 . . . . . . . . 9 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → 𝑣 = 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
2221sseq2d 3968 . . . . . . . 8 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑌 𝑣𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑)))
23 ssabral 4017 . . . . . . . . 9 (𝑣 ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))
24 sseq1 3961 . . . . . . . . 9 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑣 ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))
2523, 24bitr3id 285 . . . . . . . 8 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))
2622, 25anbi12d 632 . . . . . . 7 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → ((𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ (𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ∧ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})))
2726rspcev 3577 . . . . . 6 ((ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin ∧ (𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ∧ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) → ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
288, 9, 17, 27syl12anc 836 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2928rexlimdvaa 3131 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
30 oveq1 7356 . . . . . . . . . 10 (𝑥 = (𝑓𝑏) → (𝑥(ball‘𝑀)𝑑) = ((𝑓𝑏)(ball‘𝑀)𝑑))
3130eqeq2d 2740 . . . . . . . . 9 (𝑥 = (𝑓𝑏) → (𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
3231ac6sfi 9173 . . . . . . . 8 ((𝑣 ∈ Fin ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑓(𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
3332adantrl 716 . . . . . . 7 ((𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) → ∃𝑓(𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
3433adantl 481 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → ∃𝑓(𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
35 frn 6659 . . . . . . . . 9 (𝑓:𝑣𝑋 → ran 𝑓𝑋)
3635ad2antrl 728 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ran 𝑓𝑋)
37 simplrl 776 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑣 ∈ Fin)
38 ffn 6652 . . . . . . . . . . 11 (𝑓:𝑣𝑋𝑓 Fn 𝑣)
3938ad2antrl 728 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑓 Fn 𝑣)
40 dffn4 6742 . . . . . . . . . 10 (𝑓 Fn 𝑣𝑓:𝑣onto→ran 𝑓)
4139, 40sylib 218 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑓:𝑣onto→ran 𝑓)
42 fofi 9202 . . . . . . . . 9 ((𝑣 ∈ Fin ∧ 𝑓:𝑣onto→ran 𝑓) → ran 𝑓 ∈ Fin)
4337, 41, 42syl2anc 584 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ran 𝑓 ∈ Fin)
44 elfpw 9244 . . . . . . . 8 (ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ↔ (ran 𝑓𝑋 ∧ ran 𝑓 ∈ Fin))
4536, 43, 44sylanbrc 583 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin))
46 simprrl 780 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → 𝑌 𝑣)
4746adantr 480 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑌 𝑣)
48 uniiun 5007 . . . . . . . . . . 11 𝑣 = 𝑏𝑣 𝑏
49 iuneq2 4961 . . . . . . . . . . 11 (∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑) → 𝑏𝑣 𝑏 = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5048, 49eqtrid 2776 . . . . . . . . . 10 (∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑) → 𝑣 = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5150ad2antll 729 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑣 = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5247, 51sseqtrd 3972 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑌 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5330eleq2d 2814 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑏) → (𝑦 ∈ (𝑥(ball‘𝑀)𝑑) ↔ 𝑦 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
5453rexrn 7021 . . . . . . . . . . 11 (𝑓 Fn 𝑣 → (∃𝑥 ∈ ran 𝑓 𝑦 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏𝑣 𝑦 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
55 eliun 4945 . . . . . . . . . . 11 (𝑦 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥 ∈ ran 𝑓 𝑦 ∈ (𝑥(ball‘𝑀)𝑑))
56 eliun 4945 . . . . . . . . . . 11 (𝑦 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑) ↔ ∃𝑏𝑣 𝑦 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑))
5754, 55, 563bitr4g 314 . . . . . . . . . 10 (𝑓 Fn 𝑣 → (𝑦 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ 𝑦 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑)))
5857eqrdv 2727 . . . . . . . . 9 (𝑓 Fn 𝑣 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5939, 58syl 17 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
6052, 59sseqtrrd 3973 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑))
61 iuneq1 4958 . . . . . . . . 9 (𝑢 = ran 𝑓 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) = 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑))
6261sseq2d 3968 . . . . . . . 8 (𝑢 = ran 𝑓 → (𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ↔ 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)))
6362rspcev 3577 . . . . . . 7 ((ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
6445, 60, 63syl2anc 584 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
6534, 64exlimddv 1935 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
6665rexlimdvaa 3131 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑)))
6729, 66impbid 212 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
6867ralbidv 3152 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
692, 68bitrd 279 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  cin 3902  wss 3903  𝒫 cpw 4551   cuni 4858   ciun 4941  cmpt 5173   × cxp 5617  ran crn 5620  cres 5621   Fn wfn 6477  wf 6478  ontowfo 6480  cfv 6482  (class class class)co 7349  Fincfn 8872  +crp 12893  Metcmet 21247  ballcbl 21248  TotBndctotbnd 37746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-totbnd 37748
This theorem is referenced by:  totbndss  37757
  Copyright terms: Public domain W3C validator