Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd Structured version   Visualization version   GIF version

Theorem sstotbnd 35212
Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
sstotbnd ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Distinct variable groups:   𝑏,𝑑,𝑣,𝑥,𝑀   𝑋,𝑏,𝑑,𝑣,𝑥   𝑁,𝑑,𝑣,𝑥   𝑌,𝑏,𝑑,𝑣,𝑥
Allowed substitution hint:   𝑁(𝑏)

Proof of Theorem sstotbnd
Dummy variables 𝑓 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . 3 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
21sstotbnd2 35211 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑)))
3 elfpw 8814 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑢𝑋𝑢 ∈ Fin))
43simprbi 500 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → 𝑢 ∈ Fin)
5 mptfi 8811 . . . . . . . 8 (𝑢 ∈ Fin → (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
6 rnfi 8795 . . . . . . . 8 ((𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
74, 5, 63syl 18 . . . . . . 7 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
87ad2antrl 727 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
9 simprr 772 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
10 eqid 2801 . . . . . . . 8 (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) = (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑))
1110rnmpt 5795 . . . . . . 7 ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) = {𝑏 ∣ ∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑)}
123simplbi 501 . . . . . . . . . 10 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → 𝑢𝑋)
13 ssrexv 3985 . . . . . . . . . 10 (𝑢𝑋 → (∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
1412, 13syl 17 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → (∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
1514ad2antrl 727 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → (∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
1615ss2abdv 3994 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → {𝑏 ∣ ∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑)} ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})
1711, 16eqsstrid 3966 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})
18 unieq 4814 . . . . . . . . . 10 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → 𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)))
19 ovex 7172 . . . . . . . . . . 11 (𝑥(ball‘𝑀)𝑑) ∈ V
2019dfiun3 5806 . . . . . . . . . 10 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑))
2118, 20eqtr4di 2854 . . . . . . . . 9 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → 𝑣 = 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
2221sseq2d 3950 . . . . . . . 8 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑌 𝑣𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑)))
23 ssabral 3993 . . . . . . . . 9 (𝑣 ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))
24 sseq1 3943 . . . . . . . . 9 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑣 ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))
2523, 24bitr3id 288 . . . . . . . 8 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))
2622, 25anbi12d 633 . . . . . . 7 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → ((𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ (𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ∧ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})))
2726rspcev 3574 . . . . . 6 ((ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin ∧ (𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ∧ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) → ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
288, 9, 17, 27syl12anc 835 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2928rexlimdvaa 3247 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
30 oveq1 7146 . . . . . . . . . 10 (𝑥 = (𝑓𝑏) → (𝑥(ball‘𝑀)𝑑) = ((𝑓𝑏)(ball‘𝑀)𝑑))
3130eqeq2d 2812 . . . . . . . . 9 (𝑥 = (𝑓𝑏) → (𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
3231ac6sfi 8750 . . . . . . . 8 ((𝑣 ∈ Fin ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑓(𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
3332adantrl 715 . . . . . . 7 ((𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) → ∃𝑓(𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
3433adantl 485 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → ∃𝑓(𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
35 frn 6497 . . . . . . . . 9 (𝑓:𝑣𝑋 → ran 𝑓𝑋)
3635ad2antrl 727 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ran 𝑓𝑋)
37 simplrl 776 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑣 ∈ Fin)
38 ffn 6491 . . . . . . . . . . 11 (𝑓:𝑣𝑋𝑓 Fn 𝑣)
3938ad2antrl 727 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑓 Fn 𝑣)
40 dffn4 6575 . . . . . . . . . 10 (𝑓 Fn 𝑣𝑓:𝑣onto→ran 𝑓)
4139, 40sylib 221 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑓:𝑣onto→ran 𝑓)
42 fofi 8798 . . . . . . . . 9 ((𝑣 ∈ Fin ∧ 𝑓:𝑣onto→ran 𝑓) → ran 𝑓 ∈ Fin)
4337, 41, 42syl2anc 587 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ran 𝑓 ∈ Fin)
44 elfpw 8814 . . . . . . . 8 (ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ↔ (ran 𝑓𝑋 ∧ ran 𝑓 ∈ Fin))
4536, 43, 44sylanbrc 586 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin))
46 simprrl 780 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → 𝑌 𝑣)
4746adantr 484 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑌 𝑣)
48 uniiun 4948 . . . . . . . . . . 11 𝑣 = 𝑏𝑣 𝑏
49 iuneq2 4903 . . . . . . . . . . 11 (∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑) → 𝑏𝑣 𝑏 = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5048, 49syl5eq 2848 . . . . . . . . . 10 (∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑) → 𝑣 = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5150ad2antll 728 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑣 = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5247, 51sseqtrd 3958 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑌 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5330eleq2d 2878 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑏) → (𝑦 ∈ (𝑥(ball‘𝑀)𝑑) ↔ 𝑦 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
5453rexrn 6834 . . . . . . . . . . 11 (𝑓 Fn 𝑣 → (∃𝑥 ∈ ran 𝑓 𝑦 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏𝑣 𝑦 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
55 eliun 4888 . . . . . . . . . . 11 (𝑦 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥 ∈ ran 𝑓 𝑦 ∈ (𝑥(ball‘𝑀)𝑑))
56 eliun 4888 . . . . . . . . . . 11 (𝑦 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑) ↔ ∃𝑏𝑣 𝑦 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑))
5754, 55, 563bitr4g 317 . . . . . . . . . 10 (𝑓 Fn 𝑣 → (𝑦 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ 𝑦 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑)))
5857eqrdv 2799 . . . . . . . . 9 (𝑓 Fn 𝑣 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5939, 58syl 17 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
6052, 59sseqtrrd 3959 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑))
61 iuneq1 4900 . . . . . . . . 9 (𝑢 = ran 𝑓 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) = 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑))
6261sseq2d 3950 . . . . . . . 8 (𝑢 = ran 𝑓 → (𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ↔ 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)))
6362rspcev 3574 . . . . . . 7 ((ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
6445, 60, 63syl2anc 587 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
6534, 64exlimddv 1936 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
6665rexlimdvaa 3247 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑)))
6729, 66impbid 215 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
6867ralbidv 3165 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
692, 68bitrd 282 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2112  {cab 2779  wral 3109  wrex 3110  cin 3883  wss 3884  𝒫 cpw 4500   cuni 4803   ciun 4884  cmpt 5113   × cxp 5521  ran crn 5524  cres 5525   Fn wfn 6323  wf 6324  ontowfo 6326  cfv 6328  (class class class)co 7139  Fincfn 8496  +crp 12381  Metcmet 20081  ballcbl 20082  TotBndctotbnd 35203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-2 11692  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-totbnd 35205
This theorem is referenced by:  totbndss  35214
  Copyright terms: Public domain W3C validator