Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd Structured version   Visualization version   GIF version

Theorem sstotbnd 35068
Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
sstotbnd ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Distinct variable groups:   𝑏,𝑑,𝑣,𝑥,𝑀   𝑋,𝑏,𝑑,𝑣,𝑥   𝑁,𝑑,𝑣,𝑥   𝑌,𝑏,𝑑,𝑣,𝑥
Allowed substitution hint:   𝑁(𝑏)

Proof of Theorem sstotbnd
Dummy variables 𝑓 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . 3 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
21sstotbnd2 35067 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑)))
3 elfpw 8826 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑢𝑋𝑢 ∈ Fin))
43simprbi 499 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → 𝑢 ∈ Fin)
5 mptfi 8823 . . . . . . . 8 (𝑢 ∈ Fin → (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
6 rnfi 8807 . . . . . . . 8 ((𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
74, 5, 63syl 18 . . . . . . 7 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
87ad2antrl 726 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
9 simprr 771 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
10 eqid 2821 . . . . . . . 8 (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) = (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑))
1110rnmpt 5827 . . . . . . 7 ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) = {𝑏 ∣ ∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑)}
123simplbi 500 . . . . . . . . . 10 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → 𝑢𝑋)
13 ssrexv 4034 . . . . . . . . . 10 (𝑢𝑋 → (∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
1412, 13syl 17 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑋 ∩ Fin) → (∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
1514ad2antrl 726 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → (∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
1615ss2abdv 4044 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → {𝑏 ∣ ∃𝑥𝑢 𝑏 = (𝑥(ball‘𝑀)𝑑)} ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})
1711, 16eqsstrid 4015 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})
18 unieq 4849 . . . . . . . . . 10 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → 𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)))
19 ovex 7189 . . . . . . . . . . 11 (𝑥(ball‘𝑀)𝑑) ∈ V
2019dfiun3 5837 . . . . . . . . . 10 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑))
2118, 20syl6eqr 2874 . . . . . . . . 9 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → 𝑣 = 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
2221sseq2d 3999 . . . . . . . 8 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑌 𝑣𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑)))
23 ssabral 4042 . . . . . . . . 9 (𝑣 ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))
24 sseq1 3992 . . . . . . . . 9 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑣 ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))
2523, 24syl5bbr 287 . . . . . . . 8 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → (∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))
2622, 25anbi12d 632 . . . . . . 7 (𝑣 = ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) → ((𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ (𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ∧ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})))
2726rspcev 3623 . . . . . 6 ((ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin ∧ (𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ∧ ran (𝑥𝑢 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) → ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
288, 9, 17, 27syl12anc 834 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑢 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))) → ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2928rexlimdvaa 3285 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
30 oveq1 7163 . . . . . . . . . 10 (𝑥 = (𝑓𝑏) → (𝑥(ball‘𝑀)𝑑) = ((𝑓𝑏)(ball‘𝑀)𝑑))
3130eqeq2d 2832 . . . . . . . . 9 (𝑥 = (𝑓𝑏) → (𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
3231ac6sfi 8762 . . . . . . . 8 ((𝑣 ∈ Fin ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑓(𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
3332adantrl 714 . . . . . . 7 ((𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) → ∃𝑓(𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
3433adantl 484 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → ∃𝑓(𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
35 frn 6520 . . . . . . . . 9 (𝑓:𝑣𝑋 → ran 𝑓𝑋)
3635ad2antrl 726 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ran 𝑓𝑋)
37 simplrl 775 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑣 ∈ Fin)
38 ffn 6514 . . . . . . . . . . 11 (𝑓:𝑣𝑋𝑓 Fn 𝑣)
3938ad2antrl 726 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑓 Fn 𝑣)
40 dffn4 6596 . . . . . . . . . 10 (𝑓 Fn 𝑣𝑓:𝑣onto→ran 𝑓)
4139, 40sylib 220 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑓:𝑣onto→ran 𝑓)
42 fofi 8810 . . . . . . . . 9 ((𝑣 ∈ Fin ∧ 𝑓:𝑣onto→ran 𝑓) → ran 𝑓 ∈ Fin)
4337, 41, 42syl2anc 586 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ran 𝑓 ∈ Fin)
44 elfpw 8826 . . . . . . . 8 (ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ↔ (ran 𝑓𝑋 ∧ ran 𝑓 ∈ Fin))
4536, 43, 44sylanbrc 585 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin))
46 simprrl 779 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → 𝑌 𝑣)
4746adantr 483 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑌 𝑣)
48 uniiun 4982 . . . . . . . . . . 11 𝑣 = 𝑏𝑣 𝑏
49 iuneq2 4938 . . . . . . . . . . 11 (∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑) → 𝑏𝑣 𝑏 = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5048, 49syl5eq 2868 . . . . . . . . . 10 (∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑) → 𝑣 = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5150ad2antll 727 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑣 = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5247, 51sseqtrd 4007 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑌 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5330eleq2d 2898 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑏) → (𝑦 ∈ (𝑥(ball‘𝑀)𝑑) ↔ 𝑦 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
5453rexrn 6853 . . . . . . . . . . 11 (𝑓 Fn 𝑣 → (∃𝑥 ∈ ran 𝑓 𝑦 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏𝑣 𝑦 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
55 eliun 4923 . . . . . . . . . . 11 (𝑦 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥 ∈ ran 𝑓 𝑦 ∈ (𝑥(ball‘𝑀)𝑑))
56 eliun 4923 . . . . . . . . . . 11 (𝑦 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑) ↔ ∃𝑏𝑣 𝑦 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑))
5754, 55, 563bitr4g 316 . . . . . . . . . 10 (𝑓 Fn 𝑣 → (𝑦 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ 𝑦 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑)))
5857eqrdv 2819 . . . . . . . . 9 (𝑓 Fn 𝑣 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
5939, 58syl 17 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑏𝑣 ((𝑓𝑏)(ball‘𝑀)𝑑))
6052, 59sseqtrrd 4008 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑))
61 iuneq1 4935 . . . . . . . . 9 (𝑢 = ran 𝑓 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) = 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑))
6261sseq2d 3999 . . . . . . . 8 (𝑢 = ran 𝑓 → (𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ↔ 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)))
6362rspcev 3623 . . . . . . 7 ((ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
6445, 60, 63syl2anc 586 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) ∧ (𝑓:𝑣𝑋 ∧ ∀𝑏𝑣 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
6534, 64exlimddv 1936 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑣 ∈ Fin ∧ (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑))
6665rexlimdvaa 3285 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑)))
6729, 66impbid 214 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
6867ralbidv 3197 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑢 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑢 (𝑥(ball‘𝑀)𝑑) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
692, 68bitrd 281 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑌 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wral 3138  wrex 3139  cin 3935  wss 3936  𝒫 cpw 4539   cuni 4838   ciun 4919  cmpt 5146   × cxp 5553  ran crn 5556  cres 5557   Fn wfn 6350  wf 6351  ontowfo 6353  cfv 6355  (class class class)co 7156  Fincfn 8509  +crp 12390  Metcmet 20531  ballcbl 20532  TotBndctotbnd 35059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-totbnd 35061
This theorem is referenced by:  totbndss  35070
  Copyright terms: Public domain W3C validator