Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istotbnd3 Structured version   Visualization version   GIF version

Theorem istotbnd3 37095
Description: A metric space is totally bounded iff there is a finite Ξ΅-net for every positive Ξ΅. This differs from the definition in providing a finite set of ball centers rather than a finite set of balls. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
istotbnd3 (𝑀 ∈ (TotBndβ€˜π‘‹) ↔ (𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
Distinct variable groups:   𝑣,𝑑,π‘₯,𝑀   𝑋,𝑑,𝑣,π‘₯

Proof of Theorem istotbnd3
Dummy variables 𝑏 𝑓 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istotbnd 37093 . 2 (𝑀 ∈ (TotBndβ€˜π‘‹) ↔ (𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑))))
2 oveq1 7408 . . . . . . . . . . . 12 (π‘₯ = (π‘“β€˜π‘) β†’ (π‘₯(ballβ€˜π‘€)𝑑) = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))
32eqeq2d 2735 . . . . . . . . . . 11 (π‘₯ = (π‘“β€˜π‘) β†’ (𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) ↔ 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))
43ac6sfi 9282 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)) β†’ βˆƒπ‘“(𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))
54ex 412 . . . . . . . . 9 (𝑀 ∈ Fin β†’ (βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆƒπ‘“(𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))))
65ad2antlr 724 . . . . . . . 8 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ βˆͺ 𝑀 = 𝑋) β†’ (βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆƒπ‘“(𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))))
7 simprrl 778 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ 𝑓:π‘€βŸΆπ‘‹)
87frnd 6715 . . . . . . . . . . . 12 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ ran 𝑓 βŠ† 𝑋)
9 simplr 766 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ 𝑀 ∈ Fin)
107ffnd 6708 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ 𝑓 Fn 𝑀)
11 dffn4 6801 . . . . . . . . . . . . . 14 (𝑓 Fn 𝑀 ↔ 𝑓:𝑀–ontoβ†’ran 𝑓)
1210, 11sylib 217 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ 𝑓:𝑀–ontoβ†’ran 𝑓)
13 fofi 9333 . . . . . . . . . . . . 13 ((𝑀 ∈ Fin ∧ 𝑓:𝑀–ontoβ†’ran 𝑓) β†’ ran 𝑓 ∈ Fin)
149, 12, 13syl2anc 583 . . . . . . . . . . . 12 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ ran 𝑓 ∈ Fin)
15 elfpw 9349 . . . . . . . . . . . 12 (ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ↔ (ran 𝑓 βŠ† 𝑋 ∧ ran 𝑓 ∈ Fin))
168, 14, 15sylanbrc 582 . . . . . . . . . . 11 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin))
172eleq2d 2811 . . . . . . . . . . . . . . . 16 (π‘₯ = (π‘“β€˜π‘) β†’ (𝑣 ∈ (π‘₯(ballβ€˜π‘€)𝑑) ↔ 𝑣 ∈ ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))
1817rexrn 7078 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝑀 β†’ (βˆƒπ‘₯ ∈ ran 𝑓 𝑣 ∈ (π‘₯(ballβ€˜π‘€)𝑑) ↔ βˆƒπ‘ ∈ 𝑀 𝑣 ∈ ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))
1910, 18syl 17 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ (βˆƒπ‘₯ ∈ ran 𝑓 𝑣 ∈ (π‘₯(ballβ€˜π‘€)𝑑) ↔ βˆƒπ‘ ∈ 𝑀 𝑣 ∈ ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))
20 eliun 4991 . . . . . . . . . . . . . 14 (𝑣 ∈ βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑) ↔ βˆƒπ‘₯ ∈ ran 𝑓 𝑣 ∈ (π‘₯(ballβ€˜π‘€)𝑑))
21 eliun 4991 . . . . . . . . . . . . . 14 (𝑣 ∈ βˆͺ 𝑏 ∈ 𝑀 ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑) ↔ βˆƒπ‘ ∈ 𝑀 𝑣 ∈ ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))
2219, 20, 213bitr4g 314 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ (𝑣 ∈ βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑) ↔ 𝑣 ∈ βˆͺ 𝑏 ∈ 𝑀 ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))
2322eqrdv 2722 . . . . . . . . . . . 12 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑) = βˆͺ 𝑏 ∈ 𝑀 ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))
24 simprrr 779 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))
25 iuneq2 5006 . . . . . . . . . . . . 13 (βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑) β†’ βˆͺ 𝑏 ∈ 𝑀 𝑏 = βˆͺ 𝑏 ∈ 𝑀 ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))
2624, 25syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆͺ 𝑏 ∈ 𝑀 𝑏 = βˆͺ 𝑏 ∈ 𝑀 ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))
27 uniiun 5051 . . . . . . . . . . . . 13 βˆͺ 𝑀 = βˆͺ 𝑏 ∈ 𝑀 𝑏
28 simprl 768 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆͺ 𝑀 = 𝑋)
2927, 28eqtr3id 2778 . . . . . . . . . . . 12 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆͺ 𝑏 ∈ 𝑀 𝑏 = 𝑋)
3023, 26, 293eqtr2d 2770 . . . . . . . . . . 11 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)
31 iuneq1 5003 . . . . . . . . . . . . 13 (𝑣 = ran 𝑓 β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑))
3231eqeq1d 2726 . . . . . . . . . . . 12 (𝑣 = ran 𝑓 β†’ (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋 ↔ βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
3332rspcev 3604 . . . . . . . . . . 11 ((ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑) = 𝑋) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)
3416, 30, 33syl2anc 583 . . . . . . . . . 10 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)
3534expr 456 . . . . . . . . 9 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ βˆͺ 𝑀 = 𝑋) β†’ ((𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
3635exlimdv 1928 . . . . . . . 8 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ βˆͺ 𝑀 = 𝑋) β†’ (βˆƒπ‘“(𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
376, 36syld 47 . . . . . . 7 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ βˆͺ 𝑀 = 𝑋) β†’ (βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
3837expimpd 453 . . . . . 6 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) β†’ ((βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
3938rexlimdva 3147 . . . . 5 (𝑀 ∈ (Metβ€˜π‘‹) β†’ (βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
40 elfpw 9349 . . . . . . . . . . 11 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 βŠ† 𝑋 ∧ 𝑣 ∈ Fin))
4140simprbi 496 . . . . . . . . . 10 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) β†’ 𝑣 ∈ Fin)
4241ad2antrl 725 . . . . . . . . 9 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ 𝑣 ∈ Fin)
43 mptfi 9346 . . . . . . . . 9 (𝑣 ∈ Fin β†’ (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) ∈ Fin)
44 rnfi 9330 . . . . . . . . 9 ((π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) ∈ Fin β†’ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) ∈ Fin)
4542, 43, 443syl 18 . . . . . . . 8 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) ∈ Fin)
46 ovex 7434 . . . . . . . . . 10 (π‘₯(ballβ€˜π‘€)𝑑) ∈ V
4746dfiun3 5955 . . . . . . . . 9 βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = βˆͺ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑))
48 simprr 770 . . . . . . . . 9 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)
4947, 48eqtr3id 2778 . . . . . . . 8 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ βˆͺ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) = 𝑋)
50 eqid 2724 . . . . . . . . . 10 (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) = (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑))
5150rnmpt 5944 . . . . . . . . 9 ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) = {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑣 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)}
5240simplbi 497 . . . . . . . . . . . 12 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) β†’ 𝑣 βŠ† 𝑋)
5352ad2antrl 725 . . . . . . . . . . 11 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ 𝑣 βŠ† 𝑋)
54 ssrexv 4043 . . . . . . . . . . 11 (𝑣 βŠ† 𝑋 β†’ (βˆƒπ‘₯ ∈ 𝑣 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)))
5553, 54syl 17 . . . . . . . . . 10 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ (βˆƒπ‘₯ ∈ 𝑣 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)))
5655ss2abdv 4052 . . . . . . . . 9 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑣 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)} βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)})
5751, 56eqsstrid 4022 . . . . . . . 8 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)})
58 unieq 4910 . . . . . . . . . . 11 (𝑀 = ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) β†’ βˆͺ 𝑀 = βˆͺ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)))
5958eqeq1d 2726 . . . . . . . . . 10 (𝑀 = ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) β†’ (βˆͺ 𝑀 = 𝑋 ↔ βˆͺ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) = 𝑋))
60 ssabral 4051 . . . . . . . . . . 11 (𝑀 βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)} ↔ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑))
61 sseq1 3999 . . . . . . . . . . 11 (𝑀 = ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) β†’ (𝑀 βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)} ↔ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)}))
6260, 61bitr3id 285 . . . . . . . . . 10 (𝑀 = ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) β†’ (βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) ↔ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)}))
6359, 62anbi12d 630 . . . . . . . . 9 (𝑀 = ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) β†’ ((βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)) ↔ (βˆͺ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) = 𝑋 ∧ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)})))
6463rspcev 3604 . . . . . . . 8 ((ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) ∈ Fin ∧ (βˆͺ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) = 𝑋 ∧ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)})) β†’ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)))
6545, 49, 57, 64syl12anc 834 . . . . . . 7 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)))
6665expr 456 . . . . . 6 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) β†’ (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋 β†’ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑))))
6766rexlimdva 3147 . . . . 5 (𝑀 ∈ (Metβ€˜π‘‹) β†’ (βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋 β†’ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑))))
6839, 67impbid 211 . . . 4 (𝑀 ∈ (Metβ€˜π‘‹) β†’ (βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)) ↔ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
6968ralbidv 3169 . . 3 (𝑀 ∈ (Metβ€˜π‘‹) β†’ (βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)) ↔ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
7069pm5.32i 574 . 2 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑))) ↔ (𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
711, 70bitri 275 1 (𝑀 ∈ (TotBndβ€˜π‘‹) ↔ (𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  {cab 2701  βˆ€wral 3053  βˆƒwrex 3062   ∩ cin 3939   βŠ† wss 3940  π’« cpw 4594  βˆͺ cuni 4899  βˆͺ ciun 4987   ↦ cmpt 5221  ran crn 5667   Fn wfn 6528  βŸΆwf 6529  β€“ontoβ†’wfo 6531  β€˜cfv 6533  (class class class)co 7401  Fincfn 8934  β„+crp 12970  Metcmet 21209  ballcbl 21210  TotBndctotbnd 37090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-om 7849  df-1st 7968  df-2nd 7969  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-fin 8938  df-totbnd 37092
This theorem is referenced by:  0totbnd  37097  sstotbnd2  37098  equivtotbnd  37102  totbndbnd  37113  prdstotbnd  37118
  Copyright terms: Public domain W3C validator