Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istotbnd3 Structured version   Visualization version   GIF version

Theorem istotbnd3 36627
Description: A metric space is totally bounded iff there is a finite Ξ΅-net for every positive Ξ΅. This differs from the definition in providing a finite set of ball centers rather than a finite set of balls. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
istotbnd3 (𝑀 ∈ (TotBndβ€˜π‘‹) ↔ (𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
Distinct variable groups:   𝑣,𝑑,π‘₯,𝑀   𝑋,𝑑,𝑣,π‘₯

Proof of Theorem istotbnd3
Dummy variables 𝑏 𝑓 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istotbnd 36625 . 2 (𝑀 ∈ (TotBndβ€˜π‘‹) ↔ (𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑))))
2 oveq1 7412 . . . . . . . . . . . 12 (π‘₯ = (π‘“β€˜π‘) β†’ (π‘₯(ballβ€˜π‘€)𝑑) = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))
32eqeq2d 2743 . . . . . . . . . . 11 (π‘₯ = (π‘“β€˜π‘) β†’ (𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) ↔ 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))
43ac6sfi 9283 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)) β†’ βˆƒπ‘“(𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))
54ex 413 . . . . . . . . 9 (𝑀 ∈ Fin β†’ (βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆƒπ‘“(𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))))
65ad2antlr 725 . . . . . . . 8 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ βˆͺ 𝑀 = 𝑋) β†’ (βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆƒπ‘“(𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))))
7 simprrl 779 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ 𝑓:π‘€βŸΆπ‘‹)
87frnd 6722 . . . . . . . . . . . 12 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ ran 𝑓 βŠ† 𝑋)
9 simplr 767 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ 𝑀 ∈ Fin)
107ffnd 6715 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ 𝑓 Fn 𝑀)
11 dffn4 6808 . . . . . . . . . . . . . 14 (𝑓 Fn 𝑀 ↔ 𝑓:𝑀–ontoβ†’ran 𝑓)
1210, 11sylib 217 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ 𝑓:𝑀–ontoβ†’ran 𝑓)
13 fofi 9334 . . . . . . . . . . . . 13 ((𝑀 ∈ Fin ∧ 𝑓:𝑀–ontoβ†’ran 𝑓) β†’ ran 𝑓 ∈ Fin)
149, 12, 13syl2anc 584 . . . . . . . . . . . 12 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ ran 𝑓 ∈ Fin)
15 elfpw 9350 . . . . . . . . . . . 12 (ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ↔ (ran 𝑓 βŠ† 𝑋 ∧ ran 𝑓 ∈ Fin))
168, 14, 15sylanbrc 583 . . . . . . . . . . 11 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin))
172eleq2d 2819 . . . . . . . . . . . . . . . 16 (π‘₯ = (π‘“β€˜π‘) β†’ (𝑣 ∈ (π‘₯(ballβ€˜π‘€)𝑑) ↔ 𝑣 ∈ ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))
1817rexrn 7085 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝑀 β†’ (βˆƒπ‘₯ ∈ ran 𝑓 𝑣 ∈ (π‘₯(ballβ€˜π‘€)𝑑) ↔ βˆƒπ‘ ∈ 𝑀 𝑣 ∈ ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))
1910, 18syl 17 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ (βˆƒπ‘₯ ∈ ran 𝑓 𝑣 ∈ (π‘₯(ballβ€˜π‘€)𝑑) ↔ βˆƒπ‘ ∈ 𝑀 𝑣 ∈ ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))
20 eliun 5000 . . . . . . . . . . . . . 14 (𝑣 ∈ βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑) ↔ βˆƒπ‘₯ ∈ ran 𝑓 𝑣 ∈ (π‘₯(ballβ€˜π‘€)𝑑))
21 eliun 5000 . . . . . . . . . . . . . 14 (𝑣 ∈ βˆͺ 𝑏 ∈ 𝑀 ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑) ↔ βˆƒπ‘ ∈ 𝑀 𝑣 ∈ ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))
2219, 20, 213bitr4g 313 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ (𝑣 ∈ βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑) ↔ 𝑣 ∈ βˆͺ 𝑏 ∈ 𝑀 ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))
2322eqrdv 2730 . . . . . . . . . . . 12 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑) = βˆͺ 𝑏 ∈ 𝑀 ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))
24 simprrr 780 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))
25 iuneq2 5015 . . . . . . . . . . . . 13 (βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑) β†’ βˆͺ 𝑏 ∈ 𝑀 𝑏 = βˆͺ 𝑏 ∈ 𝑀 ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))
2624, 25syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆͺ 𝑏 ∈ 𝑀 𝑏 = βˆͺ 𝑏 ∈ 𝑀 ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑))
27 uniiun 5060 . . . . . . . . . . . . 13 βˆͺ 𝑀 = βˆͺ 𝑏 ∈ 𝑀 𝑏
28 simprl 769 . . . . . . . . . . . . 13 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆͺ 𝑀 = 𝑋)
2927, 28eqtr3id 2786 . . . . . . . . . . . 12 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆͺ 𝑏 ∈ 𝑀 𝑏 = 𝑋)
3023, 26, 293eqtr2d 2778 . . . . . . . . . . 11 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)
31 iuneq1 5012 . . . . . . . . . . . . 13 (𝑣 = ran 𝑓 β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑))
3231eqeq1d 2734 . . . . . . . . . . . 12 (𝑣 = ran 𝑓 β†’ (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋 ↔ βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
3332rspcev 3612 . . . . . . . . . . 11 ((ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ ran 𝑓(π‘₯(ballβ€˜π‘€)𝑑) = 𝑋) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)
3416, 30, 33syl2anc 584 . . . . . . . . . 10 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ (βˆͺ 𝑀 = 𝑋 ∧ (𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)))) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)
3534expr 457 . . . . . . . . 9 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ βˆͺ 𝑀 = 𝑋) β†’ ((𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
3635exlimdv 1936 . . . . . . . 8 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ βˆͺ 𝑀 = 𝑋) β†’ (βˆƒπ‘“(𝑓:π‘€βŸΆπ‘‹ ∧ βˆ€π‘ ∈ 𝑀 𝑏 = ((π‘“β€˜π‘)(ballβ€˜π‘€)𝑑)) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
376, 36syld 47 . . . . . . 7 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) ∧ βˆͺ 𝑀 = 𝑋) β†’ (βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
3837expimpd 454 . . . . . 6 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑀 ∈ Fin) β†’ ((βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
3938rexlimdva 3155 . . . . 5 (𝑀 ∈ (Metβ€˜π‘‹) β†’ (βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
40 elfpw 9350 . . . . . . . . . . 11 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 βŠ† 𝑋 ∧ 𝑣 ∈ Fin))
4140simprbi 497 . . . . . . . . . 10 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) β†’ 𝑣 ∈ Fin)
4241ad2antrl 726 . . . . . . . . 9 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ 𝑣 ∈ Fin)
43 mptfi 9347 . . . . . . . . 9 (𝑣 ∈ Fin β†’ (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) ∈ Fin)
44 rnfi 9331 . . . . . . . . 9 ((π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) ∈ Fin β†’ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) ∈ Fin)
4542, 43, 443syl 18 . . . . . . . 8 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) ∈ Fin)
46 ovex 7438 . . . . . . . . . 10 (π‘₯(ballβ€˜π‘€)𝑑) ∈ V
4746dfiun3 5963 . . . . . . . . 9 βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = βˆͺ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑))
48 simprr 771 . . . . . . . . 9 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)
4947, 48eqtr3id 2786 . . . . . . . 8 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ βˆͺ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) = 𝑋)
50 eqid 2732 . . . . . . . . . 10 (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) = (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑))
5150rnmpt 5952 . . . . . . . . 9 ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) = {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑣 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)}
5240simplbi 498 . . . . . . . . . . . 12 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) β†’ 𝑣 βŠ† 𝑋)
5352ad2antrl 726 . . . . . . . . . . 11 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ 𝑣 βŠ† 𝑋)
54 ssrexv 4050 . . . . . . . . . . 11 (𝑣 βŠ† 𝑋 β†’ (βˆƒπ‘₯ ∈ 𝑣 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)))
5553, 54syl 17 . . . . . . . . . 10 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ (βˆƒπ‘₯ ∈ 𝑣 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)))
5655ss2abdv 4059 . . . . . . . . 9 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑣 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)} βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)})
5751, 56eqsstrid 4029 . . . . . . . 8 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)})
58 unieq 4918 . . . . . . . . . . 11 (𝑀 = ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) β†’ βˆͺ 𝑀 = βˆͺ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)))
5958eqeq1d 2734 . . . . . . . . . 10 (𝑀 = ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) β†’ (βˆͺ 𝑀 = 𝑋 ↔ βˆͺ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) = 𝑋))
60 ssabral 4058 . . . . . . . . . . 11 (𝑀 βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)} ↔ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑))
61 sseq1 4006 . . . . . . . . . . 11 (𝑀 = ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) β†’ (𝑀 βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)} ↔ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)}))
6260, 61bitr3id 284 . . . . . . . . . 10 (𝑀 = ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) β†’ (βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑) ↔ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)}))
6359, 62anbi12d 631 . . . . . . . . 9 (𝑀 = ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) β†’ ((βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)) ↔ (βˆͺ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) = 𝑋 ∧ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)})))
6463rspcev 3612 . . . . . . . 8 ((ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) ∈ Fin ∧ (βˆͺ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) = 𝑋 ∧ ran (π‘₯ ∈ 𝑣 ↦ (π‘₯(ballβ€˜π‘€)𝑑)) βŠ† {𝑏 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)})) β†’ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)))
6545, 49, 57, 64syl12anc 835 . . . . . . 7 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋)) β†’ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)))
6665expr 457 . . . . . 6 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) β†’ (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋 β†’ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑))))
6766rexlimdva 3155 . . . . 5 (𝑀 ∈ (Metβ€˜π‘‹) β†’ (βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋 β†’ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑))))
6839, 67impbid 211 . . . 4 (𝑀 ∈ (Metβ€˜π‘‹) β†’ (βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)) ↔ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
6968ralbidv 3177 . . 3 (𝑀 ∈ (Metβ€˜π‘‹) β†’ (βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑)) ↔ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
7069pm5.32i 575 . 2 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘€ ∈ Fin (βˆͺ 𝑀 = 𝑋 ∧ βˆ€π‘ ∈ 𝑀 βˆƒπ‘₯ ∈ 𝑋 𝑏 = (π‘₯(ballβ€˜π‘€)𝑑))) ↔ (𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
711, 70bitri 274 1 (𝑀 ∈ (TotBndβ€˜π‘‹) ↔ (𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  βˆƒwrex 3070   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601  βˆͺ cuni 4907  βˆͺ ciun 4996   ↦ cmpt 5230  ran crn 5676   Fn wfn 6535  βŸΆwf 6536  β€“ontoβ†’wfo 6538  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  β„+crp 12970  Metcmet 20922  ballcbl 20923  TotBndctotbnd 36622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-om 7852  df-1st 7971  df-2nd 7972  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-fin 8939  df-totbnd 36624
This theorem is referenced by:  0totbnd  36629  sstotbnd2  36630  equivtotbnd  36634  totbndbnd  36645  prdstotbnd  36650
  Copyright terms: Public domain W3C validator