Step | Hyp | Ref
| Expression |
1 | | istotbnd 35854 |
. 2
⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑤 ∈ Fin (∪ 𝑤 =
𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
2 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑓‘𝑏) → (𝑥(ball‘𝑀)𝑑) = ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
3 | 2 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑓‘𝑏) → (𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
4 | 3 | ac6sfi 8988 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ Fin ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑓(𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
5 | 4 | ex 412 |
. . . . . . . . 9
⊢ (𝑤 ∈ Fin →
(∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑓(𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) |
6 | 5 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ∪ 𝑤 =
𝑋) → (∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑓(𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) |
7 | | simprrl 777 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → 𝑓:𝑤⟶𝑋) |
8 | 7 | frnd 6592 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ran 𝑓 ⊆ 𝑋) |
9 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → 𝑤 ∈ Fin) |
10 | 7 | ffnd 6585 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → 𝑓 Fn 𝑤) |
11 | | dffn4 6678 |
. . . . . . . . . . . . . 14
⊢ (𝑓 Fn 𝑤 ↔ 𝑓:𝑤–onto→ran 𝑓) |
12 | 10, 11 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → 𝑓:𝑤–onto→ran 𝑓) |
13 | | fofi 9035 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ Fin ∧ 𝑓:𝑤–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
14 | 9, 12, 13 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ran 𝑓 ∈ Fin) |
15 | | elfpw 9051 |
. . . . . . . . . . . 12
⊢ (ran
𝑓 ∈ (𝒫 𝑋 ∩ Fin) ↔ (ran 𝑓 ⊆ 𝑋 ∧ ran 𝑓 ∈ Fin)) |
16 | 8, 14, 15 | sylanbrc 582 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin)) |
17 | 2 | eleq2d 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑓‘𝑏) → (𝑣 ∈ (𝑥(ball‘𝑀)𝑑) ↔ 𝑣 ∈ ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
18 | 17 | rexrn 6945 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Fn 𝑤 → (∃𝑥 ∈ ran 𝑓 𝑣 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏 ∈ 𝑤 𝑣 ∈ ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
19 | 10, 18 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → (∃𝑥 ∈ ran 𝑓 𝑣 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏 ∈ 𝑤 𝑣 ∈ ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
20 | | eliun 4925 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥 ∈ ran 𝑓 𝑣 ∈ (𝑥(ball‘𝑀)𝑑)) |
21 | | eliun 4925 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ ∪ 𝑏 ∈ 𝑤 ((𝑓‘𝑏)(ball‘𝑀)𝑑) ↔ ∃𝑏 ∈ 𝑤 𝑣 ∈ ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
22 | 19, 20, 21 | 3bitr4g 313 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → (𝑣 ∈ ∪
𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ 𝑣 ∈ ∪
𝑏 ∈ 𝑤 ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
23 | 22 | eqrdv 2736 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = ∪ 𝑏 ∈ 𝑤 ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
24 | | simprrr 778 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
25 | | iuneq2 4940 |
. . . . . . . . . . . . 13
⊢
(∀𝑏 ∈
𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑) → ∪
𝑏 ∈ 𝑤 𝑏 = ∪ 𝑏 ∈ 𝑤 ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∪ 𝑏 ∈ 𝑤 𝑏 = ∪ 𝑏 ∈ 𝑤 ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
27 | | uniiun 4984 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑤 =
∪ 𝑏 ∈ 𝑤 𝑏 |
28 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∪
𝑤 = 𝑋) |
29 | 27, 28 | eqtr3id 2793 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∪ 𝑏 ∈ 𝑤 𝑏 = 𝑋) |
30 | 23, 26, 29 | 3eqtr2d 2784 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑋) |
31 | | iuneq1 4937 |
. . . . . . . . . . . . 13
⊢ (𝑣 = ran 𝑓 → ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)) |
32 | 31 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑣 = ran 𝑓 → (∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 ↔ ∪
𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑋)) |
33 | 32 | rspcev 3552 |
. . . . . . . . . . 11
⊢ ((ran
𝑓 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑋) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋) |
34 | 16, 30, 33 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋) |
35 | 34 | expr 456 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ∪ 𝑤 =
𝑋) → ((𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
36 | 35 | exlimdv 1937 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ∪ 𝑤 =
𝑋) → (∃𝑓(𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
37 | 6, 36 | syld 47 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ∪ 𝑤 =
𝑋) → (∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
38 | 37 | expimpd 453 |
. . . . . 6
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) → ((∪ 𝑤 =
𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
39 | 38 | rexlimdva 3212 |
. . . . 5
⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑤 ∈ Fin (∪ 𝑤 =
𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
40 | | elfpw 9051 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 ⊆ 𝑋 ∧ 𝑣 ∈ Fin)) |
41 | 40 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ∈ Fin) |
42 | 41 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → 𝑣 ∈ Fin) |
43 | | mptfi 9048 |
. . . . . . . . 9
⊢ (𝑣 ∈ Fin → (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin) |
44 | | rnfi 9032 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin → ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin) |
45 | 42, 43, 44 | 3syl 18 |
. . . . . . . 8
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin) |
46 | | ovex 7288 |
. . . . . . . . . 10
⊢ (𝑥(ball‘𝑀)𝑑) ∈ V |
47 | 46 | dfiun3 5864 |
. . . . . . . . 9
⊢ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = ∪ ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) |
48 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋) |
49 | 47, 48 | eqtr3id 2793 |
. . . . . . . 8
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ∪ ran
(𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋) |
50 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) |
51 | 50 | rnmpt 5853 |
. . . . . . . . 9
⊢ ran
(𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = {𝑏 ∣ ∃𝑥 ∈ 𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑)} |
52 | 40 | simplbi 497 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ⊆ 𝑋) |
53 | 52 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → 𝑣 ⊆ 𝑋) |
54 | | ssrexv 3984 |
. . . . . . . . . . 11
⊢ (𝑣 ⊆ 𝑋 → (∃𝑥 ∈ 𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
55 | 53, 54 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → (∃𝑥 ∈ 𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
56 | 55 | ss2abdv 3993 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → {𝑏 ∣ ∃𝑥 ∈ 𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑)} ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}) |
57 | 51, 56 | eqsstrid 3965 |
. . . . . . . 8
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}) |
58 | | unieq 4847 |
. . . . . . . . . . 11
⊢ (𝑤 = ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → ∪ 𝑤 = ∪
ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑))) |
59 | 58 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑤 = ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → (∪ 𝑤 = 𝑋 ↔ ∪ ran
(𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋)) |
60 | | ssabral 3992 |
. . . . . . . . . . 11
⊢ (𝑤 ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) |
61 | | sseq1 3942 |
. . . . . . . . . . 11
⊢ (𝑤 = ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑤 ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) |
62 | 60, 61 | bitr3id 284 |
. . . . . . . . . 10
⊢ (𝑤 = ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → (∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) |
63 | 59, 62 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑤 = ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → ((∪
𝑤 = 𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ (∪ ran
(𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋 ∧ ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))) |
64 | 63 | rspcev 3552 |
. . . . . . . 8
⊢ ((ran
(𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin ∧ (∪ ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋 ∧ ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) → ∃𝑤 ∈ Fin (∪
𝑤 = 𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
65 | 45, 49, 57, 64 | syl12anc 833 |
. . . . . . 7
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ∃𝑤 ∈ Fin (∪
𝑤 = 𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
66 | 65 | expr 456 |
. . . . . 6
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → (∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 → ∃𝑤 ∈ Fin (∪
𝑤 = 𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
67 | 66 | rexlimdva 3212 |
. . . . 5
⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 → ∃𝑤 ∈ Fin (∪
𝑤 = 𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
68 | 39, 67 | impbid 211 |
. . . 4
⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑤 ∈ Fin (∪ 𝑤 =
𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
69 | 68 | ralbidv 3120 |
. . 3
⊢ (𝑀 ∈ (Met‘𝑋) → (∀𝑑 ∈ ℝ+
∃𝑤 ∈ Fin (∪ 𝑤 =
𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
70 | 69 | pm5.32i 574 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+
∃𝑤 ∈ Fin (∪ 𝑤 =
𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
71 | 1, 70 | bitri 274 |
1
⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |