Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istotbnd3 Structured version   Visualization version   GIF version

Theorem istotbnd3 35856
Description: A metric space is totally bounded iff there is a finite ε-net for every positive ε. This differs from the definition in providing a finite set of ball centers rather than a finite set of balls. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
istotbnd3 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
Distinct variable groups:   𝑣,𝑑,𝑥,𝑀   𝑋,𝑑,𝑣,𝑥

Proof of Theorem istotbnd3
Dummy variables 𝑏 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istotbnd 35854 . 2 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2 oveq1 7262 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑏) → (𝑥(ball‘𝑀)𝑑) = ((𝑓𝑏)(ball‘𝑀)𝑑))
32eqeq2d 2749 . . . . . . . . . . 11 (𝑥 = (𝑓𝑏) → (𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
43ac6sfi 8988 . . . . . . . . . 10 ((𝑤 ∈ Fin ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑓(𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))
54ex 412 . . . . . . . . 9 (𝑤 ∈ Fin → (∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑓(𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))))
65ad2antlr 723 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ 𝑤 = 𝑋) → (∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑓(𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))))
7 simprrl 777 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑓:𝑤𝑋)
87frnd 6592 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → ran 𝑓𝑋)
9 simplr 765 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑤 ∈ Fin)
107ffnd 6585 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑓 Fn 𝑤)
11 dffn4 6678 . . . . . . . . . . . . . 14 (𝑓 Fn 𝑤𝑓:𝑤onto→ran 𝑓)
1210, 11sylib 217 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑓:𝑤onto→ran 𝑓)
13 fofi 9035 . . . . . . . . . . . . 13 ((𝑤 ∈ Fin ∧ 𝑓:𝑤onto→ran 𝑓) → ran 𝑓 ∈ Fin)
149, 12, 13syl2anc 583 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → ran 𝑓 ∈ Fin)
15 elfpw 9051 . . . . . . . . . . . 12 (ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ↔ (ran 𝑓𝑋 ∧ ran 𝑓 ∈ Fin))
168, 14, 15sylanbrc 582 . . . . . . . . . . 11 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin))
172eleq2d 2824 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑓𝑏) → (𝑣 ∈ (𝑥(ball‘𝑀)𝑑) ↔ 𝑣 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
1817rexrn 6945 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝑤 → (∃𝑥 ∈ ran 𝑓 𝑣 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏𝑤 𝑣 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
1910, 18syl 17 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → (∃𝑥 ∈ ran 𝑓 𝑣 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏𝑤 𝑣 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑)))
20 eliun 4925 . . . . . . . . . . . . . 14 (𝑣 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥 ∈ ran 𝑓 𝑣 ∈ (𝑥(ball‘𝑀)𝑑))
21 eliun 4925 . . . . . . . . . . . . . 14 (𝑣 𝑏𝑤 ((𝑓𝑏)(ball‘𝑀)𝑑) ↔ ∃𝑏𝑤 𝑣 ∈ ((𝑓𝑏)(ball‘𝑀)𝑑))
2219, 20, 213bitr4g 313 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → (𝑣 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ 𝑣 𝑏𝑤 ((𝑓𝑏)(ball‘𝑀)𝑑)))
2322eqrdv 2736 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑏𝑤 ((𝑓𝑏)(ball‘𝑀)𝑑))
24 simprrr 778 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑))
25 iuneq2 4940 . . . . . . . . . . . . 13 (∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑) → 𝑏𝑤 𝑏 = 𝑏𝑤 ((𝑓𝑏)(ball‘𝑀)𝑑))
2624, 25syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑏𝑤 𝑏 = 𝑏𝑤 ((𝑓𝑏)(ball‘𝑀)𝑑))
27 uniiun 4984 . . . . . . . . . . . . 13 𝑤 = 𝑏𝑤 𝑏
28 simprl 767 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑤 = 𝑋)
2927, 28eqtr3id 2793 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑏𝑤 𝑏 = 𝑋)
3023, 26, 293eqtr2d 2784 . . . . . . . . . . 11 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑋)
31 iuneq1 4937 . . . . . . . . . . . . 13 (𝑣 = ran 𝑓 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑))
3231eqeq1d 2740 . . . . . . . . . . . 12 (𝑣 = ran 𝑓 → ( 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑋))
3332rspcev 3552 . . . . . . . . . . 11 ((ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑋) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)
3416, 30, 33syl2anc 583 . . . . . . . . . 10 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ( 𝑤 = 𝑋 ∧ (𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)))) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)
3534expr 456 . . . . . . . . 9 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ 𝑤 = 𝑋) → ((𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
3635exlimdv 1937 . . . . . . . 8 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ 𝑤 = 𝑋) → (∃𝑓(𝑓:𝑤𝑋 ∧ ∀𝑏𝑤 𝑏 = ((𝑓𝑏)(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
376, 36syld 47 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ 𝑤 = 𝑋) → (∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
3837expimpd 453 . . . . . 6 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) → (( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
3938rexlimdva 3212 . . . . 5 (𝑀 ∈ (Met‘𝑋) → (∃𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
40 elfpw 9051 . . . . . . . . . . 11 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣𝑋𝑣 ∈ Fin))
4140simprbi 496 . . . . . . . . . 10 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ∈ Fin)
4241ad2antrl 724 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → 𝑣 ∈ Fin)
43 mptfi 9048 . . . . . . . . 9 (𝑣 ∈ Fin → (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
44 rnfi 9032 . . . . . . . . 9 ((𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin → ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
4542, 43, 443syl 18 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin)
46 ovex 7288 . . . . . . . . . 10 (𝑥(ball‘𝑀)𝑑) ∈ V
4746dfiun3 5864 . . . . . . . . 9 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑))
48 simprr 769 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)
4947, 48eqtr3id 2793 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋)
50 eqid 2738 . . . . . . . . . 10 (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑))
5150rnmpt 5853 . . . . . . . . 9 ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = {𝑏 ∣ ∃𝑥𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑)}
5240simplbi 497 . . . . . . . . . . . 12 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣𝑋)
5352ad2antrl 724 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → 𝑣𝑋)
54 ssrexv 3984 . . . . . . . . . . 11 (𝑣𝑋 → (∃𝑥𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
5553, 54syl 17 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → (∃𝑥𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
5655ss2abdv 3993 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → {𝑏 ∣ ∃𝑥𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑)} ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})
5751, 56eqsstrid 3965 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})
58 unieq 4847 . . . . . . . . . . 11 (𝑤 = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → 𝑤 = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)))
5958eqeq1d 2740 . . . . . . . . . 10 (𝑤 = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → ( 𝑤 = 𝑋 ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋))
60 ssabral 3992 . . . . . . . . . . 11 (𝑤 ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))
61 sseq1 3942 . . . . . . . . . . 11 (𝑤 = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑤 ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))
6260, 61bitr3id 284 . . . . . . . . . 10 (𝑤 = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → (∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))
6359, 62anbi12d 630 . . . . . . . . 9 (𝑤 = ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → (( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ ( ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋 ∧ ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})))
6463rspcev 3552 . . . . . . . 8 ((ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin ∧ ( ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋 ∧ ran (𝑥𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) → ∃𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
6545, 49, 57, 64syl12anc 833 . . . . . . 7 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ∃𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
6665expr 456 . . . . . 6 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ( 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 → ∃𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
6766rexlimdva 3212 . . . . 5 (𝑀 ∈ (Met‘𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 → ∃𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
6839, 67impbid 211 . . . 4 (𝑀 ∈ (Met‘𝑋) → (∃𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
6968ralbidv 3120 . . 3 (𝑀 ∈ (Met‘𝑋) → (∀𝑑 ∈ ℝ+𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
7069pm5.32i 574 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑤 ∈ Fin ( 𝑤 = 𝑋 ∧ ∀𝑏𝑤𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
711, 70bitri 274 1 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836   ciun 4921  cmpt 5153  ran crn 5581   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  Fincfn 8691  +crp 12659  Metcmet 20496  ballcbl 20497  TotBndctotbnd 35851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-fin 8695  df-totbnd 35853
This theorem is referenced by:  0totbnd  35858  sstotbnd2  35859  equivtotbnd  35863  totbndbnd  35874  prdstotbnd  35879
  Copyright terms: Public domain W3C validator