Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor1 Structured version   Visualization version   GIF version

Theorem heibor1 35241
Description: One half of heibor 35252, that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet 23926 and total boundedness here, which follows trivially from the fact that the set of all 𝑟-balls is an open cover of 𝑋, so finitely many cover 𝑋. (Contributed by Jeff Madsen, 16-Jan-2014.)
Hypothesis
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
heibor1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))

Proof of Theorem heibor1
Dummy variables 𝑥 𝑦 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
2 simpll 766 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝐷 ∈ (Met‘𝑋))
3 simplr 768 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝐽 ∈ Comp)
4 simprl 770 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥 ∈ (Cau‘𝐷))
5 simprr 772 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥:ℕ⟶𝑋)
61, 2, 3, 4, 5heibor1lem 35240 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥 ∈ dom (⇝𝑡𝐽))
76expr 460 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑥 ∈ (Cau‘𝐷)) → (𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽)))
87ralrimiva 3152 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → ∀𝑥 ∈ (Cau‘𝐷)(𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽)))
9 nnuz 12273 . . . 4 ℕ = (ℤ‘1)
10 1zzd 12005 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 1 ∈ ℤ)
11 simpl 486 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (Met‘𝑋))
129, 1, 10, 11iscmet3 23900 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑥 ∈ (Cau‘𝐷)(𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽))))
138, 12mpbird 260 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (CMet‘𝑋))
14 simplr 768 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 ∈ Comp)
15 metxmet 22944 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
16 id 22 . . . . . . . . . . . . . 14 (𝑧𝑋𝑧𝑋)
17 rpxr 12390 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
181blopn 23110 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ*) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
1915, 16, 17, 18syl3an 1157 . . . . . . . . . . . . 13 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
20193com23 1123 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
21203expa 1115 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
22 eleq1a 2888 . . . . . . . . . . 11 ((𝑧(ball‘𝐷)𝑟) ∈ 𝐽 → (𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2321, 22syl 17 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2423rexlimdva 3246 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2524adantlr 714 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2625abssdv 3999 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽)
2715ad2antrr 725 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
281mopnuni 23051 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
2927, 28syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝑋 = 𝐽)
30 blcntr 23023 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
3115, 30syl3an1 1160 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
32313com23 1123 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+𝑧𝑋) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
33323expa 1115 . . . . . . . . . . . . 13 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
34 ovex 7172 . . . . . . . . . . . . . . 15 (𝑧(ball‘𝐷)𝑟) ∈ V
3534elabrex 6984 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3635adantl 485 . . . . . . . . . . . . 13 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
37 elunii 4808 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑧(ball‘𝐷)𝑟) ∧ (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3833, 36, 37syl2anc 587 . . . . . . . . . . . 12 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3938ralrimiva 3152 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4039adantlr 714 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
41 nfcv 2958 . . . . . . . . . . 11 𝑧𝑋
42 nfre1 3268 . . . . . . . . . . . . 13 𝑧𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)
4342nfab 2964 . . . . . . . . . . . 12 𝑧{𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}
4443nfuni 4810 . . . . . . . . . . 11 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}
4541, 44dfss3f 3909 . . . . . . . . . 10 (𝑋 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ↔ ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4640, 45sylibr 237 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝑋 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4729, 46eqsstrrd 3957 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4826unissd 4813 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽)
4947, 48eqssd 3935 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 = {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
50 eqid 2801 . . . . . . . 8 𝐽 = 𝐽
5150cmpcov 21997 . . . . . . 7 ((𝐽 ∈ Comp ∧ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽 𝐽 = {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → ∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥)
5214, 26, 49, 51syl3anc 1368 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥)
53 elin 3900 . . . . . . . . . 10 (𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ↔ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝑥 ∈ Fin))
54 ancom 464 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝑥 ∈ Fin) ↔ (𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
5553, 54bitri 278 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ↔ (𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
5655anbi1i 626 . . . . . . . 8 ((𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ∧ 𝐽 = 𝑥) ↔ ((𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ∧ 𝐽 = 𝑥))
57 anass 472 . . . . . . . 8 (((𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ∧ 𝐽 = 𝑥) ↔ (𝑥 ∈ Fin ∧ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥)))
5856, 57bitri 278 . . . . . . 7 ((𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ∧ 𝐽 = 𝑥) ↔ (𝑥 ∈ Fin ∧ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥)))
5958rexbii2 3211 . . . . . 6 (∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥 ↔ ∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥))
6052, 59sylib 221 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥))
61 ancom 464 . . . . . . . 8 ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) ↔ ( 𝐽 = 𝑥𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
62 eqcom 2808 . . . . . . . . . 10 ( 𝑥 = 𝑋𝑋 = 𝑥)
6329eqeq1d 2803 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (𝑋 = 𝑥 𝐽 = 𝑥))
6462, 63syl5rbb 287 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ( 𝐽 = 𝑥 𝑥 = 𝑋))
6564anbi1d 632 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (( 𝐽 = 𝑥𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ↔ ( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})))
6661, 65syl5bb 286 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) ↔ ( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})))
67 elpwi 4509 . . . . . . . . 9 (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} → 𝑥 ⊆ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
68 ssabral 3993 . . . . . . . . 9 (𝑥 ⊆ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ↔ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))
6967, 68sylib 221 . . . . . . . 8 (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} → ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))
7069anim2i 619 . . . . . . 7 (( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
7166, 70syl6bi 256 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) → ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7271reximdv 3235 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) → ∃𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7360, 72mpd 15 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
7473ralrimiva 3152 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → ∀𝑟 ∈ ℝ+𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
75 istotbnd 35200 . . 3 (𝐷 ∈ (TotBnd‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7611, 74, 75sylanbrc 586 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (TotBnd‘𝑋))
7713, 76jca 515 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  {cab 2779  wral 3109  wrex 3110  cin 3883  wss 3884  𝒫 cpw 4500   cuni 4803  dom cdm 5523  wf 6324  cfv 6328  (class class class)co 7139  Fincfn 8496  1c1 10531  *cxr 10667  cn 11629  +crp 12381  ∞Metcxmet 20079  Metcmet 20080  ballcbl 20081  MetOpencmopn 20084  𝑡clm 21834  Compccmp 21994  Cauccau 23860  CMetccmet 23861  TotBndctotbnd 35197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-fz 12890  df-fl 13161  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-rest 16691  df-topgen 16712  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lm 21837  df-cmp 21995  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-cfil 23862  df-cau 23863  df-cmet 23864  df-totbnd 35199
This theorem is referenced by:  heibor  35252
  Copyright terms: Public domain W3C validator