Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor1 Structured version   Visualization version   GIF version

Theorem heibor1 37794
Description: One half of heibor 37805, that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet 25217 and total boundedness here, which follows trivially from the fact that the set of all 𝑟-balls is an open cover of 𝑋, so finitely many cover 𝑋. (Contributed by Jeff Madsen, 16-Jan-2014.)
Hypothesis
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
heibor1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))

Proof of Theorem heibor1
Dummy variables 𝑥 𝑦 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
2 simpll 766 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝐷 ∈ (Met‘𝑋))
3 simplr 768 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝐽 ∈ Comp)
4 simprl 770 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥 ∈ (Cau‘𝐷))
5 simprr 772 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥:ℕ⟶𝑋)
61, 2, 3, 4, 5heibor1lem 37793 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥 ∈ dom (⇝𝑡𝐽))
76expr 456 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑥 ∈ (Cau‘𝐷)) → (𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽)))
87ralrimiva 3121 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → ∀𝑥 ∈ (Cau‘𝐷)(𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽)))
9 nnuz 12778 . . . 4 ℕ = (ℤ‘1)
10 1zzd 12506 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 1 ∈ ℤ)
11 simpl 482 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (Met‘𝑋))
129, 1, 10, 11iscmet3 25191 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑥 ∈ (Cau‘𝐷)(𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽))))
138, 12mpbird 257 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (CMet‘𝑋))
14 simplr 768 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 ∈ Comp)
15 metxmet 24220 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
16 id 22 . . . . . . . . . . . . . 14 (𝑧𝑋𝑧𝑋)
17 rpxr 12903 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
181blopn 24386 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ*) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
1915, 16, 17, 18syl3an 1160 . . . . . . . . . . . . 13 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
20193com23 1126 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
21203expa 1118 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
22 eleq1a 2823 . . . . . . . . . . 11 ((𝑧(ball‘𝐷)𝑟) ∈ 𝐽 → (𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2321, 22syl 17 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2423rexlimdva 3130 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2524adantlr 715 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2625abssdv 4020 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽)
2715ad2antrr 726 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
281mopnuni 24327 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
2927, 28syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝑋 = 𝐽)
30 blcntr 24299 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
3115, 30syl3an1 1163 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
32313com23 1126 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+𝑧𝑋) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
33323expa 1118 . . . . . . . . . . . . 13 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
34 ovex 7382 . . . . . . . . . . . . . . 15 (𝑧(ball‘𝐷)𝑟) ∈ V
3534elabrex 7178 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3635adantl 481 . . . . . . . . . . . . 13 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
37 elunii 4863 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑧(ball‘𝐷)𝑟) ∧ (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3833, 36, 37syl2anc 584 . . . . . . . . . . . 12 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3938ralrimiva 3121 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4039adantlr 715 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
41 nfcv 2891 . . . . . . . . . . 11 𝑧𝑋
42 nfre1 3254 . . . . . . . . . . . . 13 𝑧𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)
4342nfab 2897 . . . . . . . . . . . 12 𝑧{𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}
4443nfuni 4865 . . . . . . . . . . 11 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}
4541, 44dfss3f 3927 . . . . . . . . . 10 (𝑋 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ↔ ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4640, 45sylibr 234 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝑋 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4729, 46eqsstrrd 3971 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4826unissd 4868 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽)
4947, 48eqssd 3953 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 = {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
50 eqid 2729 . . . . . . . 8 𝐽 = 𝐽
5150cmpcov 23274 . . . . . . 7 ((𝐽 ∈ Comp ∧ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽 𝐽 = {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → ∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥)
5214, 26, 49, 51syl3anc 1373 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥)
53 elin 3919 . . . . . . . . . 10 (𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ↔ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝑥 ∈ Fin))
54 ancom 460 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝑥 ∈ Fin) ↔ (𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
5553, 54bitri 275 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ↔ (𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
5655anbi1i 624 . . . . . . . 8 ((𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ∧ 𝐽 = 𝑥) ↔ ((𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ∧ 𝐽 = 𝑥))
57 anass 468 . . . . . . . 8 (((𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ∧ 𝐽 = 𝑥) ↔ (𝑥 ∈ Fin ∧ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥)))
5856, 57bitri 275 . . . . . . 7 ((𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ∧ 𝐽 = 𝑥) ↔ (𝑥 ∈ Fin ∧ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥)))
5958rexbii2 3072 . . . . . 6 (∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥 ↔ ∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥))
6052, 59sylib 218 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥))
61 ancom 460 . . . . . . . 8 ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) ↔ ( 𝐽 = 𝑥𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
62 eqcom 2736 . . . . . . . . . 10 ( 𝑥 = 𝑋𝑋 = 𝑥)
6329eqeq1d 2731 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (𝑋 = 𝑥 𝐽 = 𝑥))
6462, 63bitr2id 284 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ( 𝐽 = 𝑥 𝑥 = 𝑋))
6564anbi1d 631 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (( 𝐽 = 𝑥𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ↔ ( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})))
6661, 65bitrid 283 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) ↔ ( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})))
67 elpwi 4558 . . . . . . . . 9 (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} → 𝑥 ⊆ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
68 ssabral 4017 . . . . . . . . 9 (𝑥 ⊆ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ↔ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))
6967, 68sylib 218 . . . . . . . 8 (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} → ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))
7069anim2i 617 . . . . . . 7 (( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
7166, 70biimtrdi 253 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) → ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7271reximdv 3144 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) → ∃𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7360, 72mpd 15 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
7473ralrimiva 3121 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → ∀𝑟 ∈ ℝ+𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
75 istotbnd 37753 . . 3 (𝐷 ∈ (TotBnd‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7611, 74, 75sylanbrc 583 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (TotBnd‘𝑋))
7713, 76jca 511 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  cin 3902  wss 3903  𝒫 cpw 4551   cuni 4858  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  Fincfn 8872  1c1 11010  *cxr 11148  cn 12128  +crp 12893  ∞Metcxmet 21246  Metcmet 21247  ballcbl 21248  MetOpencmopn 21251  𝑡clm 23111  Compccmp 23271  Cauccau 25151  CMetccmet 25152  TotBndctotbnd 37750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-fz 13411  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lm 23114  df-cmp 23272  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-cfil 25153  df-cau 25154  df-cmet 25155  df-totbnd 37752
This theorem is referenced by:  heibor  37805
  Copyright terms: Public domain W3C validator