Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor1 Structured version   Visualization version   GIF version

Theorem heibor1 37770
Description: One half of heibor 37781, that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet 25372 and total boundedness here, which follows trivially from the fact that the set of all 𝑟-balls is an open cover of 𝑋, so finitely many cover 𝑋. (Contributed by Jeff Madsen, 16-Jan-2014.)
Hypothesis
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
heibor1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))

Proof of Theorem heibor1
Dummy variables 𝑥 𝑦 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
2 simpll 766 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝐷 ∈ (Met‘𝑋))
3 simplr 768 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝐽 ∈ Comp)
4 simprl 770 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥 ∈ (Cau‘𝐷))
5 simprr 772 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥:ℕ⟶𝑋)
61, 2, 3, 4, 5heibor1lem 37769 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥 ∈ dom (⇝𝑡𝐽))
76expr 456 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑥 ∈ (Cau‘𝐷)) → (𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽)))
87ralrimiva 3152 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → ∀𝑥 ∈ (Cau‘𝐷)(𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽)))
9 nnuz 12946 . . . 4 ℕ = (ℤ‘1)
10 1zzd 12674 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 1 ∈ ℤ)
11 simpl 482 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (Met‘𝑋))
129, 1, 10, 11iscmet3 25346 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑥 ∈ (Cau‘𝐷)(𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽))))
138, 12mpbird 257 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (CMet‘𝑋))
14 simplr 768 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 ∈ Comp)
15 metxmet 24365 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
16 id 22 . . . . . . . . . . . . . 14 (𝑧𝑋𝑧𝑋)
17 rpxr 13066 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
181blopn 24534 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ*) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
1915, 16, 17, 18syl3an 1160 . . . . . . . . . . . . 13 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
20193com23 1126 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
21203expa 1118 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
22 eleq1a 2839 . . . . . . . . . . 11 ((𝑧(ball‘𝐷)𝑟) ∈ 𝐽 → (𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2321, 22syl 17 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2423rexlimdva 3161 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2524adantlr 714 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2625abssdv 4091 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽)
2715ad2antrr 725 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
281mopnuni 24472 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
2927, 28syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝑋 = 𝐽)
30 blcntr 24444 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
3115, 30syl3an1 1163 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
32313com23 1126 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+𝑧𝑋) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
33323expa 1118 . . . . . . . . . . . . 13 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
34 ovex 7481 . . . . . . . . . . . . . . 15 (𝑧(ball‘𝐷)𝑟) ∈ V
3534elabrex 7279 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3635adantl 481 . . . . . . . . . . . . 13 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
37 elunii 4936 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑧(ball‘𝐷)𝑟) ∧ (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3833, 36, 37syl2anc 583 . . . . . . . . . . . 12 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3938ralrimiva 3152 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4039adantlr 714 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
41 nfcv 2908 . . . . . . . . . . 11 𝑧𝑋
42 nfre1 3291 . . . . . . . . . . . . 13 𝑧𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)
4342nfab 2914 . . . . . . . . . . . 12 𝑧{𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}
4443nfuni 4938 . . . . . . . . . . 11 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}
4541, 44dfss3f 4000 . . . . . . . . . 10 (𝑋 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ↔ ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4640, 45sylibr 234 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝑋 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4729, 46eqsstrrd 4048 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4826unissd 4941 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽)
4947, 48eqssd 4026 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 = {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
50 eqid 2740 . . . . . . . 8 𝐽 = 𝐽
5150cmpcov 23418 . . . . . . 7 ((𝐽 ∈ Comp ∧ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽 𝐽 = {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → ∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥)
5214, 26, 49, 51syl3anc 1371 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥)
53 elin 3992 . . . . . . . . . 10 (𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ↔ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝑥 ∈ Fin))
54 ancom 460 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝑥 ∈ Fin) ↔ (𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
5553, 54bitri 275 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ↔ (𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
5655anbi1i 623 . . . . . . . 8 ((𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ∧ 𝐽 = 𝑥) ↔ ((𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ∧ 𝐽 = 𝑥))
57 anass 468 . . . . . . . 8 (((𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ∧ 𝐽 = 𝑥) ↔ (𝑥 ∈ Fin ∧ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥)))
5856, 57bitri 275 . . . . . . 7 ((𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ∧ 𝐽 = 𝑥) ↔ (𝑥 ∈ Fin ∧ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥)))
5958rexbii2 3096 . . . . . 6 (∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥 ↔ ∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥))
6052, 59sylib 218 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥))
61 ancom 460 . . . . . . . 8 ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) ↔ ( 𝐽 = 𝑥𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
62 eqcom 2747 . . . . . . . . . 10 ( 𝑥 = 𝑋𝑋 = 𝑥)
6329eqeq1d 2742 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (𝑋 = 𝑥 𝐽 = 𝑥))
6462, 63bitr2id 284 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ( 𝐽 = 𝑥 𝑥 = 𝑋))
6564anbi1d 630 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (( 𝐽 = 𝑥𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ↔ ( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})))
6661, 65bitrid 283 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) ↔ ( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})))
67 elpwi 4629 . . . . . . . . 9 (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} → 𝑥 ⊆ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
68 ssabral 4088 . . . . . . . . 9 (𝑥 ⊆ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ↔ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))
6967, 68sylib 218 . . . . . . . 8 (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} → ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))
7069anim2i 616 . . . . . . 7 (( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
7166, 70biimtrdi 253 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) → ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7271reximdv 3176 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) → ∃𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7360, 72mpd 15 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
7473ralrimiva 3152 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → ∀𝑟 ∈ ℝ+𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
75 istotbnd 37729 . . 3 (𝐷 ∈ (TotBnd‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7611, 74, 75sylanbrc 582 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (TotBnd‘𝑋))
7713, 76jca 511 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  1c1 11185  *cxr 11323  cn 12293  +crp 13057  ∞Metcxmet 21372  Metcmet 21373  ballcbl 21374  MetOpencmopn 21377  𝑡clm 23255  Compccmp 23415  Cauccau 25306  CMetccmet 25307  TotBndctotbnd 37726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-fz 13568  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lm 23258  df-cmp 23416  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-cfil 25308  df-cau 25309  df-cmet 25310  df-totbnd 37728
This theorem is referenced by:  heibor  37781
  Copyright terms: Public domain W3C validator