Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor1 Structured version   Visualization version   GIF version

Theorem heibor1 37521
Description: One half of heibor 37532, that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet 25332 and total boundedness here, which follows trivially from the fact that the set of all 𝑟-balls is an open cover of 𝑋, so finitely many cover 𝑋. (Contributed by Jeff Madsen, 16-Jan-2014.)
Hypothesis
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
heibor1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))

Proof of Theorem heibor1
Dummy variables 𝑥 𝑦 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
2 simpll 765 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝐷 ∈ (Met‘𝑋))
3 simplr 767 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝐽 ∈ Comp)
4 simprl 769 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥 ∈ (Cau‘𝐷))
5 simprr 771 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥:ℕ⟶𝑋)
61, 2, 3, 4, 5heibor1lem 37520 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥 ∈ dom (⇝𝑡𝐽))
76expr 455 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑥 ∈ (Cau‘𝐷)) → (𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽)))
87ralrimiva 3136 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → ∀𝑥 ∈ (Cau‘𝐷)(𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽)))
9 nnuz 12908 . . . 4 ℕ = (ℤ‘1)
10 1zzd 12636 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 1 ∈ ℤ)
11 simpl 481 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (Met‘𝑋))
129, 1, 10, 11iscmet3 25306 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑥 ∈ (Cau‘𝐷)(𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽))))
138, 12mpbird 256 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (CMet‘𝑋))
14 simplr 767 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 ∈ Comp)
15 metxmet 24325 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
16 id 22 . . . . . . . . . . . . . 14 (𝑧𝑋𝑧𝑋)
17 rpxr 13028 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
181blopn 24494 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ*) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
1915, 16, 17, 18syl3an 1157 . . . . . . . . . . . . 13 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
20193com23 1123 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
21203expa 1115 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
22 eleq1a 2821 . . . . . . . . . . 11 ((𝑧(ball‘𝐷)𝑟) ∈ 𝐽 → (𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2321, 22syl 17 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2423rexlimdva 3145 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2524adantlr 713 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2625abssdv 4061 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽)
2715ad2antrr 724 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
281mopnuni 24432 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
2927, 28syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝑋 = 𝐽)
30 blcntr 24404 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
3115, 30syl3an1 1160 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
32313com23 1123 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+𝑧𝑋) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
33323expa 1115 . . . . . . . . . . . . 13 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
34 ovex 7446 . . . . . . . . . . . . . . 15 (𝑧(ball‘𝐷)𝑟) ∈ V
3534elabrex 7246 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3635adantl 480 . . . . . . . . . . . . 13 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
37 elunii 4910 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑧(ball‘𝐷)𝑟) ∧ (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3833, 36, 37syl2anc 582 . . . . . . . . . . . 12 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3938ralrimiva 3136 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4039adantlr 713 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
41 nfcv 2892 . . . . . . . . . . 11 𝑧𝑋
42 nfre1 3273 . . . . . . . . . . . . 13 𝑧𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)
4342nfab 2898 . . . . . . . . . . . 12 𝑧{𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}
4443nfuni 4912 . . . . . . . . . . 11 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}
4541, 44dfss3f 3970 . . . . . . . . . 10 (𝑋 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ↔ ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4640, 45sylibr 233 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝑋 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4729, 46eqsstrrd 4018 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4826unissd 4915 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽)
4947, 48eqssd 3996 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 = {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
50 eqid 2726 . . . . . . . 8 𝐽 = 𝐽
5150cmpcov 23378 . . . . . . 7 ((𝐽 ∈ Comp ∧ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽 𝐽 = {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → ∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥)
5214, 26, 49, 51syl3anc 1368 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥)
53 elin 3962 . . . . . . . . . 10 (𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ↔ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝑥 ∈ Fin))
54 ancom 459 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝑥 ∈ Fin) ↔ (𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
5553, 54bitri 274 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ↔ (𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
5655anbi1i 622 . . . . . . . 8 ((𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ∧ 𝐽 = 𝑥) ↔ ((𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ∧ 𝐽 = 𝑥))
57 anass 467 . . . . . . . 8 (((𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ∧ 𝐽 = 𝑥) ↔ (𝑥 ∈ Fin ∧ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥)))
5856, 57bitri 274 . . . . . . 7 ((𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ∧ 𝐽 = 𝑥) ↔ (𝑥 ∈ Fin ∧ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥)))
5958rexbii2 3080 . . . . . 6 (∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥 ↔ ∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥))
6052, 59sylib 217 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥))
61 ancom 459 . . . . . . . 8 ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) ↔ ( 𝐽 = 𝑥𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
62 eqcom 2733 . . . . . . . . . 10 ( 𝑥 = 𝑋𝑋 = 𝑥)
6329eqeq1d 2728 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (𝑋 = 𝑥 𝐽 = 𝑥))
6462, 63bitr2id 283 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ( 𝐽 = 𝑥 𝑥 = 𝑋))
6564anbi1d 629 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (( 𝐽 = 𝑥𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ↔ ( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})))
6661, 65bitrid 282 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) ↔ ( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})))
67 elpwi 4604 . . . . . . . . 9 (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} → 𝑥 ⊆ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
68 ssabral 4058 . . . . . . . . 9 (𝑥 ⊆ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ↔ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))
6967, 68sylib 217 . . . . . . . 8 (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} → ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))
7069anim2i 615 . . . . . . 7 (( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
7166, 70biimtrdi 252 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) → ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7271reximdv 3160 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) → ∃𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7360, 72mpd 15 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
7473ralrimiva 3136 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → ∀𝑟 ∈ ℝ+𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
75 istotbnd 37480 . . 3 (𝐷 ∈ (TotBnd‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7611, 74, 75sylanbrc 581 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (TotBnd‘𝑋))
7713, 76jca 510 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {cab 2703  wral 3051  wrex 3060  cin 3945  wss 3946  𝒫 cpw 4597   cuni 4905  dom cdm 5672  wf 6539  cfv 6543  (class class class)co 7413  Fincfn 8963  1c1 11147  *cxr 11285  cn 12255  +crp 13019  ∞Metcxmet 21321  Metcmet 21322  ballcbl 21323  MetOpencmopn 21326  𝑡clm 23215  Compccmp 23375  Cauccau 25266  CMetccmet 25267  TotBndctotbnd 37477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-inf2 9674  ax-cc 10466  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8723  df-map 8846  df-pm 8847  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fi 9444  df-sup 9475  df-inf 9476  df-oi 9543  df-card 9972  df-acn 9975  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-2 12318  df-3 12319  df-n0 12516  df-z 12602  df-uz 12866  df-q 12976  df-rp 13020  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ico 13375  df-fz 13530  df-fl 13803  df-seq 14013  df-exp 14073  df-cj 15096  df-re 15097  df-im 15098  df-sqrt 15232  df-abs 15233  df-clim 15482  df-rlim 15483  df-rest 17429  df-topgen 17450  df-psmet 21328  df-xmet 21329  df-met 21330  df-bl 21331  df-mopn 21332  df-fbas 21333  df-fg 21334  df-top 22881  df-topon 22898  df-bases 22934  df-cld 23008  df-ntr 23009  df-cls 23010  df-nei 23087  df-lm 23218  df-cmp 23376  df-fil 23835  df-fm 23927  df-flim 23928  df-flf 23929  df-cfil 25268  df-cau 25269  df-cmet 25270  df-totbnd 37479
This theorem is referenced by:  heibor  37532
  Copyright terms: Public domain W3C validator