Step | Hyp | Ref
| Expression |
1 | | heibor.1 |
. . . . . 6
⊢ 𝐽 = (MetOpen‘𝐷) |
2 | | simpll 764 |
. . . . . 6
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝐷 ∈ (Met‘𝑋)) |
3 | | simplr 766 |
. . . . . 6
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝐽 ∈ Comp) |
4 | | simprl 768 |
. . . . . 6
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥 ∈ (Cau‘𝐷)) |
5 | | simprr 770 |
. . . . . 6
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥:ℕ⟶𝑋) |
6 | 1, 2, 3, 4, 5 | heibor1lem 35967 |
. . . . 5
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥 ∈ dom
(⇝𝑡‘𝐽)) |
7 | 6 | expr 457 |
. . . 4
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑥 ∈ (Cau‘𝐷)) → (𝑥:ℕ⟶𝑋 → 𝑥 ∈ dom
(⇝𝑡‘𝐽))) |
8 | 7 | ralrimiva 3103 |
. . 3
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → ∀𝑥 ∈ (Cau‘𝐷)(𝑥:ℕ⟶𝑋 → 𝑥 ∈ dom
(⇝𝑡‘𝐽))) |
9 | | nnuz 12621 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
10 | | 1zzd 12351 |
. . . 4
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 1 ∈
ℤ) |
11 | | simpl 483 |
. . . 4
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (Met‘𝑋)) |
12 | 9, 1, 10, 11 | iscmet3 24457 |
. . 3
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑥 ∈ (Cau‘𝐷)(𝑥:ℕ⟶𝑋 → 𝑥 ∈ dom
(⇝𝑡‘𝐽)))) |
13 | 8, 12 | mpbird 256 |
. 2
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (CMet‘𝑋)) |
14 | | simplr 766 |
. . . . . . 7
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 ∈ Comp) |
15 | | metxmet 23487 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
16 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑋 → 𝑧 ∈ 𝑋) |
17 | | rpxr 12739 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
18 | 1 | blopn 23656 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽) |
19 | 15, 16, 17, 18 | syl3an 1159 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽) |
20 | 19 | 3com23 1125 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+ ∧ 𝑧 ∈ 𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽) |
21 | 20 | 3expa 1117 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 ∈ 𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽) |
22 | | eleq1a 2834 |
. . . . . . . . . . 11
⊢ ((𝑧(ball‘𝐷)𝑟) ∈ 𝐽 → (𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦 ∈ 𝐽)) |
23 | 21, 22 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 ∈ 𝑋) → (𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦 ∈ 𝐽)) |
24 | 23 | rexlimdva 3213 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) →
(∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦 ∈ 𝐽)) |
25 | 24 | adantlr 712 |
. . . . . . . 8
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) →
(∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦 ∈ 𝐽)) |
26 | 25 | abssdv 4002 |
. . . . . . 7
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽) |
27 | 15 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋)) |
28 | 1 | mopnuni 23594 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
29 | 27, 28 | syl 17 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝑋 = ∪
𝐽) |
30 | | blcntr 23566 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟)) |
31 | 15, 30 | syl3an1 1162 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟)) |
32 | 31 | 3com23 1125 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+ ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟)) |
33 | 32 | 3expa 1117 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟)) |
34 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢ (𝑧(ball‘𝐷)𝑟) ∈ V |
35 | 34 | elabrex 7116 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑋 → (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) |
36 | 35 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 ∈ 𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) |
37 | | elunii 4844 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ (𝑧(ball‘𝐷)𝑟) ∧ (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → 𝑧 ∈ ∪ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) |
38 | 33, 36, 37 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ ∪ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) |
39 | 38 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) →
∀𝑧 ∈ 𝑋 𝑧 ∈ ∪ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) |
40 | 39 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) →
∀𝑧 ∈ 𝑋 𝑧 ∈ ∪ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) |
41 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧𝑋 |
42 | | nfre1 3239 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) |
43 | 42 | nfab 2913 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧{𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} |
44 | 43 | nfuni 4846 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧∪ {𝑦
∣ ∃𝑧 ∈
𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} |
45 | 41, 44 | dfss3f 3912 |
. . . . . . . . . 10
⊢ (𝑋 ⊆ ∪ {𝑦
∣ ∃𝑧 ∈
𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ↔ ∀𝑧 ∈ 𝑋 𝑧 ∈ ∪ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) |
46 | 40, 45 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝑋 ⊆ ∪ {𝑦
∣ ∃𝑧 ∈
𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) |
47 | 29, 46 | eqsstrrd 3960 |
. . . . . . . 8
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∪ 𝐽
⊆ ∪ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) |
48 | 26 | unissd 4849 |
. . . . . . . 8
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∪ {𝑦
∣ ∃𝑧 ∈
𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ ∪ 𝐽) |
49 | 47, 48 | eqssd 3938 |
. . . . . . 7
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∪ 𝐽 =
∪ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) |
50 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
51 | 50 | cmpcov 22540 |
. . . . . . 7
⊢ ((𝐽 ∈ Comp ∧ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
{𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → ∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin)∪
𝐽 = ∪ 𝑥) |
52 | 14, 26, 49, 51 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) →
∃𝑥 ∈ (𝒫
{𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin)∪
𝐽 = ∪ 𝑥) |
53 | | elin 3903 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ↔ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝑥 ∈ Fin)) |
54 | | ancom 461 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝑥 ∈ Fin) ↔ (𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})) |
55 | 53, 54 | bitri 274 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ↔ (𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})) |
56 | 55 | anbi1i 624 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑥) ↔ ((𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ∧ ∪ 𝐽 = ∪
𝑥)) |
57 | | anass 469 |
. . . . . . . 8
⊢ (((𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ∧ ∪ 𝐽 = ∪
𝑥) ↔ (𝑥 ∈ Fin ∧ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ ∪ 𝐽 = ∪
𝑥))) |
58 | 56, 57 | bitri 274 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑥) ↔ (𝑥 ∈ Fin ∧ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ ∪ 𝐽 = ∪
𝑥))) |
59 | 58 | rexbii2 3179 |
. . . . . 6
⊢
(∃𝑥 ∈
(𝒫 {𝑦 ∣
∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin)∪
𝐽 = ∪ 𝑥
↔ ∃𝑥 ∈ Fin
(𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ ∪ 𝐽 = ∪
𝑥)) |
60 | 52, 59 | sylib 217 |
. . . . 5
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) →
∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ ∪ 𝐽 = ∪
𝑥)) |
61 | | ancom 461 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ ∪ 𝐽 = ∪
𝑥) ↔ (∪ 𝐽 =
∪ 𝑥 ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})) |
62 | | eqcom 2745 |
. . . . . . . . . 10
⊢ (∪ 𝑥 =
𝑋 ↔ 𝑋 = ∪ 𝑥) |
63 | 29 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (𝑋 = ∪
𝑥 ↔ ∪ 𝐽 =
∪ 𝑥)) |
64 | 62, 63 | bitr2id 284 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (∪ 𝐽 =
∪ 𝑥 ↔ ∪ 𝑥 = 𝑋)) |
65 | 64 | anbi1d 630 |
. . . . . . . 8
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((∪ 𝐽 =
∪ 𝑥 ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ↔ (∪
𝑥 = 𝑋 ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))) |
66 | 61, 65 | syl5bb 283 |
. . . . . . 7
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ ∪ 𝐽 = ∪
𝑥) ↔ (∪ 𝑥 =
𝑋 ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))) |
67 | | elpwi 4542 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} → 𝑥 ⊆ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) |
68 | | ssabral 3996 |
. . . . . . . . 9
⊢ (𝑥 ⊆ {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)) |
69 | 67, 68 | sylib 217 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} → ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)) |
70 | 69 | anim2i 617 |
. . . . . . 7
⊢ ((∪ 𝑥 =
𝑋 ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → (∪
𝑥 = 𝑋 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))) |
71 | 66, 70 | syl6bi 252 |
. . . . . 6
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ ∪ 𝐽 = ∪
𝑥) → (∪ 𝑥 =
𝑋 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))) |
72 | 71 | reximdv 3202 |
. . . . 5
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) →
(∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ ∪ 𝐽 = ∪
𝑥) → ∃𝑥 ∈ Fin (∪ 𝑥 =
𝑋 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))) |
73 | 60, 72 | mpd 15 |
. . . 4
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) →
∃𝑥 ∈ Fin (∪ 𝑥 =
𝑋 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))) |
74 | 73 | ralrimiva 3103 |
. . 3
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → ∀𝑟 ∈ ℝ+
∃𝑥 ∈ Fin (∪ 𝑥 =
𝑋 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))) |
75 | | istotbnd 35927 |
. . 3
⊢ (𝐷 ∈ (TotBnd‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ Fin (∪ 𝑥 =
𝑋 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))) |
76 | 11, 74, 75 | sylanbrc 583 |
. 2
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (TotBnd‘𝑋)) |
77 | 13, 76 | jca 512 |
1
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋))) |