Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor1 Structured version   Visualization version   GIF version

Theorem heibor1 36269
Description: One half of heibor 36280, that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet 24683 and total boundedness here, which follows trivially from the fact that the set of all 𝑟-balls is an open cover of 𝑋, so finitely many cover 𝑋. (Contributed by Jeff Madsen, 16-Jan-2014.)
Hypothesis
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
heibor1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))

Proof of Theorem heibor1
Dummy variables 𝑥 𝑦 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
2 simpll 765 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝐷 ∈ (Met‘𝑋))
3 simplr 767 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝐽 ∈ Comp)
4 simprl 769 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥 ∈ (Cau‘𝐷))
5 simprr 771 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥:ℕ⟶𝑋)
61, 2, 3, 4, 5heibor1lem 36268 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ (Cau‘𝐷) ∧ 𝑥:ℕ⟶𝑋)) → 𝑥 ∈ dom (⇝𝑡𝐽))
76expr 457 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑥 ∈ (Cau‘𝐷)) → (𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽)))
87ralrimiva 3143 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → ∀𝑥 ∈ (Cau‘𝐷)(𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽)))
9 nnuz 12806 . . . 4 ℕ = (ℤ‘1)
10 1zzd 12534 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 1 ∈ ℤ)
11 simpl 483 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (Met‘𝑋))
129, 1, 10, 11iscmet3 24657 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑥 ∈ (Cau‘𝐷)(𝑥:ℕ⟶𝑋𝑥 ∈ dom (⇝𝑡𝐽))))
138, 12mpbird 256 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (CMet‘𝑋))
14 simplr 767 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 ∈ Comp)
15 metxmet 23687 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
16 id 22 . . . . . . . . . . . . . 14 (𝑧𝑋𝑧𝑋)
17 rpxr 12924 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
181blopn 23856 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ*) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
1915, 16, 17, 18syl3an 1160 . . . . . . . . . . . . 13 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
20193com23 1126 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
21203expa 1118 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ 𝐽)
22 eleq1a 2833 . . . . . . . . . . 11 ((𝑧(ball‘𝐷)𝑟) ∈ 𝐽 → (𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2321, 22syl 17 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2423rexlimdva 3152 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2524adantlr 713 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟) → 𝑦𝐽))
2625abssdv 4025 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽)
2715ad2antrr 724 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
281mopnuni 23794 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
2927, 28syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝑋 = 𝐽)
30 blcntr 23766 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
3115, 30syl3an1 1163 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑟 ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
32313com23 1126 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+𝑧𝑋) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
33323expa 1118 . . . . . . . . . . . . 13 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → 𝑧 ∈ (𝑧(ball‘𝐷)𝑟))
34 ovex 7390 . . . . . . . . . . . . . . 15 (𝑧(ball‘𝐷)𝑟) ∈ V
3534elabrex 7190 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3635adantl 482 . . . . . . . . . . . . 13 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
37 elunii 4870 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑧(ball‘𝐷)𝑟) ∧ (𝑧(ball‘𝐷)𝑟) ∈ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3833, 36, 37syl2anc 584 . . . . . . . . . . . 12 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧𝑋) → 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
3938ralrimiva 3143 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4039adantlr 713 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
41 nfcv 2907 . . . . . . . . . . 11 𝑧𝑋
42 nfre1 3268 . . . . . . . . . . . . 13 𝑧𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)
4342nfab 2913 . . . . . . . . . . . 12 𝑧{𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}
4443nfuni 4872 . . . . . . . . . . 11 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}
4541, 44dfss3f 3935 . . . . . . . . . 10 (𝑋 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ↔ ∀𝑧𝑋 𝑧 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4640, 45sylibr 233 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝑋 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4729, 46eqsstrrd 3983 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
4826unissd 4875 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽)
4947, 48eqssd 3961 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → 𝐽 = {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
50 eqid 2736 . . . . . . . 8 𝐽 = 𝐽
5150cmpcov 22740 . . . . . . 7 ((𝐽 ∈ Comp ∧ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ⊆ 𝐽 𝐽 = {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → ∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥)
5214, 26, 49, 51syl3anc 1371 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥)
53 elin 3926 . . . . . . . . . 10 (𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ↔ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝑥 ∈ Fin))
54 ancom 461 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝑥 ∈ Fin) ↔ (𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
5553, 54bitri 274 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ↔ (𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
5655anbi1i 624 . . . . . . . 8 ((𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ∧ 𝐽 = 𝑥) ↔ ((𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ∧ 𝐽 = 𝑥))
57 anass 469 . . . . . . . 8 (((𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ∧ 𝐽 = 𝑥) ↔ (𝑥 ∈ Fin ∧ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥)))
5856, 57bitri 274 . . . . . . 7 ((𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) ∧ 𝐽 = 𝑥) ↔ (𝑥 ∈ Fin ∧ (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥)))
5958rexbii2 3093 . . . . . 6 (∃𝑥 ∈ (𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∩ Fin) 𝐽 = 𝑥 ↔ ∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥))
6052, 59sylib 217 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥))
61 ancom 461 . . . . . . . 8 ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) ↔ ( 𝐽 = 𝑥𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}))
62 eqcom 2743 . . . . . . . . . 10 ( 𝑥 = 𝑋𝑋 = 𝑥)
6329eqeq1d 2738 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (𝑋 = 𝑥 𝐽 = 𝑥))
6462, 63bitr2id 283 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ( 𝐽 = 𝑥 𝑥 = 𝑋))
6564anbi1d 630 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (( 𝐽 = 𝑥𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) ↔ ( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})))
6661, 65bitrid 282 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) ↔ ( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})))
67 elpwi 4567 . . . . . . . . 9 (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} → 𝑥 ⊆ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)})
68 ssabral 4019 . . . . . . . . 9 (𝑥 ⊆ {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ↔ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))
6967, 68sylib 217 . . . . . . . 8 (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} → ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))
7069anim2i 617 . . . . . . 7 (( 𝑥 = 𝑋𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)}) → ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
7166, 70syl6bi 252 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ((𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) → ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7271reximdv 3167 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → (∃𝑥 ∈ Fin (𝑥 ∈ 𝒫 {𝑦 ∣ ∃𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)} ∧ 𝐽 = 𝑥) → ∃𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7360, 72mpd 15 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ∧ 𝑟 ∈ ℝ+) → ∃𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
7473ralrimiva 3143 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → ∀𝑟 ∈ ℝ+𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟)))
75 istotbnd 36228 . . 3 (𝐷 ∈ (TotBnd‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀𝑦𝑥𝑧𝑋 𝑦 = (𝑧(ball‘𝐷)𝑟))))
7611, 74, 75sylanbrc 583 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → 𝐷 ∈ (TotBnd‘𝑋))
7713, 76jca 512 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {cab 2713  wral 3064  wrex 3073  cin 3909  wss 3910  𝒫 cpw 4560   cuni 4865  dom cdm 5633  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  1c1 11052  *cxr 11188  cn 12153  +crp 12915  ∞Metcxmet 20781  Metcmet 20782  ballcbl 20783  MetOpencmopn 20786  𝑡clm 22577  Compccmp 22737  Cauccau 24617  CMetccmet 24618  TotBndctotbnd 36225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-fz 13425  df-fl 13697  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lm 22580  df-cmp 22738  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-cfil 24619  df-cau 24620  df-cmet 24621  df-totbnd 36227
This theorem is referenced by:  heibor  36280
  Copyright terms: Public domain W3C validator