Step | Hyp | Ref
| Expression |
1 | | heibor.1 |
. . . . . 6
β’ π½ = (MetOpenβπ·) |
2 | | simpll 765 |
. . . . . 6
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ (π₯ β (Cauβπ·) β§ π₯:ββΆπ)) β π· β (Metβπ)) |
3 | | simplr 767 |
. . . . . 6
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ (π₯ β (Cauβπ·) β§ π₯:ββΆπ)) β π½ β Comp) |
4 | | simprl 769 |
. . . . . 6
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ (π₯ β (Cauβπ·) β§ π₯:ββΆπ)) β π₯ β (Cauβπ·)) |
5 | | simprr 771 |
. . . . . 6
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ (π₯ β (Cauβπ·) β§ π₯:ββΆπ)) β π₯:ββΆπ) |
6 | 1, 2, 3, 4, 5 | heibor1lem 36665 |
. . . . 5
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ (π₯ β (Cauβπ·) β§ π₯:ββΆπ)) β π₯ β dom
(βπ‘βπ½)) |
7 | 6 | expr 457 |
. . . 4
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π₯ β (Cauβπ·)) β (π₯:ββΆπ β π₯ β dom
(βπ‘βπ½))) |
8 | 7 | ralrimiva 3146 |
. . 3
β’ ((π· β (Metβπ) β§ π½ β Comp) β βπ₯ β (Cauβπ·)(π₯:ββΆπ β π₯ β dom
(βπ‘βπ½))) |
9 | | nnuz 12861 |
. . . 4
β’ β =
(β€β₯β1) |
10 | | 1zzd 12589 |
. . . 4
β’ ((π· β (Metβπ) β§ π½ β Comp) β 1 β
β€) |
11 | | simpl 483 |
. . . 4
β’ ((π· β (Metβπ) β§ π½ β Comp) β π· β (Metβπ)) |
12 | 9, 1, 10, 11 | iscmet3 24801 |
. . 3
β’ ((π· β (Metβπ) β§ π½ β Comp) β (π· β (CMetβπ) β βπ₯ β (Cauβπ·)(π₯:ββΆπ β π₯ β dom
(βπ‘βπ½)))) |
13 | 8, 12 | mpbird 256 |
. 2
β’ ((π· β (Metβπ) β§ π½ β Comp) β π· β (CMetβπ)) |
14 | | simplr 767 |
. . . . . . 7
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β π½ β Comp) |
15 | | metxmet 23831 |
. . . . . . . . . . . . . 14
β’ (π· β (Metβπ) β π· β (βMetβπ)) |
16 | | id 22 |
. . . . . . . . . . . . . 14
β’ (π§ β π β π§ β π) |
17 | | rpxr 12979 |
. . . . . . . . . . . . . 14
β’ (π β β+
β π β
β*) |
18 | 1 | blopn 24000 |
. . . . . . . . . . . . . 14
β’ ((π· β (βMetβπ) β§ π§ β π β§ π β β*) β (π§(ballβπ·)π) β π½) |
19 | 15, 16, 17, 18 | syl3an 1160 |
. . . . . . . . . . . . 13
β’ ((π· β (Metβπ) β§ π§ β π β§ π β β+) β (π§(ballβπ·)π) β π½) |
20 | 19 | 3com23 1126 |
. . . . . . . . . . . 12
β’ ((π· β (Metβπ) β§ π β β+ β§ π§ β π) β (π§(ballβπ·)π) β π½) |
21 | 20 | 3expa 1118 |
. . . . . . . . . . 11
β’ (((π· β (Metβπ) β§ π β β+) β§ π§ β π) β (π§(ballβπ·)π) β π½) |
22 | | eleq1a 2828 |
. . . . . . . . . . 11
β’ ((π§(ballβπ·)π) β π½ β (π¦ = (π§(ballβπ·)π) β π¦ β π½)) |
23 | 21, 22 | syl 17 |
. . . . . . . . . 10
β’ (((π· β (Metβπ) β§ π β β+) β§ π§ β π) β (π¦ = (π§(ballβπ·)π) β π¦ β π½)) |
24 | 23 | rexlimdva 3155 |
. . . . . . . . 9
β’ ((π· β (Metβπ) β§ π β β+) β
(βπ§ β π π¦ = (π§(ballβπ·)π) β π¦ β π½)) |
25 | 24 | adantlr 713 |
. . . . . . . 8
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β
(βπ§ β π π¦ = (π§(ballβπ·)π) β π¦ β π½)) |
26 | 25 | abssdv 4064 |
. . . . . . 7
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β π½) |
27 | 15 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β π· β (βMetβπ)) |
28 | 1 | mopnuni 23938 |
. . . . . . . . . 10
β’ (π· β (βMetβπ) β π = βͺ π½) |
29 | 27, 28 | syl 17 |
. . . . . . . . 9
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β π = βͺ
π½) |
30 | | blcntr 23910 |
. . . . . . . . . . . . . . . 16
β’ ((π· β (βMetβπ) β§ π§ β π β§ π β β+) β π§ β (π§(ballβπ·)π)) |
31 | 15, 30 | syl3an1 1163 |
. . . . . . . . . . . . . . 15
β’ ((π· β (Metβπ) β§ π§ β π β§ π β β+) β π§ β (π§(ballβπ·)π)) |
32 | 31 | 3com23 1126 |
. . . . . . . . . . . . . 14
β’ ((π· β (Metβπ) β§ π β β+ β§ π§ β π) β π§ β (π§(ballβπ·)π)) |
33 | 32 | 3expa 1118 |
. . . . . . . . . . . . 13
β’ (((π· β (Metβπ) β§ π β β+) β§ π§ β π) β π§ β (π§(ballβπ·)π)) |
34 | | ovex 7438 |
. . . . . . . . . . . . . . 15
β’ (π§(ballβπ·)π) β V |
35 | 34 | elabrex 7238 |
. . . . . . . . . . . . . 14
β’ (π§ β π β (π§(ballβπ·)π) β {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) |
36 | 35 | adantl 482 |
. . . . . . . . . . . . 13
β’ (((π· β (Metβπ) β§ π β β+) β§ π§ β π) β (π§(ballβπ·)π) β {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) |
37 | | elunii 4912 |
. . . . . . . . . . . . 13
β’ ((π§ β (π§(ballβπ·)π) β§ (π§(ballβπ·)π) β {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) β π§ β βͺ {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) |
38 | 33, 36, 37 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (((π· β (Metβπ) β§ π β β+) β§ π§ β π) β π§ β βͺ {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) |
39 | 38 | ralrimiva 3146 |
. . . . . . . . . . 11
β’ ((π· β (Metβπ) β§ π β β+) β
βπ§ β π π§ β βͺ {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) |
40 | 39 | adantlr 713 |
. . . . . . . . . 10
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β
βπ§ β π π§ β βͺ {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) |
41 | | nfcv 2903 |
. . . . . . . . . . 11
β’
β²π§π |
42 | | nfre1 3282 |
. . . . . . . . . . . . 13
β’
β²π§βπ§ β π π¦ = (π§(ballβπ·)π) |
43 | 42 | nfab 2909 |
. . . . . . . . . . . 12
β’
β²π§{π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} |
44 | 43 | nfuni 4914 |
. . . . . . . . . . 11
β’
β²π§βͺ {π¦
β£ βπ§ β
π π¦ = (π§(ballβπ·)π)} |
45 | 41, 44 | dfss3f 3972 |
. . . . . . . . . 10
β’ (π β βͺ {π¦
β£ βπ§ β
π π¦ = (π§(ballβπ·)π)} β βπ§ β π π§ β βͺ {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) |
46 | 40, 45 | sylibr 233 |
. . . . . . . . 9
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β π β βͺ {π¦
β£ βπ§ β
π π¦ = (π§(ballβπ·)π)}) |
47 | 29, 46 | eqsstrrd 4020 |
. . . . . . . 8
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β βͺ π½
β βͺ {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) |
48 | 26 | unissd 4917 |
. . . . . . . 8
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β βͺ {π¦
β£ βπ§ β
π π¦ = (π§(ballβπ·)π)} β βͺ π½) |
49 | 47, 48 | eqssd 3998 |
. . . . . . 7
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β βͺ π½ =
βͺ {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) |
50 | | eqid 2732 |
. . . . . . . 8
β’ βͺ π½ =
βͺ π½ |
51 | 50 | cmpcov 22884 |
. . . . . . 7
β’ ((π½ β Comp β§ {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β π½ β§ βͺ π½ = βͺ
{π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) β βπ₯ β (π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β© Fin)βͺ
π½ = βͺ π₯) |
52 | 14, 26, 49, 51 | syl3anc 1371 |
. . . . . 6
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β
βπ₯ β (π«
{π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β© Fin)βͺ
π½ = βͺ π₯) |
53 | | elin 3963 |
. . . . . . . . . 10
β’ (π₯ β (π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β© Fin) β (π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β§ π₯ β Fin)) |
54 | | ancom 461 |
. . . . . . . . . 10
β’ ((π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β§ π₯ β Fin) β (π₯ β Fin β§ π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)})) |
55 | 53, 54 | bitri 274 |
. . . . . . . . 9
β’ (π₯ β (π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β© Fin) β (π₯ β Fin β§ π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)})) |
56 | 55 | anbi1i 624 |
. . . . . . . 8
β’ ((π₯ β (π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β© Fin) β§ βͺ π½ =
βͺ π₯) β ((π₯ β Fin β§ π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) β§ βͺ π½ = βͺ
π₯)) |
57 | | anass 469 |
. . . . . . . 8
β’ (((π₯ β Fin β§ π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) β§ βͺ π½ = βͺ
π₯) β (π₯ β Fin β§ (π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β§ βͺ π½ = βͺ
π₯))) |
58 | 56, 57 | bitri 274 |
. . . . . . 7
β’ ((π₯ β (π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β© Fin) β§ βͺ π½ =
βͺ π₯) β (π₯ β Fin β§ (π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β§ βͺ π½ = βͺ
π₯))) |
59 | 58 | rexbii2 3090 |
. . . . . 6
β’
(βπ₯ β
(π« {π¦ β£
βπ§ β π π¦ = (π§(ballβπ·)π)} β© Fin)βͺ
π½ = βͺ π₯
β βπ₯ β Fin
(π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β§ βͺ π½ = βͺ
π₯)) |
60 | 52, 59 | sylib 217 |
. . . . 5
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β
βπ₯ β Fin (π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β§ βͺ π½ = βͺ
π₯)) |
61 | | ancom 461 |
. . . . . . . 8
β’ ((π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β§ βͺ π½ = βͺ
π₯) β (βͺ π½ =
βͺ π₯ β§ π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)})) |
62 | | eqcom 2739 |
. . . . . . . . . 10
β’ (βͺ π₯ =
π β π = βͺ π₯) |
63 | 29 | eqeq1d 2734 |
. . . . . . . . . 10
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β (π = βͺ
π₯ β βͺ π½ =
βͺ π₯)) |
64 | 62, 63 | bitr2id 283 |
. . . . . . . . 9
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β (βͺ π½ =
βͺ π₯ β βͺ π₯ = π)) |
65 | 64 | anbi1d 630 |
. . . . . . . 8
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β ((βͺ π½ =
βͺ π₯ β§ π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) β (βͺ
π₯ = π β§ π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}))) |
66 | 61, 65 | bitrid 282 |
. . . . . . 7
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β ((π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β§ βͺ π½ = βͺ
π₯) β (βͺ π₯ =
π β§ π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}))) |
67 | | elpwi 4608 |
. . . . . . . . 9
β’ (π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β π₯ β {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) |
68 | | ssabral 4058 |
. . . . . . . . 9
β’ (π₯ β {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β βπ¦ β π₯ βπ§ β π π¦ = (π§(ballβπ·)π)) |
69 | 67, 68 | sylib 217 |
. . . . . . . 8
β’ (π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β βπ¦ β π₯ βπ§ β π π¦ = (π§(ballβπ·)π)) |
70 | 69 | anim2i 617 |
. . . . . . 7
β’ ((βͺ π₯ =
π β§ π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)}) β (βͺ
π₯ = π β§ βπ¦ β π₯ βπ§ β π π¦ = (π§(ballβπ·)π))) |
71 | 66, 70 | syl6bi 252 |
. . . . . 6
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β ((π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β§ βͺ π½ = βͺ
π₯) β (βͺ π₯ =
π β§ βπ¦ β π₯ βπ§ β π π¦ = (π§(ballβπ·)π)))) |
72 | 71 | reximdv 3170 |
. . . . 5
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β
(βπ₯ β Fin (π₯ β π« {π¦ β£ βπ§ β π π¦ = (π§(ballβπ·)π)} β§ βͺ π½ = βͺ
π₯) β βπ₯ β Fin (βͺ π₯ =
π β§ βπ¦ β π₯ βπ§ β π π¦ = (π§(ballβπ·)π)))) |
73 | 60, 72 | mpd 15 |
. . . 4
β’ (((π· β (Metβπ) β§ π½ β Comp) β§ π β β+) β
βπ₯ β Fin (βͺ π₯ =
π β§ βπ¦ β π₯ βπ§ β π π¦ = (π§(ballβπ·)π))) |
74 | 73 | ralrimiva 3146 |
. . 3
β’ ((π· β (Metβπ) β§ π½ β Comp) β βπ β β+
βπ₯ β Fin (βͺ π₯ =
π β§ βπ¦ β π₯ βπ§ β π π¦ = (π§(ballβπ·)π))) |
75 | | istotbnd 36625 |
. . 3
β’ (π· β (TotBndβπ) β (π· β (Metβπ) β§ βπ β β+ βπ₯ β Fin (βͺ π₯ =
π β§ βπ¦ β π₯ βπ§ β π π¦ = (π§(ballβπ·)π)))) |
76 | 11, 74, 75 | sylanbrc 583 |
. 2
β’ ((π· β (Metβπ) β§ π½ β Comp) β π· β (TotBndβπ)) |
77 | 13, 76 | jca 512 |
1
β’ ((π· β (Metβπ) β§ π½ β Comp) β (π· β (CMetβπ) β§ π· β (TotBndβπ))) |