| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | txdis1cn.f | . . 3
⊢ (𝜑 → 𝐹 Fn (𝑋 × 𝑌)) | 
| 2 |  | txdis1cn.j | . . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑌)) | 
| 3 | 2 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑌)) | 
| 4 |  | txdis1cn.k | . . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ Top) | 
| 5 |  | toptopon2 22925 | . . . . . . . 8
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | 
| 6 | 4, 5 | sylib 218 | . . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) | 
| 7 | 6 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘∪ 𝐾)) | 
| 8 |  | txdis1cn.1 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) | 
| 9 |  | cnf2 23258 | . . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)):𝑌⟶∪ 𝐾) | 
| 10 | 3, 7, 8, 9 | syl3anc 1372 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)):𝑌⟶∪ 𝐾) | 
| 11 |  | eqid 2736 | . . . . . 6
⊢ (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) = (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) | 
| 12 | 11 | fmpt 7129 | . . . . 5
⊢
(∀𝑦 ∈
𝑌 (𝑥𝐹𝑦) ∈ ∪ 𝐾 ↔ (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)):𝑌⟶∪ 𝐾) | 
| 13 | 10, 12 | sylibr 234 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) ∈ ∪ 𝐾) | 
| 14 | 13 | ralrimiva 3145 | . . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) ∈ ∪ 𝐾) | 
| 15 |  | ffnov 7560 | . . 3
⊢ (𝐹:(𝑋 × 𝑌)⟶∪ 𝐾 ↔ (𝐹 Fn (𝑋 × 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) ∈ ∪ 𝐾)) | 
| 16 | 1, 14, 15 | sylanbrc 583 | . 2
⊢ (𝜑 → 𝐹:(𝑋 × 𝑌)⟶∪ 𝐾) | 
| 17 |  | cnvimass 6099 | . . . . . . . 8
⊢ (◡𝐹 “ 𝑢) ⊆ dom 𝐹 | 
| 18 | 1 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → 𝐹 Fn (𝑋 × 𝑌)) | 
| 19 | 18 | fndmd 6672 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → dom 𝐹 = (𝑋 × 𝑌)) | 
| 20 | 17, 19 | sseqtrid 4025 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (◡𝐹 “ 𝑢) ⊆ (𝑋 × 𝑌)) | 
| 21 |  | relxp 5702 | . . . . . . 7
⊢ Rel
(𝑋 × 𝑌) | 
| 22 |  | relss 5790 | . . . . . . 7
⊢ ((◡𝐹 “ 𝑢) ⊆ (𝑋 × 𝑌) → (Rel (𝑋 × 𝑌) → Rel (◡𝐹 “ 𝑢))) | 
| 23 | 20, 21, 22 | mpisyl 21 | . . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → Rel (◡𝐹 “ 𝑢)) | 
| 24 |  | elpreima 7077 | . . . . . . . 8
⊢ (𝐹 Fn (𝑋 × 𝑌) → (〈𝑥, 𝑧〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢))) | 
| 25 | 18, 24 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (〈𝑥, 𝑧〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢))) | 
| 26 |  | opelxp 5720 | . . . . . . . . 9
⊢
(〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ↔ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌)) | 
| 27 |  | df-ov 7435 | . . . . . . . . . . 11
⊢ (𝑥𝐹𝑧) = (𝐹‘〈𝑥, 𝑧〉) | 
| 28 | 27 | eqcomi 2745 | . . . . . . . . . 10
⊢ (𝐹‘〈𝑥, 𝑧〉) = (𝑥𝐹𝑧) | 
| 29 | 28 | eleq1i 2831 | . . . . . . . . 9
⊢ ((𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢 ↔ (𝑥𝐹𝑧) ∈ 𝑢) | 
| 30 | 26, 29 | anbi12i 628 | . . . . . . . 8
⊢
((〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) | 
| 31 |  | simprll 778 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑥 ∈ 𝑋) | 
| 32 |  | snelpwi 5447 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 → {𝑥} ∈ 𝒫 𝑋) | 
| 33 | 31, 32 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑥} ∈ 𝒫 𝑋) | 
| 34 | 11 | mptpreima 6257 | . . . . . . . . . . . 12
⊢ (◡(𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} | 
| 35 | 8 | adantrr 717 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌)) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) | 
| 36 | 35 | ad2ant2r 747 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) | 
| 37 |  | simplr 768 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑢 ∈ 𝐾) | 
| 38 |  | cnima 23274 | . . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾) ∧ 𝑢 ∈ 𝐾) → (◡(𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) ∈ 𝐽) | 
| 39 | 36, 37, 38 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (◡(𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) ∈ 𝐽) | 
| 40 | 34, 39 | eqeltrrid 2845 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ∈ 𝐽) | 
| 41 |  | simprlr 779 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑧 ∈ 𝑌) | 
| 42 |  | simprr 772 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (𝑥𝐹𝑧) ∈ 𝑢) | 
| 43 |  | vsnid 4662 | . . . . . . . . . . . . . 14
⊢ 𝑥 ∈ {𝑥} | 
| 44 |  | opelxp 5720 | . . . . . . . . . . . . . 14
⊢
(〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑥 ∈ {𝑥} ∧ 𝑧 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) | 
| 45 | 43, 44 | mpbiran 709 | . . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ 𝑧 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) | 
| 46 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝑥𝐹𝑦) = (𝑥𝐹𝑧)) | 
| 47 | 46 | eleq1d 2825 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → ((𝑥𝐹𝑦) ∈ 𝑢 ↔ (𝑥𝐹𝑧) ∈ 𝑢)) | 
| 48 | 47 | elrab 3691 | . . . . . . . . . . . . 13
⊢ (𝑧 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ↔ (𝑧 ∈ 𝑌 ∧ (𝑥𝐹𝑧) ∈ 𝑢)) | 
| 49 | 45, 48 | bitri 275 | . . . . . . . . . . . 12
⊢
(〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑧 ∈ 𝑌 ∧ (𝑥𝐹𝑧) ∈ 𝑢)) | 
| 50 | 41, 42, 49 | sylanbrc 583 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) | 
| 51 |  | relxp 5702 | . . . . . . . . . . . . 13
⊢ Rel
({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) | 
| 52 | 51 | a1i 11 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → Rel ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) | 
| 53 |  | opelxp 5720 | . . . . . . . . . . . . 13
⊢
(〈𝑛, 𝑚〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) | 
| 54 | 31 | snssd 4808 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑥} ⊆ 𝑋) | 
| 55 | 54 | sselda 3982 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ 𝑛 ∈ {𝑥}) → 𝑛 ∈ 𝑋) | 
| 56 | 55 | adantrr 717 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑛 ∈ 𝑋) | 
| 57 |  | elrabi 3686 | . . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → 𝑚 ∈ 𝑌) | 
| 58 | 57 | ad2antll 729 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑚 ∈ 𝑌) | 
| 59 | 56, 58 | opelxpd 5723 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 〈𝑛, 𝑚〉 ∈ (𝑋 × 𝑌)) | 
| 60 |  | df-ov 7435 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛𝐹𝑚) = (𝐹‘〈𝑛, 𝑚〉) | 
| 61 |  | elsni 4642 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ {𝑥} → 𝑛 = 𝑥) | 
| 62 | 61 | ad2antrl 728 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑛 = 𝑥) | 
| 63 | 62 | oveq1d 7447 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝑛𝐹𝑚) = (𝑥𝐹𝑚)) | 
| 64 | 60, 63 | eqtr3id 2790 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝐹‘〈𝑛, 𝑚〉) = (𝑥𝐹𝑚)) | 
| 65 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑚 → (𝑥𝐹𝑦) = (𝑥𝐹𝑚)) | 
| 66 | 65 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑚 → ((𝑥𝐹𝑦) ∈ 𝑢 ↔ (𝑥𝐹𝑚) ∈ 𝑢)) | 
| 67 | 66 | elrab 3691 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ↔ (𝑚 ∈ 𝑌 ∧ (𝑥𝐹𝑚) ∈ 𝑢)) | 
| 68 | 67 | simprbi 496 | . . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (𝑥𝐹𝑚) ∈ 𝑢) | 
| 69 | 68 | ad2antll 729 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝑥𝐹𝑚) ∈ 𝑢) | 
| 70 | 64, 69 | eqeltrd 2840 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝐹‘〈𝑛, 𝑚〉) ∈ 𝑢) | 
| 71 |  | elpreima 7077 | . . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn (𝑋 × 𝑌) → (〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑛, 𝑚〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑛, 𝑚〉) ∈ 𝑢))) | 
| 72 | 1, 71 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑛, 𝑚〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑛, 𝑚〉) ∈ 𝑢))) | 
| 73 | 72 | ad3antrrr 730 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑛, 𝑚〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑛, 𝑚〉) ∈ 𝑢))) | 
| 74 | 59, 70, 73 | mpbir2and 713 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢)) | 
| 75 | 74 | ex 412 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ((𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) → 〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢))) | 
| 76 | 53, 75 | biimtrid 242 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (〈𝑛, 𝑚〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) → 〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢))) | 
| 77 | 52, 76 | relssdv 5797 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (◡𝐹 “ 𝑢)) | 
| 78 |  | xpeq1 5698 | . . . . . . . . . . . . . 14
⊢ (𝑎 = {𝑥} → (𝑎 × 𝑏) = ({𝑥} × 𝑏)) | 
| 79 | 78 | eleq2d 2826 | . . . . . . . . . . . . 13
⊢ (𝑎 = {𝑥} → (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ↔ 〈𝑥, 𝑧〉 ∈ ({𝑥} × 𝑏))) | 
| 80 | 78 | sseq1d 4014 | . . . . . . . . . . . . 13
⊢ (𝑎 = {𝑥} → ((𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢) ↔ ({𝑥} × 𝑏) ⊆ (◡𝐹 “ 𝑢))) | 
| 81 | 79, 80 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑎 = {𝑥} → ((〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)) ↔ (〈𝑥, 𝑧〉 ∈ ({𝑥} × 𝑏) ∧ ({𝑥} × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) | 
| 82 |  | xpeq2 5705 | . . . . . . . . . . . . . 14
⊢ (𝑏 = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → ({𝑥} × 𝑏) = ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) | 
| 83 | 82 | eleq2d 2826 | . . . . . . . . . . . . 13
⊢ (𝑏 = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (〈𝑥, 𝑧〉 ∈ ({𝑥} × 𝑏) ↔ 〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))) | 
| 84 | 82 | sseq1d 4014 | . . . . . . . . . . . . 13
⊢ (𝑏 = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (({𝑥} × 𝑏) ⊆ (◡𝐹 “ 𝑢) ↔ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (◡𝐹 “ 𝑢))) | 
| 85 | 83, 84 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑏 = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → ((〈𝑥, 𝑧〉 ∈ ({𝑥} × 𝑏) ∧ ({𝑥} × 𝑏) ⊆ (◡𝐹 “ 𝑢)) ↔ (〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ∧ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (◡𝐹 “ 𝑢)))) | 
| 86 | 81, 85 | rspc2ev 3634 | . . . . . . . . . . 11
⊢ (({𝑥} ∈ 𝒫 𝑋 ∧ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ∈ 𝐽 ∧ (〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ∧ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (◡𝐹 “ 𝑢))) → ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) | 
| 87 | 33, 40, 50, 77, 86 | syl112anc 1375 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) | 
| 88 |  | opex 5468 | . . . . . . . . . . 11
⊢
〈𝑥, 𝑧〉 ∈ V | 
| 89 |  | eleq1 2828 | . . . . . . . . . . . . 13
⊢ (𝑣 = 〈𝑥, 𝑧〉 → (𝑣 ∈ (𝑎 × 𝑏) ↔ 〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏))) | 
| 90 | 89 | anbi1d 631 | . . . . . . . . . . . 12
⊢ (𝑣 = 〈𝑥, 𝑧〉 → ((𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)) ↔ (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) | 
| 91 | 90 | 2rexbidv 3221 | . . . . . . . . . . 11
⊢ (𝑣 = 〈𝑥, 𝑧〉 → (∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)) ↔ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) | 
| 92 | 88, 91 | elab 3678 | . . . . . . . . . 10
⊢
(〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))} ↔ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) | 
| 93 | 87, 92 | sylibr 234 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))}) | 
| 94 | 93 | ex 412 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢) → 〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))})) | 
| 95 | 30, 94 | biimtrid 242 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → ((〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢) → 〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))})) | 
| 96 | 25, 95 | sylbid 240 | . . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (〈𝑥, 𝑧〉 ∈ (◡𝐹 “ 𝑢) → 〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))})) | 
| 97 | 23, 96 | relssdv 5797 | . . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (◡𝐹 “ 𝑢) ⊆ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))}) | 
| 98 |  | ssabral 4064 | . . . . 5
⊢ ((◡𝐹 “ 𝑢) ⊆ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))} ↔ ∀𝑣 ∈ (◡𝐹 “ 𝑢)∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) | 
| 99 | 97, 98 | sylib 218 | . . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → ∀𝑣 ∈ (◡𝐹 “ 𝑢)∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) | 
| 100 |  | txdis1cn.x | . . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 101 |  | distopon 23005 | . . . . . . 7
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ (TopOn‘𝑋)) | 
| 102 | 100, 101 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝒫 𝑋 ∈ (TopOn‘𝑋)) | 
| 103 | 102 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → 𝒫 𝑋 ∈ (TopOn‘𝑋)) | 
| 104 | 2 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → 𝐽 ∈ (TopOn‘𝑌)) | 
| 105 |  | eltx 23577 | . . . . 5
⊢
((𝒫 𝑋 ∈
(TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑌)) → ((◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽) ↔ ∀𝑣 ∈ (◡𝐹 “ 𝑢)∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) | 
| 106 | 103, 104,
105 | syl2anc 584 | . . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → ((◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽) ↔ ∀𝑣 ∈ (◡𝐹 “ 𝑢)∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) | 
| 107 | 99, 106 | mpbird 257 | . . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽)) | 
| 108 | 107 | ralrimiva 3145 | . 2
⊢ (𝜑 → ∀𝑢 ∈ 𝐾 (◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽)) | 
| 109 |  | txtopon 23600 | . . . 4
⊢
((𝒫 𝑋 ∈
(TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑌)) → (𝒫 𝑋 ×t 𝐽) ∈ (TopOn‘(𝑋 × 𝑌))) | 
| 110 | 102, 2, 109 | syl2anc 584 | . . 3
⊢ (𝜑 → (𝒫 𝑋 ×t 𝐽) ∈ (TopOn‘(𝑋 × 𝑌))) | 
| 111 |  | iscn 23244 | . . 3
⊢
(((𝒫 𝑋
×t 𝐽)
∈ (TopOn‘(𝑋
× 𝑌)) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾))
→ (𝐹 ∈
((𝒫 𝑋
×t 𝐽) Cn
𝐾) ↔ (𝐹:(𝑋 × 𝑌)⟶∪ 𝐾 ∧ ∀𝑢 ∈ 𝐾 (◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽)))) | 
| 112 | 110, 6, 111 | syl2anc 584 | . 2
⊢ (𝜑 → (𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾) ↔ (𝐹:(𝑋 × 𝑌)⟶∪ 𝐾 ∧ ∀𝑢 ∈ 𝐾 (◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽)))) | 
| 113 | 16, 108, 112 | mpbir2and 713 | 1
⊢ (𝜑 → 𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾)) |