MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txdis1cn Structured version   Visualization version   GIF version

Theorem txdis1cn 22986
Description: A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
txdis1cn.x (𝜑𝑋𝑉)
txdis1cn.j (𝜑𝐽 ∈ (TopOn‘𝑌))
txdis1cn.k (𝜑𝐾 ∈ Top)
txdis1cn.f (𝜑𝐹 Fn (𝑋 × 𝑌))
txdis1cn.1 ((𝜑𝑥𝑋) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
txdis1cn (𝜑𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽   𝑥,𝑋,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐽(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem txdis1cn
Dummy variables 𝑎 𝑏 𝑚 𝑛 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txdis1cn.f . . 3 (𝜑𝐹 Fn (𝑋 × 𝑌))
2 txdis1cn.j . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑌))
32adantr 481 . . . . . 6 ((𝜑𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑌))
4 txdis1cn.k . . . . . . . 8 (𝜑𝐾 ∈ Top)
5 toptopon2 22267 . . . . . . . 8 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
64, 5sylib 217 . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
76adantr 481 . . . . . 6 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
8 txdis1cn.1 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾))
9 cnf2 22600 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)):𝑌 𝐾)
103, 7, 8, 9syl3anc 1371 . . . . 5 ((𝜑𝑥𝑋) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)):𝑌 𝐾)
11 eqid 2736 . . . . . 6 (𝑦𝑌 ↦ (𝑥𝐹𝑦)) = (𝑦𝑌 ↦ (𝑥𝐹𝑦))
1211fmpt 7058 . . . . 5 (∀𝑦𝑌 (𝑥𝐹𝑦) ∈ 𝐾 ↔ (𝑦𝑌 ↦ (𝑥𝐹𝑦)):𝑌 𝐾)
1310, 12sylibr 233 . . . 4 ((𝜑𝑥𝑋) → ∀𝑦𝑌 (𝑥𝐹𝑦) ∈ 𝐾)
1413ralrimiva 3143 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑌 (𝑥𝐹𝑦) ∈ 𝐾)
15 ffnov 7483 . . 3 (𝐹:(𝑋 × 𝑌)⟶ 𝐾 ↔ (𝐹 Fn (𝑋 × 𝑌) ∧ ∀𝑥𝑋𝑦𝑌 (𝑥𝐹𝑦) ∈ 𝐾))
161, 14, 15sylanbrc 583 . 2 (𝜑𝐹:(𝑋 × 𝑌)⟶ 𝐾)
17 cnvimass 6033 . . . . . . . 8 (𝐹𝑢) ⊆ dom 𝐹
181adantr 481 . . . . . . . . 9 ((𝜑𝑢𝐾) → 𝐹 Fn (𝑋 × 𝑌))
1918fndmd 6607 . . . . . . . 8 ((𝜑𝑢𝐾) → dom 𝐹 = (𝑋 × 𝑌))
2017, 19sseqtrid 3996 . . . . . . 7 ((𝜑𝑢𝐾) → (𝐹𝑢) ⊆ (𝑋 × 𝑌))
21 relxp 5651 . . . . . . 7 Rel (𝑋 × 𝑌)
22 relss 5737 . . . . . . 7 ((𝐹𝑢) ⊆ (𝑋 × 𝑌) → (Rel (𝑋 × 𝑌) → Rel (𝐹𝑢)))
2320, 21, 22mpisyl 21 . . . . . 6 ((𝜑𝑢𝐾) → Rel (𝐹𝑢))
24 elpreima 7008 . . . . . . . 8 (𝐹 Fn (𝑋 × 𝑌) → (⟨𝑥, 𝑧⟩ ∈ (𝐹𝑢) ↔ (⟨𝑥, 𝑧⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑥, 𝑧⟩) ∈ 𝑢)))
2518, 24syl 17 . . . . . . 7 ((𝜑𝑢𝐾) → (⟨𝑥, 𝑧⟩ ∈ (𝐹𝑢) ↔ (⟨𝑥, 𝑧⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑥, 𝑧⟩) ∈ 𝑢)))
26 opelxp 5669 . . . . . . . . 9 (⟨𝑥, 𝑧⟩ ∈ (𝑋 × 𝑌) ↔ (𝑥𝑋𝑧𝑌))
27 df-ov 7360 . . . . . . . . . . 11 (𝑥𝐹𝑧) = (𝐹‘⟨𝑥, 𝑧⟩)
2827eqcomi 2745 . . . . . . . . . 10 (𝐹‘⟨𝑥, 𝑧⟩) = (𝑥𝐹𝑧)
2928eleq1i 2828 . . . . . . . . 9 ((𝐹‘⟨𝑥, 𝑧⟩) ∈ 𝑢 ↔ (𝑥𝐹𝑧) ∈ 𝑢)
3026, 29anbi12i 627 . . . . . . . 8 ((⟨𝑥, 𝑧⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑥, 𝑧⟩) ∈ 𝑢) ↔ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢))
31 simprll 777 . . . . . . . . . . . 12 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑥𝑋)
32 snelpwi 5400 . . . . . . . . . . . 12 (𝑥𝑋 → {𝑥} ∈ 𝒫 𝑋)
3331, 32syl 17 . . . . . . . . . . 11 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑥} ∈ 𝒫 𝑋)
3411mptpreima 6190 . . . . . . . . . . . 12 ((𝑦𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) = {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}
358adantrr 715 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑋𝑧𝑌)) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾))
3635ad2ant2r 745 . . . . . . . . . . . . 13 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾))
37 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑢𝐾)
38 cnima 22616 . . . . . . . . . . . . 13 (((𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾) ∧ 𝑢𝐾) → ((𝑦𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) ∈ 𝐽)
3936, 37, 38syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ((𝑦𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) ∈ 𝐽)
4034, 39eqeltrrid 2843 . . . . . . . . . . 11 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ∈ 𝐽)
41 simprlr 778 . . . . . . . . . . . 12 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑧𝑌)
42 simprr 771 . . . . . . . . . . . 12 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (𝑥𝐹𝑧) ∈ 𝑢)
43 vsnid 4623 . . . . . . . . . . . . . 14 𝑥 ∈ {𝑥}
44 opelxp 5669 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑥 ∈ {𝑥} ∧ 𝑧 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))
4543, 44mpbiran 707 . . . . . . . . . . . . 13 (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ 𝑧 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})
46 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑥𝐹𝑦) = (𝑥𝐹𝑧))
4746eleq1d 2822 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑥𝐹𝑦) ∈ 𝑢 ↔ (𝑥𝐹𝑧) ∈ 𝑢))
4847elrab 3645 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ↔ (𝑧𝑌 ∧ (𝑥𝐹𝑧) ∈ 𝑢))
4945, 48bitri 274 . . . . . . . . . . . 12 (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑧𝑌 ∧ (𝑥𝐹𝑧) ∈ 𝑢))
5041, 42, 49sylanbrc 583 . . . . . . . . . . 11 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))
51 relxp 5651 . . . . . . . . . . . . 13 Rel ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})
5251a1i 11 . . . . . . . . . . . 12 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → Rel ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))
53 opelxp 5669 . . . . . . . . . . . . 13 (⟨𝑛, 𝑚⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))
5431snssd 4769 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑥} ⊆ 𝑋)
5554sselda 3944 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ 𝑛 ∈ {𝑥}) → 𝑛𝑋)
5655adantrr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑛𝑋)
57 elrabi 3639 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → 𝑚𝑌)
5857ad2antll 727 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑚𝑌)
5956, 58opelxpd 5671 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → ⟨𝑛, 𝑚⟩ ∈ (𝑋 × 𝑌))
60 df-ov 7360 . . . . . . . . . . . . . . . . 17 (𝑛𝐹𝑚) = (𝐹‘⟨𝑛, 𝑚⟩)
61 elsni 4603 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ {𝑥} → 𝑛 = 𝑥)
6261ad2antrl 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑛 = 𝑥)
6362oveq1d 7372 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝑛𝐹𝑚) = (𝑥𝐹𝑚))
6460, 63eqtr3id 2790 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝐹‘⟨𝑛, 𝑚⟩) = (𝑥𝐹𝑚))
65 oveq2 7365 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑚 → (𝑥𝐹𝑦) = (𝑥𝐹𝑚))
6665eleq1d 2822 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑚 → ((𝑥𝐹𝑦) ∈ 𝑢 ↔ (𝑥𝐹𝑚) ∈ 𝑢))
6766elrab 3645 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ↔ (𝑚𝑌 ∧ (𝑥𝐹𝑚) ∈ 𝑢))
6867simprbi 497 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (𝑥𝐹𝑚) ∈ 𝑢)
6968ad2antll 727 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝑥𝐹𝑚) ∈ 𝑢)
7064, 69eqeltrd 2838 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝐹‘⟨𝑛, 𝑚⟩) ∈ 𝑢)
71 elpreima 7008 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (𝑋 × 𝑌) → (⟨𝑛, 𝑚⟩ ∈ (𝐹𝑢) ↔ (⟨𝑛, 𝑚⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑛, 𝑚⟩) ∈ 𝑢)))
721, 71syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (⟨𝑛, 𝑚⟩ ∈ (𝐹𝑢) ↔ (⟨𝑛, 𝑚⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑛, 𝑚⟩) ∈ 𝑢)))
7372ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (⟨𝑛, 𝑚⟩ ∈ (𝐹𝑢) ↔ (⟨𝑛, 𝑚⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑛, 𝑚⟩) ∈ 𝑢)))
7459, 70, 73mpbir2and 711 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → ⟨𝑛, 𝑚⟩ ∈ (𝐹𝑢))
7574ex 413 . . . . . . . . . . . . 13 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ((𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) → ⟨𝑛, 𝑚⟩ ∈ (𝐹𝑢)))
7653, 75biimtrid 241 . . . . . . . . . . . 12 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (⟨𝑛, 𝑚⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) → ⟨𝑛, 𝑚⟩ ∈ (𝐹𝑢)))
7752, 76relssdv 5744 . . . . . . . . . . 11 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (𝐹𝑢))
78 xpeq1 5647 . . . . . . . . . . . . . 14 (𝑎 = {𝑥} → (𝑎 × 𝑏) = ({𝑥} × 𝑏))
7978eleq2d 2823 . . . . . . . . . . . . 13 (𝑎 = {𝑥} → (⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ↔ ⟨𝑥, 𝑧⟩ ∈ ({𝑥} × 𝑏)))
8078sseq1d 3975 . . . . . . . . . . . . 13 (𝑎 = {𝑥} → ((𝑎 × 𝑏) ⊆ (𝐹𝑢) ↔ ({𝑥} × 𝑏) ⊆ (𝐹𝑢)))
8179, 80anbi12d 631 . . . . . . . . . . . 12 (𝑎 = {𝑥} → ((⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)) ↔ (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × 𝑏) ∧ ({𝑥} × 𝑏) ⊆ (𝐹𝑢))))
82 xpeq2 5654 . . . . . . . . . . . . . 14 (𝑏 = {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → ({𝑥} × 𝑏) = ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))
8382eleq2d 2823 . . . . . . . . . . . . 13 (𝑏 = {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × 𝑏) ↔ ⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})))
8482sseq1d 3975 . . . . . . . . . . . . 13 (𝑏 = {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (({𝑥} × 𝑏) ⊆ (𝐹𝑢) ↔ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (𝐹𝑢)))
8583, 84anbi12d 631 . . . . . . . . . . . 12 (𝑏 = {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → ((⟨𝑥, 𝑧⟩ ∈ ({𝑥} × 𝑏) ∧ ({𝑥} × 𝑏) ⊆ (𝐹𝑢)) ↔ (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ∧ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (𝐹𝑢))))
8681, 85rspc2ev 3592 . . . . . . . . . . 11 (({𝑥} ∈ 𝒫 𝑋 ∧ {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ∈ 𝐽 ∧ (⟨𝑥, 𝑧⟩ ∈ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ∧ ({𝑥} × {𝑦𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (𝐹𝑢))) → ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)))
8733, 40, 50, 77, 86syl112anc 1374 . . . . . . . . . 10 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)))
88 opex 5421 . . . . . . . . . . 11 𝑥, 𝑧⟩ ∈ V
89 eleq1 2825 . . . . . . . . . . . . 13 (𝑣 = ⟨𝑥, 𝑧⟩ → (𝑣 ∈ (𝑎 × 𝑏) ↔ ⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏)))
9089anbi1d 630 . . . . . . . . . . . 12 (𝑣 = ⟨𝑥, 𝑧⟩ → ((𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)) ↔ (⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))))
91902rexbidv 3213 . . . . . . . . . . 11 (𝑣 = ⟨𝑥, 𝑧⟩ → (∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)) ↔ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))))
9288, 91elab 3630 . . . . . . . . . 10 (⟨𝑥, 𝑧⟩ ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))} ↔ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (⟨𝑥, 𝑧⟩ ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)))
9387, 92sylibr 233 . . . . . . . . 9 (((𝜑𝑢𝐾) ∧ ((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ⟨𝑥, 𝑧⟩ ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))})
9493ex 413 . . . . . . . 8 ((𝜑𝑢𝐾) → (((𝑥𝑋𝑧𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢) → ⟨𝑥, 𝑧⟩ ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))}))
9530, 94biimtrid 241 . . . . . . 7 ((𝜑𝑢𝐾) → ((⟨𝑥, 𝑧⟩ ∈ (𝑋 × 𝑌) ∧ (𝐹‘⟨𝑥, 𝑧⟩) ∈ 𝑢) → ⟨𝑥, 𝑧⟩ ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))}))
9625, 95sylbid 239 . . . . . 6 ((𝜑𝑢𝐾) → (⟨𝑥, 𝑧⟩ ∈ (𝐹𝑢) → ⟨𝑥, 𝑧⟩ ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))}))
9723, 96relssdv 5744 . . . . 5 ((𝜑𝑢𝐾) → (𝐹𝑢) ⊆ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))})
98 ssabral 4019 . . . . 5 ((𝐹𝑢) ⊆ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))} ↔ ∀𝑣 ∈ (𝐹𝑢)∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)))
9997, 98sylib 217 . . . 4 ((𝜑𝑢𝐾) → ∀𝑣 ∈ (𝐹𝑢)∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢)))
100 txdis1cn.x . . . . . . 7 (𝜑𝑋𝑉)
101 distopon 22347 . . . . . . 7 (𝑋𝑉 → 𝒫 𝑋 ∈ (TopOn‘𝑋))
102100, 101syl 17 . . . . . 6 (𝜑 → 𝒫 𝑋 ∈ (TopOn‘𝑋))
103102adantr 481 . . . . 5 ((𝜑𝑢𝐾) → 𝒫 𝑋 ∈ (TopOn‘𝑋))
1042adantr 481 . . . . 5 ((𝜑𝑢𝐾) → 𝐽 ∈ (TopOn‘𝑌))
105 eltx 22919 . . . . 5 ((𝒫 𝑋 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑌)) → ((𝐹𝑢) ∈ (𝒫 𝑋 ×t 𝐽) ↔ ∀𝑣 ∈ (𝐹𝑢)∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))))
106103, 104, 105syl2anc 584 . . . 4 ((𝜑𝑢𝐾) → ((𝐹𝑢) ∈ (𝒫 𝑋 ×t 𝐽) ↔ ∀𝑣 ∈ (𝐹𝑢)∃𝑎 ∈ 𝒫 𝑋𝑏𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐹𝑢))))
10799, 106mpbird 256 . . 3 ((𝜑𝑢𝐾) → (𝐹𝑢) ∈ (𝒫 𝑋 ×t 𝐽))
108107ralrimiva 3143 . 2 (𝜑 → ∀𝑢𝐾 (𝐹𝑢) ∈ (𝒫 𝑋 ×t 𝐽))
109 txtopon 22942 . . . 4 ((𝒫 𝑋 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑌)) → (𝒫 𝑋 ×t 𝐽) ∈ (TopOn‘(𝑋 × 𝑌)))
110102, 2, 109syl2anc 584 . . 3 (𝜑 → (𝒫 𝑋 ×t 𝐽) ∈ (TopOn‘(𝑋 × 𝑌)))
111 iscn 22586 . . 3 (((𝒫 𝑋 ×t 𝐽) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾) ↔ (𝐹:(𝑋 × 𝑌)⟶ 𝐾 ∧ ∀𝑢𝐾 (𝐹𝑢) ∈ (𝒫 𝑋 ×t 𝐽))))
112110, 6, 111syl2anc 584 . 2 (𝜑 → (𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾) ↔ (𝐹:(𝑋 × 𝑌)⟶ 𝐾 ∧ ∀𝑢𝐾 (𝐹𝑢) ∈ (𝒫 𝑋 ×t 𝐽))))
11316, 108, 112mpbir2and 711 1 (𝜑𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2713  wral 3064  wrex 3073  {crab 3407  wss 3910  𝒫 cpw 4560  {csn 4586  cop 4592   cuni 4865  cmpt 5188   × cxp 5631  ccnv 5632  dom cdm 5633  cima 5636  Rel wrel 5638   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  Topctop 22242  TopOnctopon 22259   Cn ccn 22575   ×t ctx 22911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767  df-topgen 17325  df-top 22243  df-topon 22260  df-bases 22296  df-cn 22578  df-tx 22913
This theorem is referenced by:  tgpmulg2  23445
  Copyright terms: Public domain W3C validator