Step | Hyp | Ref
| Expression |
1 | | txdis1cn.f |
. . 3
⊢ (𝜑 → 𝐹 Fn (𝑋 × 𝑌)) |
2 | | txdis1cn.j |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑌)) |
3 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑌)) |
4 | | txdis1cn.k |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ Top) |
5 | | toptopon2 22067 |
. . . . . . . 8
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
6 | 4, 5 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
7 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
8 | | txdis1cn.1 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) |
9 | | cnf2 22400 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)):𝑌⟶∪ 𝐾) |
10 | 3, 7, 8, 9 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)):𝑌⟶∪ 𝐾) |
11 | | eqid 2738 |
. . . . . 6
⊢ (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) = (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) |
12 | 11 | fmpt 6984 |
. . . . 5
⊢
(∀𝑦 ∈
𝑌 (𝑥𝐹𝑦) ∈ ∪ 𝐾 ↔ (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)):𝑌⟶∪ 𝐾) |
13 | 10, 12 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) ∈ ∪ 𝐾) |
14 | 13 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) ∈ ∪ 𝐾) |
15 | | ffnov 7401 |
. . 3
⊢ (𝐹:(𝑋 × 𝑌)⟶∪ 𝐾 ↔ (𝐹 Fn (𝑋 × 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) ∈ ∪ 𝐾)) |
16 | 1, 14, 15 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝐹:(𝑋 × 𝑌)⟶∪ 𝐾) |
17 | | cnvimass 5989 |
. . . . . . . 8
⊢ (◡𝐹 “ 𝑢) ⊆ dom 𝐹 |
18 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → 𝐹 Fn (𝑋 × 𝑌)) |
19 | 18 | fndmd 6538 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → dom 𝐹 = (𝑋 × 𝑌)) |
20 | 17, 19 | sseqtrid 3973 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (◡𝐹 “ 𝑢) ⊆ (𝑋 × 𝑌)) |
21 | | relxp 5607 |
. . . . . . 7
⊢ Rel
(𝑋 × 𝑌) |
22 | | relss 5692 |
. . . . . . 7
⊢ ((◡𝐹 “ 𝑢) ⊆ (𝑋 × 𝑌) → (Rel (𝑋 × 𝑌) → Rel (◡𝐹 “ 𝑢))) |
23 | 20, 21, 22 | mpisyl 21 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → Rel (◡𝐹 “ 𝑢)) |
24 | | elpreima 6935 |
. . . . . . . 8
⊢ (𝐹 Fn (𝑋 × 𝑌) → (〈𝑥, 𝑧〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢))) |
25 | 18, 24 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (〈𝑥, 𝑧〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢))) |
26 | | opelxp 5625 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ↔ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌)) |
27 | | df-ov 7278 |
. . . . . . . . . . 11
⊢ (𝑥𝐹𝑧) = (𝐹‘〈𝑥, 𝑧〉) |
28 | 27 | eqcomi 2747 |
. . . . . . . . . 10
⊢ (𝐹‘〈𝑥, 𝑧〉) = (𝑥𝐹𝑧) |
29 | 28 | eleq1i 2829 |
. . . . . . . . 9
⊢ ((𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢 ↔ (𝑥𝐹𝑧) ∈ 𝑢) |
30 | 26, 29 | anbi12i 627 |
. . . . . . . 8
⊢
((〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) |
31 | | simprll 776 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑥 ∈ 𝑋) |
32 | | snelpwi 5360 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 → {𝑥} ∈ 𝒫 𝑋) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑥} ∈ 𝒫 𝑋) |
34 | 11 | mptpreima 6141 |
. . . . . . . . . . . 12
⊢ (◡(𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} |
35 | 8 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌)) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) |
36 | 35 | ad2ant2r 744 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) |
37 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑢 ∈ 𝐾) |
38 | | cnima 22416 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾) ∧ 𝑢 ∈ 𝐾) → (◡(𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) ∈ 𝐽) |
39 | 36, 37, 38 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (◡(𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) “ 𝑢) ∈ 𝐽) |
40 | 34, 39 | eqeltrrid 2844 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ∈ 𝐽) |
41 | | simprlr 777 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 𝑧 ∈ 𝑌) |
42 | | simprr 770 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (𝑥𝐹𝑧) ∈ 𝑢) |
43 | | vsnid 4598 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ {𝑥} |
44 | | opelxp 5625 |
. . . . . . . . . . . . . 14
⊢
(〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑥 ∈ {𝑥} ∧ 𝑧 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) |
45 | 43, 44 | mpbiran 706 |
. . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ 𝑧 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) |
46 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝑥𝐹𝑦) = (𝑥𝐹𝑧)) |
47 | 46 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → ((𝑥𝐹𝑦) ∈ 𝑢 ↔ (𝑥𝐹𝑧) ∈ 𝑢)) |
48 | 47 | elrab 3624 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ↔ (𝑧 ∈ 𝑌 ∧ (𝑥𝐹𝑧) ∈ 𝑢)) |
49 | 45, 48 | bitri 274 |
. . . . . . . . . . . 12
⊢
(〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑧 ∈ 𝑌 ∧ (𝑥𝐹𝑧) ∈ 𝑢)) |
50 | 41, 42, 49 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) |
51 | | relxp 5607 |
. . . . . . . . . . . . 13
⊢ Rel
({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) |
52 | 51 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → Rel ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) |
53 | | opelxp 5625 |
. . . . . . . . . . . . 13
⊢
(〈𝑛, 𝑚〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ↔ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) |
54 | 31 | snssd 4742 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → {𝑥} ⊆ 𝑋) |
55 | 54 | sselda 3921 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ 𝑛 ∈ {𝑥}) → 𝑛 ∈ 𝑋) |
56 | 55 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑛 ∈ 𝑋) |
57 | | elrabi 3618 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → 𝑚 ∈ 𝑌) |
58 | 57 | ad2antll 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑚 ∈ 𝑌) |
59 | 56, 58 | opelxpd 5627 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 〈𝑛, 𝑚〉 ∈ (𝑋 × 𝑌)) |
60 | | df-ov 7278 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛𝐹𝑚) = (𝐹‘〈𝑛, 𝑚〉) |
61 | | elsni 4578 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ {𝑥} → 𝑛 = 𝑥) |
62 | 61 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 𝑛 = 𝑥) |
63 | 62 | oveq1d 7290 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝑛𝐹𝑚) = (𝑥𝐹𝑚)) |
64 | 60, 63 | eqtr3id 2792 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝐹‘〈𝑛, 𝑚〉) = (𝑥𝐹𝑚)) |
65 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑚 → (𝑥𝐹𝑦) = (𝑥𝐹𝑚)) |
66 | 65 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑚 → ((𝑥𝐹𝑦) ∈ 𝑢 ↔ (𝑥𝐹𝑚) ∈ 𝑢)) |
67 | 66 | elrab 3624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ↔ (𝑚 ∈ 𝑌 ∧ (𝑥𝐹𝑚) ∈ 𝑢)) |
68 | 67 | simprbi 497 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (𝑥𝐹𝑚) ∈ 𝑢) |
69 | 68 | ad2antll 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝑥𝐹𝑚) ∈ 𝑢) |
70 | 64, 69 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (𝐹‘〈𝑛, 𝑚〉) ∈ 𝑢) |
71 | | elpreima 6935 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn (𝑋 × 𝑌) → (〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑛, 𝑚〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑛, 𝑚〉) ∈ 𝑢))) |
72 | 1, 71 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑛, 𝑚〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑛, 𝑚〉) ∈ 𝑢))) |
73 | 72 | ad3antrrr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → (〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢) ↔ (〈𝑛, 𝑚〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑛, 𝑚〉) ∈ 𝑢))) |
74 | 59, 70, 73 | mpbir2and 710 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) ∧ (𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) → 〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢)) |
75 | 74 | ex 413 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ((𝑛 ∈ {𝑥} ∧ 𝑚 ∈ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) → 〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢))) |
76 | 53, 75 | syl5bi 241 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → (〈𝑛, 𝑚〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) → 〈𝑛, 𝑚〉 ∈ (◡𝐹 “ 𝑢))) |
77 | 52, 76 | relssdv 5698 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (◡𝐹 “ 𝑢)) |
78 | | xpeq1 5603 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = {𝑥} → (𝑎 × 𝑏) = ({𝑥} × 𝑏)) |
79 | 78 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑎 = {𝑥} → (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ↔ 〈𝑥, 𝑧〉 ∈ ({𝑥} × 𝑏))) |
80 | 78 | sseq1d 3952 |
. . . . . . . . . . . . 13
⊢ (𝑎 = {𝑥} → ((𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢) ↔ ({𝑥} × 𝑏) ⊆ (◡𝐹 “ 𝑢))) |
81 | 79, 80 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑎 = {𝑥} → ((〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)) ↔ (〈𝑥, 𝑧〉 ∈ ({𝑥} × 𝑏) ∧ ({𝑥} × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) |
82 | | xpeq2 5610 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → ({𝑥} × 𝑏) = ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢})) |
83 | 82 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑏 = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (〈𝑥, 𝑧〉 ∈ ({𝑥} × 𝑏) ↔ 〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}))) |
84 | 82 | sseq1d 3952 |
. . . . . . . . . . . . 13
⊢ (𝑏 = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → (({𝑥} × 𝑏) ⊆ (◡𝐹 “ 𝑢) ↔ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (◡𝐹 “ 𝑢))) |
85 | 83, 84 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑏 = {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} → ((〈𝑥, 𝑧〉 ∈ ({𝑥} × 𝑏) ∧ ({𝑥} × 𝑏) ⊆ (◡𝐹 “ 𝑢)) ↔ (〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ∧ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (◡𝐹 “ 𝑢)))) |
86 | 81, 85 | rspc2ev 3572 |
. . . . . . . . . . 11
⊢ (({𝑥} ∈ 𝒫 𝑋 ∧ {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢} ∈ 𝐽 ∧ (〈𝑥, 𝑧〉 ∈ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ∧ ({𝑥} × {𝑦 ∈ 𝑌 ∣ (𝑥𝐹𝑦) ∈ 𝑢}) ⊆ (◡𝐹 “ 𝑢))) → ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) |
87 | 33, 40, 50, 77, 86 | syl112anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) |
88 | | opex 5379 |
. . . . . . . . . . 11
⊢
〈𝑥, 𝑧〉 ∈ V |
89 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 〈𝑥, 𝑧〉 → (𝑣 ∈ (𝑎 × 𝑏) ↔ 〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏))) |
90 | 89 | anbi1d 630 |
. . . . . . . . . . . 12
⊢ (𝑣 = 〈𝑥, 𝑧〉 → ((𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)) ↔ (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) |
91 | 90 | 2rexbidv 3229 |
. . . . . . . . . . 11
⊢ (𝑣 = 〈𝑥, 𝑧〉 → (∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)) ↔ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) |
92 | 88, 91 | elab 3609 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))} ↔ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (〈𝑥, 𝑧〉 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) |
93 | 87, 92 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐾) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢)) → 〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))}) |
94 | 93 | ex 413 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (((𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌) ∧ (𝑥𝐹𝑧) ∈ 𝑢) → 〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))})) |
95 | 30, 94 | syl5bi 241 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → ((〈𝑥, 𝑧〉 ∈ (𝑋 × 𝑌) ∧ (𝐹‘〈𝑥, 𝑧〉) ∈ 𝑢) → 〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))})) |
96 | 25, 95 | sylbid 239 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (〈𝑥, 𝑧〉 ∈ (◡𝐹 “ 𝑢) → 〈𝑥, 𝑧〉 ∈ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))})) |
97 | 23, 96 | relssdv 5698 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (◡𝐹 “ 𝑢) ⊆ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))}) |
98 | | ssabral 3996 |
. . . . 5
⊢ ((◡𝐹 “ 𝑢) ⊆ {𝑣 ∣ ∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))} ↔ ∀𝑣 ∈ (◡𝐹 “ 𝑢)∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) |
99 | 97, 98 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → ∀𝑣 ∈ (◡𝐹 “ 𝑢)∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢))) |
100 | | txdis1cn.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
101 | | distopon 22147 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ (TopOn‘𝑋)) |
102 | 100, 101 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝒫 𝑋 ∈ (TopOn‘𝑋)) |
103 | 102 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → 𝒫 𝑋 ∈ (TopOn‘𝑋)) |
104 | 2 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → 𝐽 ∈ (TopOn‘𝑌)) |
105 | | eltx 22719 |
. . . . 5
⊢
((𝒫 𝑋 ∈
(TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑌)) → ((◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽) ↔ ∀𝑣 ∈ (◡𝐹 “ 𝑢)∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) |
106 | 103, 104,
105 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → ((◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽) ↔ ∀𝑣 ∈ (◡𝐹 “ 𝑢)∃𝑎 ∈ 𝒫 𝑋∃𝑏 ∈ 𝐽 (𝑣 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐹 “ 𝑢)))) |
107 | 99, 106 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → (◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽)) |
108 | 107 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝐾 (◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽)) |
109 | | txtopon 22742 |
. . . 4
⊢
((𝒫 𝑋 ∈
(TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑌)) → (𝒫 𝑋 ×t 𝐽) ∈ (TopOn‘(𝑋 × 𝑌))) |
110 | 102, 2, 109 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝒫 𝑋 ×t 𝐽) ∈ (TopOn‘(𝑋 × 𝑌))) |
111 | | iscn 22386 |
. . 3
⊢
(((𝒫 𝑋
×t 𝐽)
∈ (TopOn‘(𝑋
× 𝑌)) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾))
→ (𝐹 ∈
((𝒫 𝑋
×t 𝐽) Cn
𝐾) ↔ (𝐹:(𝑋 × 𝑌)⟶∪ 𝐾 ∧ ∀𝑢 ∈ 𝐾 (◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽)))) |
112 | 110, 6, 111 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾) ↔ (𝐹:(𝑋 × 𝑌)⟶∪ 𝐾 ∧ ∀𝑢 ∈ 𝐾 (◡𝐹 “ 𝑢) ∈ (𝒫 𝑋 ×t 𝐽)))) |
113 | 16, 108, 112 | mpbir2and 710 |
1
⊢ (𝜑 → 𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾)) |