MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncmet Structured version   Visualization version   GIF version

Theorem cncmet 25274
Description: The set of complex numbers is a complete metric space under the absolute value metric. (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
cncmet.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cncmet 𝐷 ∈ (CMet‘ℂ)

Proof of Theorem cncmet
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopn 24720 . . . 4 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
3 cncmet.1 . . . . 5 𝐷 = (abs ∘ − )
43fveq2i 6879 . . . 4 (MetOpen‘𝐷) = (MetOpen‘(abs ∘ − ))
52, 4eqtr4i 2761 . . 3 (TopOpen‘ℂfld) = (MetOpen‘𝐷)
6 cnmet 24710 . . . . 5 (abs ∘ − ) ∈ (Met‘ℂ)
73, 6eqeltri 2830 . . . 4 𝐷 ∈ (Met‘ℂ)
87a1i 11 . . 3 (⊤ → 𝐷 ∈ (Met‘ℂ))
9 1rp 13012 . . . 4 1 ∈ ℝ+
109a1i 11 . . 3 (⊤ → 1 ∈ ℝ+)
111cnfldtop 24722 . . . . . 6 (TopOpen‘ℂfld) ∈ Top
12 metxmet 24273 . . . . . . . 8 (𝐷 ∈ (Met‘ℂ) → 𝐷 ∈ (∞Met‘ℂ))
137, 12ax-mp 5 . . . . . . 7 𝐷 ∈ (∞Met‘ℂ)
14 1xr 11294 . . . . . . 7 1 ∈ ℝ*
15 blssm 24357 . . . . . . 7 ((𝐷 ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ ℂ)
1613, 14, 15mp3an13 1454 . . . . . 6 (𝑥 ∈ ℂ → (𝑥(ball‘𝐷)1) ⊆ ℂ)
17 unicntop 24724 . . . . . . 7 ℂ = (TopOpen‘ℂfld)
1817clscld 22985 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ℂ) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)))
1911, 16, 18sylancr 587 . . . . 5 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)))
20 abscl 15297 . . . . . . 7 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
21 peano2re 11408 . . . . . . 7 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
2220, 21syl 17 . . . . . 6 (𝑥 ∈ ℂ → ((abs‘𝑥) + 1) ∈ ℝ)
23 df-rab 3416 . . . . . . . . . . 11 {𝑦 ∈ ℂ ∣ (𝑥𝐷𝑦) ≤ 1} = {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)}
2423eqcomi 2744 . . . . . . . . . 10 {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} = {𝑦 ∈ ℂ ∣ (𝑥𝐷𝑦) ≤ 1}
255, 24blcls 24445 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ*) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)})
2613, 14, 25mp3an13 1454 . . . . . . . 8 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)})
27 abscl 15297 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℝ)
2827ad2antrl 728 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑦) ∈ ℝ)
2920adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑥) ∈ ℝ)
3028, 29resubcld 11665 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ∈ ℝ)
31 simpl 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1) → 𝑦 ∈ ℂ)
32 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
33 subcl 11481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
3431, 32, 33syl2anr 597 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑦𝑥) ∈ ℂ)
3534abscld 15455 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘(𝑦𝑥)) ∈ ℝ)
36 1red 11236 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 1 ∈ ℝ)
37 simprl 770 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 𝑦 ∈ ℂ)
38 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 𝑥 ∈ ℂ)
3937, 38abs2difd 15476 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ≤ (abs‘(𝑦𝑥)))
403cnmetdval 24709 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
41 abssub 15345 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
4240, 41eqtrd 2770 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝐷𝑦) = (abs‘(𝑦𝑥)))
4342adantrr 717 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑥𝐷𝑦) = (abs‘(𝑦𝑥)))
44 simprr 772 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑥𝐷𝑦) ≤ 1)
4543, 44eqbrtrrd 5143 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘(𝑦𝑥)) ≤ 1)
4630, 35, 36, 39, 45letrd 11392 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ≤ 1)
4728, 29, 36lesubadd2d 11836 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (((abs‘𝑦) − (abs‘𝑥)) ≤ 1 ↔ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)))
4846, 47mpbid 232 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑦) ≤ ((abs‘𝑥) + 1))
4948ex 412 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1) → (abs‘𝑦) ≤ ((abs‘𝑥) + 1)))
5049ss2abdv 4041 . . . . . . . 8 (𝑥 ∈ ℂ → {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)})
5126, 50sstrd 3969 . . . . . . 7 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)})
52 ssabral 4040 . . . . . . 7 (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)} ↔ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1))
5351, 52sylib 218 . . . . . 6 (𝑥 ∈ ℂ → ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1))
54 brralrspcev 5179 . . . . . 6 ((((abs‘𝑥) + 1) ∈ ℝ ∧ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1)) → ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)
5522, 53, 54syl2anc 584 . . . . 5 (𝑥 ∈ ℂ → ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)
5617clsss3 22997 . . . . . . 7 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ℂ) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ)
5711, 16, 56sylancr 587 . . . . . 6 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ)
58 eqid 2735 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) = ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)))
591, 58cnheibor 24905 . . . . . 6 (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ → (((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp ↔ (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)))
6057, 59syl 17 . . . . 5 (𝑥 ∈ ℂ → (((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp ↔ (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)))
6119, 55, 60mpbir2and 713 . . . 4 (𝑥 ∈ ℂ → ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp)
6261adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp)
635, 8, 10, 62relcmpcmet 25270 . 2 (⊤ → 𝐷 ∈ (CMet‘ℂ))
6463mptru 1547 1 𝐷 ∈ (CMet‘ℂ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  {cab 2713  wral 3051  wrex 3060  {crab 3415  wss 3926   class class class wbr 5119  ccom 5658  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  1c1 11130   + caddc 11132  *cxr 11268  cle 11270  cmin 11466  +crp 13008  abscabs 15253  t crest 17434  TopOpenctopn 17435  ∞Metcxmet 21300  Metcmet 21301  ballcbl 21302  MetOpencmopn 21305  fldccnfld 21315  Topctop 22831  Clsdccld 22954  clsccl 22956  Compccmp 23324  CMetccmet 25206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-flim 23877  df-fcls 23879  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-cfil 25207  df-cmet 25209
This theorem is referenced by:  recmet  25275  cncms  25307  cnbn  30850
  Copyright terms: Public domain W3C validator