MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncmet Structured version   Visualization version   GIF version

Theorem cncmet 25356
Description: The set of complex numbers is a complete metric space under the absolute value metric. (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
cncmet.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cncmet 𝐷 ∈ (CMet‘ℂ)

Proof of Theorem cncmet
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopn 24802 . . . 4 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
3 cncmet.1 . . . . 5 𝐷 = (abs ∘ − )
43fveq2i 6909 . . . 4 (MetOpen‘𝐷) = (MetOpen‘(abs ∘ − ))
52, 4eqtr4i 2768 . . 3 (TopOpen‘ℂfld) = (MetOpen‘𝐷)
6 cnmet 24792 . . . . 5 (abs ∘ − ) ∈ (Met‘ℂ)
73, 6eqeltri 2837 . . . 4 𝐷 ∈ (Met‘ℂ)
87a1i 11 . . 3 (⊤ → 𝐷 ∈ (Met‘ℂ))
9 1rp 13038 . . . 4 1 ∈ ℝ+
109a1i 11 . . 3 (⊤ → 1 ∈ ℝ+)
111cnfldtop 24804 . . . . . 6 (TopOpen‘ℂfld) ∈ Top
12 metxmet 24344 . . . . . . . 8 (𝐷 ∈ (Met‘ℂ) → 𝐷 ∈ (∞Met‘ℂ))
137, 12ax-mp 5 . . . . . . 7 𝐷 ∈ (∞Met‘ℂ)
14 1xr 11320 . . . . . . 7 1 ∈ ℝ*
15 blssm 24428 . . . . . . 7 ((𝐷 ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ ℂ)
1613, 14, 15mp3an13 1454 . . . . . 6 (𝑥 ∈ ℂ → (𝑥(ball‘𝐷)1) ⊆ ℂ)
17 unicntop 24806 . . . . . . 7 ℂ = (TopOpen‘ℂfld)
1817clscld 23055 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ℂ) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)))
1911, 16, 18sylancr 587 . . . . 5 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)))
20 abscl 15317 . . . . . . 7 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
21 peano2re 11434 . . . . . . 7 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
2220, 21syl 17 . . . . . 6 (𝑥 ∈ ℂ → ((abs‘𝑥) + 1) ∈ ℝ)
23 df-rab 3437 . . . . . . . . . . 11 {𝑦 ∈ ℂ ∣ (𝑥𝐷𝑦) ≤ 1} = {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)}
2423eqcomi 2746 . . . . . . . . . 10 {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} = {𝑦 ∈ ℂ ∣ (𝑥𝐷𝑦) ≤ 1}
255, 24blcls 24519 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ*) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)})
2613, 14, 25mp3an13 1454 . . . . . . . 8 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)})
27 abscl 15317 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℝ)
2827ad2antrl 728 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑦) ∈ ℝ)
2920adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑥) ∈ ℝ)
3028, 29resubcld 11691 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ∈ ℝ)
31 simpl 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1) → 𝑦 ∈ ℂ)
32 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
33 subcl 11507 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
3431, 32, 33syl2anr 597 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑦𝑥) ∈ ℂ)
3534abscld 15475 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘(𝑦𝑥)) ∈ ℝ)
36 1red 11262 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 1 ∈ ℝ)
37 simprl 771 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 𝑦 ∈ ℂ)
38 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 𝑥 ∈ ℂ)
3937, 38abs2difd 15496 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ≤ (abs‘(𝑦𝑥)))
403cnmetdval 24791 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
41 abssub 15365 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
4240, 41eqtrd 2777 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝐷𝑦) = (abs‘(𝑦𝑥)))
4342adantrr 717 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑥𝐷𝑦) = (abs‘(𝑦𝑥)))
44 simprr 773 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑥𝐷𝑦) ≤ 1)
4543, 44eqbrtrrd 5167 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘(𝑦𝑥)) ≤ 1)
4630, 35, 36, 39, 45letrd 11418 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ≤ 1)
4728, 29, 36lesubadd2d 11862 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (((abs‘𝑦) − (abs‘𝑥)) ≤ 1 ↔ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)))
4846, 47mpbid 232 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑦) ≤ ((abs‘𝑥) + 1))
4948ex 412 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1) → (abs‘𝑦) ≤ ((abs‘𝑥) + 1)))
5049ss2abdv 4066 . . . . . . . 8 (𝑥 ∈ ℂ → {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)})
5126, 50sstrd 3994 . . . . . . 7 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)})
52 ssabral 4065 . . . . . . 7 (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)} ↔ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1))
5351, 52sylib 218 . . . . . 6 (𝑥 ∈ ℂ → ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1))
54 brralrspcev 5203 . . . . . 6 ((((abs‘𝑥) + 1) ∈ ℝ ∧ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1)) → ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)
5522, 53, 54syl2anc 584 . . . . 5 (𝑥 ∈ ℂ → ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)
5617clsss3 23067 . . . . . . 7 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ℂ) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ)
5711, 16, 56sylancr 587 . . . . . 6 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ)
58 eqid 2737 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) = ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)))
591, 58cnheibor 24987 . . . . . 6 (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ → (((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp ↔ (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)))
6057, 59syl 17 . . . . 5 (𝑥 ∈ ℂ → (((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp ↔ (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)))
6119, 55, 60mpbir2and 713 . . . 4 (𝑥 ∈ ℂ → ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp)
6261adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp)
635, 8, 10, 62relcmpcmet 25352 . 2 (⊤ → 𝐷 ∈ (CMet‘ℂ))
6463mptru 1547 1 𝐷 ∈ (CMet‘ℂ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  {cab 2714  wral 3061  wrex 3070  {crab 3436  wss 3951   class class class wbr 5143  ccom 5689  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  1c1 11156   + caddc 11158  *cxr 11294  cle 11296  cmin 11492  +crp 13034  abscabs 15273  t crest 17465  TopOpenctopn 17466  ∞Metcxmet 21349  Metcmet 21350  ballcbl 21351  MetOpencmopn 21354  fldccnfld 21364  Topctop 22899  Clsdccld 23024  clsccl 23026  Compccmp 23394  CMetccmet 25288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-flim 23947  df-fcls 23949  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-cfil 25289  df-cmet 25291
This theorem is referenced by:  recmet  25357  cncms  25389  cnbn  30888
  Copyright terms: Public domain W3C validator