MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncmet Structured version   Visualization version   GIF version

Theorem cncmet 25229
Description: The set of complex numbers is a complete metric space under the absolute value metric. (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
cncmet.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cncmet 𝐷 ∈ (CMet‘ℂ)

Proof of Theorem cncmet
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopn 24676 . . . 4 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
3 cncmet.1 . . . . 5 𝐷 = (abs ∘ − )
43fveq2i 6864 . . . 4 (MetOpen‘𝐷) = (MetOpen‘(abs ∘ − ))
52, 4eqtr4i 2756 . . 3 (TopOpen‘ℂfld) = (MetOpen‘𝐷)
6 cnmet 24666 . . . . 5 (abs ∘ − ) ∈ (Met‘ℂ)
73, 6eqeltri 2825 . . . 4 𝐷 ∈ (Met‘ℂ)
87a1i 11 . . 3 (⊤ → 𝐷 ∈ (Met‘ℂ))
9 1rp 12962 . . . 4 1 ∈ ℝ+
109a1i 11 . . 3 (⊤ → 1 ∈ ℝ+)
111cnfldtop 24678 . . . . . 6 (TopOpen‘ℂfld) ∈ Top
12 metxmet 24229 . . . . . . . 8 (𝐷 ∈ (Met‘ℂ) → 𝐷 ∈ (∞Met‘ℂ))
137, 12ax-mp 5 . . . . . . 7 𝐷 ∈ (∞Met‘ℂ)
14 1xr 11240 . . . . . . 7 1 ∈ ℝ*
15 blssm 24313 . . . . . . 7 ((𝐷 ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ ℂ)
1613, 14, 15mp3an13 1454 . . . . . 6 (𝑥 ∈ ℂ → (𝑥(ball‘𝐷)1) ⊆ ℂ)
17 unicntop 24680 . . . . . . 7 ℂ = (TopOpen‘ℂfld)
1817clscld 22941 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ℂ) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)))
1911, 16, 18sylancr 587 . . . . 5 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)))
20 abscl 15251 . . . . . . 7 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
21 peano2re 11354 . . . . . . 7 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
2220, 21syl 17 . . . . . 6 (𝑥 ∈ ℂ → ((abs‘𝑥) + 1) ∈ ℝ)
23 df-rab 3409 . . . . . . . . . . 11 {𝑦 ∈ ℂ ∣ (𝑥𝐷𝑦) ≤ 1} = {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)}
2423eqcomi 2739 . . . . . . . . . 10 {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} = {𝑦 ∈ ℂ ∣ (𝑥𝐷𝑦) ≤ 1}
255, 24blcls 24401 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ*) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)})
2613, 14, 25mp3an13 1454 . . . . . . . 8 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)})
27 abscl 15251 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℝ)
2827ad2antrl 728 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑦) ∈ ℝ)
2920adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑥) ∈ ℝ)
3028, 29resubcld 11613 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ∈ ℝ)
31 simpl 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1) → 𝑦 ∈ ℂ)
32 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
33 subcl 11427 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
3431, 32, 33syl2anr 597 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑦𝑥) ∈ ℂ)
3534abscld 15412 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘(𝑦𝑥)) ∈ ℝ)
36 1red 11182 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 1 ∈ ℝ)
37 simprl 770 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 𝑦 ∈ ℂ)
38 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 𝑥 ∈ ℂ)
3937, 38abs2difd 15433 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ≤ (abs‘(𝑦𝑥)))
403cnmetdval 24665 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
41 abssub 15300 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
4240, 41eqtrd 2765 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝐷𝑦) = (abs‘(𝑦𝑥)))
4342adantrr 717 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑥𝐷𝑦) = (abs‘(𝑦𝑥)))
44 simprr 772 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑥𝐷𝑦) ≤ 1)
4543, 44eqbrtrrd 5134 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘(𝑦𝑥)) ≤ 1)
4630, 35, 36, 39, 45letrd 11338 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ≤ 1)
4728, 29, 36lesubadd2d 11784 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (((abs‘𝑦) − (abs‘𝑥)) ≤ 1 ↔ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)))
4846, 47mpbid 232 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑦) ≤ ((abs‘𝑥) + 1))
4948ex 412 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1) → (abs‘𝑦) ≤ ((abs‘𝑥) + 1)))
5049ss2abdv 4032 . . . . . . . 8 (𝑥 ∈ ℂ → {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)})
5126, 50sstrd 3960 . . . . . . 7 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)})
52 ssabral 4031 . . . . . . 7 (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)} ↔ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1))
5351, 52sylib 218 . . . . . 6 (𝑥 ∈ ℂ → ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1))
54 brralrspcev 5170 . . . . . 6 ((((abs‘𝑥) + 1) ∈ ℝ ∧ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1)) → ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)
5522, 53, 54syl2anc 584 . . . . 5 (𝑥 ∈ ℂ → ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)
5617clsss3 22953 . . . . . . 7 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ℂ) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ)
5711, 16, 56sylancr 587 . . . . . 6 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ)
58 eqid 2730 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) = ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)))
591, 58cnheibor 24861 . . . . . 6 (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ → (((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp ↔ (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)))
6057, 59syl 17 . . . . 5 (𝑥 ∈ ℂ → (((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp ↔ (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)))
6119, 55, 60mpbir2and 713 . . . 4 (𝑥 ∈ ℂ → ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp)
6261adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp)
635, 8, 10, 62relcmpcmet 25225 . 2 (⊤ → 𝐷 ∈ (CMet‘ℂ))
6463mptru 1547 1 𝐷 ∈ (CMet‘ℂ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  {cab 2708  wral 3045  wrex 3054  {crab 3408  wss 3917   class class class wbr 5110  ccom 5645  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  1c1 11076   + caddc 11078  *cxr 11214  cle 11216  cmin 11412  +crp 12958  abscabs 15207  t crest 17390  TopOpenctopn 17391  ∞Metcxmet 21256  Metcmet 21257  ballcbl 21258  MetOpencmopn 21261  fldccnfld 21271  Topctop 22787  Clsdccld 22910  clsccl 22912  Compccmp 23280  CMetccmet 25161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-flim 23833  df-fcls 23835  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-cfil 25162  df-cmet 25164
This theorem is referenced by:  recmet  25230  cncms  25262  cnbn  30805
  Copyright terms: Public domain W3C validator