MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncmet Structured version   Visualization version   GIF version

Theorem cncmet 23926
Description: The set of complex numbers is a complete metric space under the absolute value metric. (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
cncmet.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cncmet 𝐷 ∈ (CMet‘ℂ)

Proof of Theorem cncmet
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopn 23387 . . . 4 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
3 cncmet.1 . . . . 5 𝐷 = (abs ∘ − )
43fveq2i 6648 . . . 4 (MetOpen‘𝐷) = (MetOpen‘(abs ∘ − ))
52, 4eqtr4i 2824 . . 3 (TopOpen‘ℂfld) = (MetOpen‘𝐷)
6 cnmet 23377 . . . . 5 (abs ∘ − ) ∈ (Met‘ℂ)
73, 6eqeltri 2886 . . . 4 𝐷 ∈ (Met‘ℂ)
87a1i 11 . . 3 (⊤ → 𝐷 ∈ (Met‘ℂ))
9 1rp 12381 . . . 4 1 ∈ ℝ+
109a1i 11 . . 3 (⊤ → 1 ∈ ℝ+)
111cnfldtop 23389 . . . . . 6 (TopOpen‘ℂfld) ∈ Top
12 metxmet 22941 . . . . . . . 8 (𝐷 ∈ (Met‘ℂ) → 𝐷 ∈ (∞Met‘ℂ))
137, 12ax-mp 5 . . . . . . 7 𝐷 ∈ (∞Met‘ℂ)
14 1xr 10689 . . . . . . 7 1 ∈ ℝ*
15 blssm 23025 . . . . . . 7 ((𝐷 ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ ℂ)
1613, 14, 15mp3an13 1449 . . . . . 6 (𝑥 ∈ ℂ → (𝑥(ball‘𝐷)1) ⊆ ℂ)
17 unicntop 23391 . . . . . . 7 ℂ = (TopOpen‘ℂfld)
1817clscld 21652 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ℂ) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)))
1911, 16, 18sylancr 590 . . . . 5 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)))
20 abscl 14630 . . . . . . 7 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
21 peano2re 10802 . . . . . . 7 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
2220, 21syl 17 . . . . . 6 (𝑥 ∈ ℂ → ((abs‘𝑥) + 1) ∈ ℝ)
23 df-rab 3115 . . . . . . . . . . 11 {𝑦 ∈ ℂ ∣ (𝑥𝐷𝑦) ≤ 1} = {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)}
2423eqcomi 2807 . . . . . . . . . 10 {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} = {𝑦 ∈ ℂ ∣ (𝑥𝐷𝑦) ≤ 1}
255, 24blcls 23113 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ*) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)})
2613, 14, 25mp3an13 1449 . . . . . . . 8 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)})
27 abscl 14630 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℝ)
2827ad2antrl 727 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑦) ∈ ℝ)
2920adantr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑥) ∈ ℝ)
3028, 29resubcld 11057 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ∈ ℝ)
31 simpl 486 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1) → 𝑦 ∈ ℂ)
32 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
33 subcl 10874 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
3431, 32, 33syl2anr 599 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑦𝑥) ∈ ℂ)
3534abscld 14788 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘(𝑦𝑥)) ∈ ℝ)
36 1red 10631 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 1 ∈ ℝ)
37 simprl 770 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 𝑦 ∈ ℂ)
38 simpl 486 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 𝑥 ∈ ℂ)
3937, 38abs2difd 14809 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ≤ (abs‘(𝑦𝑥)))
403cnmetdval 23376 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
41 abssub 14678 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
4240, 41eqtrd 2833 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝐷𝑦) = (abs‘(𝑦𝑥)))
4342adantrr 716 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑥𝐷𝑦) = (abs‘(𝑦𝑥)))
44 simprr 772 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑥𝐷𝑦) ≤ 1)
4543, 44eqbrtrrd 5054 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘(𝑦𝑥)) ≤ 1)
4630, 35, 36, 39, 45letrd 10786 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ≤ 1)
4728, 29, 36lesubadd2d 11228 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (((abs‘𝑦) − (abs‘𝑥)) ≤ 1 ↔ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)))
4846, 47mpbid 235 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑦) ≤ ((abs‘𝑥) + 1))
4948ex 416 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1) → (abs‘𝑦) ≤ ((abs‘𝑥) + 1)))
5049ss2abdv 3991 . . . . . . . 8 (𝑥 ∈ ℂ → {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)})
5126, 50sstrd 3925 . . . . . . 7 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)})
52 ssabral 3990 . . . . . . 7 (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)} ↔ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1))
5351, 52sylib 221 . . . . . 6 (𝑥 ∈ ℂ → ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1))
54 brralrspcev 5090 . . . . . 6 ((((abs‘𝑥) + 1) ∈ ℝ ∧ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1)) → ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)
5522, 53, 54syl2anc 587 . . . . 5 (𝑥 ∈ ℂ → ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)
5617clsss3 21664 . . . . . . 7 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ℂ) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ)
5711, 16, 56sylancr 590 . . . . . 6 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ)
58 eqid 2798 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) = ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)))
591, 58cnheibor 23560 . . . . . 6 (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ → (((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp ↔ (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)))
6057, 59syl 17 . . . . 5 (𝑥 ∈ ℂ → (((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp ↔ (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)))
6119, 55, 60mpbir2and 712 . . . 4 (𝑥 ∈ ℂ → ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp)
6261adantl 485 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp)
635, 8, 10, 62relcmpcmet 23922 . 2 (⊤ → 𝐷 ∈ (CMet‘ℂ))
6463mptru 1545 1 𝐷 ∈ (CMet‘ℂ)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wtru 1539  wcel 2111  {cab 2776  wral 3106  wrex 3107  {crab 3110  wss 3881   class class class wbr 5030  ccom 5523  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  1c1 10527   + caddc 10529  *cxr 10663  cle 10665  cmin 10859  +crp 12377  abscabs 14585  t crest 16686  TopOpenctopn 16687  ∞Metcxmet 20076  Metcmet 20077  ballcbl 20078  MetOpencmopn 20081  fldccnfld 20091  Topctop 21498  Clsdccld 21621  clsccl 21623  Compccmp 21991  CMetccmet 23858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-flim 22544  df-fcls 22546  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-cfil 23859  df-cmet 23861
This theorem is referenced by:  recmet  23927  cncms  23959  cnbn  28652
  Copyright terms: Public domain W3C validator