Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
2 | 1 | cnfldtopn 23851 |
. . . 4
⊢
(TopOpen‘ℂfld) = (MetOpen‘(abs ∘
− )) |
3 | | cncmet.1 |
. . . . 5
⊢ 𝐷 = (abs ∘ −
) |
4 | 3 | fveq2i 6759 |
. . . 4
⊢
(MetOpen‘𝐷) =
(MetOpen‘(abs ∘ − )) |
5 | 2, 4 | eqtr4i 2769 |
. . 3
⊢
(TopOpen‘ℂfld) = (MetOpen‘𝐷) |
6 | | cnmet 23841 |
. . . . 5
⊢ (abs
∘ − ) ∈ (Met‘ℂ) |
7 | 3, 6 | eqeltri 2835 |
. . . 4
⊢ 𝐷 ∈
(Met‘ℂ) |
8 | 7 | a1i 11 |
. . 3
⊢ (⊤
→ 𝐷 ∈
(Met‘ℂ)) |
9 | | 1rp 12663 |
. . . 4
⊢ 1 ∈
ℝ+ |
10 | 9 | a1i 11 |
. . 3
⊢ (⊤
→ 1 ∈ ℝ+) |
11 | 1 | cnfldtop 23853 |
. . . . . 6
⊢
(TopOpen‘ℂfld) ∈ Top |
12 | | metxmet 23395 |
. . . . . . . 8
⊢ (𝐷 ∈ (Met‘ℂ)
→ 𝐷 ∈
(∞Met‘ℂ)) |
13 | 7, 12 | ax-mp 5 |
. . . . . . 7
⊢ 𝐷 ∈
(∞Met‘ℂ) |
14 | | 1xr 10965 |
. . . . . . 7
⊢ 1 ∈
ℝ* |
15 | | blssm 23479 |
. . . . . . 7
⊢ ((𝐷 ∈
(∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈
ℝ*) → (𝑥(ball‘𝐷)1) ⊆ ℂ) |
16 | 13, 14, 15 | mp3an13 1450 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → (𝑥(ball‘𝐷)1) ⊆ ℂ) |
17 | | unicntop 23855 |
. . . . . . 7
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
18 | 17 | clscld 22106 |
. . . . . 6
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ℂ) →
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈
(Clsd‘(TopOpen‘ℂfld))) |
19 | 11, 16, 18 | sylancr 586 |
. . . . 5
⊢ (𝑥 ∈ ℂ →
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈
(Clsd‘(TopOpen‘ℂfld))) |
20 | | abscl 14918 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ →
(abs‘𝑥) ∈
ℝ) |
21 | | peano2re 11078 |
. . . . . . 7
⊢
((abs‘𝑥)
∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ) |
22 | 20, 21 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ ℂ →
((abs‘𝑥) + 1) ∈
ℝ) |
23 | | df-rab 3072 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ ℂ ∣ (𝑥𝐷𝑦) ≤ 1} = {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} |
24 | 23 | eqcomi 2747 |
. . . . . . . . . 10
⊢ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} = {𝑦 ∈ ℂ ∣ (𝑥𝐷𝑦) ≤ 1} |
25 | 5, 24 | blcls 23568 |
. . . . . . . . 9
⊢ ((𝐷 ∈
(∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈
ℝ*) →
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)}) |
26 | 13, 14, 25 | mp3an13 1450 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ →
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)}) |
27 | | abscl 14918 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℂ →
(abs‘𝑦) ∈
ℝ) |
28 | 27 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑦) ∈
ℝ) |
29 | 20 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑥) ∈
ℝ) |
30 | 28, 29 | resubcld 11333 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ∈
ℝ) |
31 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1) → 𝑦 ∈ ℂ) |
32 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → 𝑥 ∈
ℂ) |
33 | | subcl 11150 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 − 𝑥) ∈ ℂ) |
34 | 31, 32, 33 | syl2anr 596 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑦 − 𝑥) ∈ ℂ) |
35 | 34 | abscld 15076 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘(𝑦 − 𝑥)) ∈ ℝ) |
36 | | 1red 10907 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 1 ∈
ℝ) |
37 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 𝑦 ∈ ℂ) |
38 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 𝑥 ∈ ℂ) |
39 | 37, 38 | abs2difd 15097 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ≤ (abs‘(𝑦 − 𝑥))) |
40 | 3 | cnmetdval 23840 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝐷𝑦) = (abs‘(𝑥 − 𝑦))) |
41 | | abssub 14966 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
(abs‘(𝑥 − 𝑦)) = (abs‘(𝑦 − 𝑥))) |
42 | 40, 41 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝐷𝑦) = (abs‘(𝑦 − 𝑥))) |
43 | 42 | adantrr 713 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑥𝐷𝑦) = (abs‘(𝑦 − 𝑥))) |
44 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑥𝐷𝑦) ≤ 1) |
45 | 43, 44 | eqbrtrrd 5094 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘(𝑦 − 𝑥)) ≤ 1) |
46 | 30, 35, 36, 39, 45 | letrd 11062 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ≤ 1) |
47 | 28, 29, 36 | lesubadd2d 11504 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (((abs‘𝑦) − (abs‘𝑥)) ≤ 1 ↔
(abs‘𝑦) ≤
((abs‘𝑥) +
1))) |
48 | 46, 47 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑦) ≤ ((abs‘𝑥) + 1)) |
49 | 48 | ex 412 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → ((𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1) → (abs‘𝑦) ≤ ((abs‘𝑥) + 1))) |
50 | 49 | ss2abdv 3993 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)}) |
51 | 26, 50 | sstrd 3927 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ →
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)}) |
52 | | ssabral 3992 |
. . . . . . 7
⊢
(((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)} ↔ ∀𝑦 ∈
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1)) |
53 | 51, 52 | sylib 217 |
. . . . . 6
⊢ (𝑥 ∈ ℂ →
∀𝑦 ∈
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1)) |
54 | | brralrspcev 5130 |
. . . . . 6
⊢
((((abs‘𝑥) +
1) ∈ ℝ ∧ ∀𝑦 ∈
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1)) → ∃𝑟 ∈ ℝ ∀𝑦 ∈
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟) |
55 | 22, 53, 54 | syl2anc 583 |
. . . . 5
⊢ (𝑥 ∈ ℂ →
∃𝑟 ∈ ℝ
∀𝑦 ∈
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟) |
56 | 17 | clsss3 22118 |
. . . . . . 7
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ℂ) →
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ) |
57 | 11, 16, 56 | sylancr 586 |
. . . . . 6
⊢ (𝑥 ∈ ℂ →
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ) |
58 | | eqid 2738 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ↾t
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) =
((TopOpen‘ℂfld) ↾t
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) |
59 | 1, 58 | cnheibor 24024 |
. . . . . 6
⊢
(((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ →
(((TopOpen‘ℂfld) ↾t
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp ↔
(((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈
(Clsd‘(TopOpen‘ℂfld)) ∧ ∃𝑟 ∈ ℝ ∀𝑦 ∈
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟))) |
60 | 57, 59 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ ℂ →
(((TopOpen‘ℂfld) ↾t
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp ↔
(((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈
(Clsd‘(TopOpen‘ℂfld)) ∧ ∃𝑟 ∈ ℝ ∀𝑦 ∈
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟))) |
61 | 19, 55, 60 | mpbir2and 709 |
. . . 4
⊢ (𝑥 ∈ ℂ →
((TopOpen‘ℂfld) ↾t
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp) |
62 | 61 | adantl 481 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ) → ((TopOpen‘ℂfld)
↾t
((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp) |
63 | 5, 8, 10, 62 | relcmpcmet 24387 |
. 2
⊢ (⊤
→ 𝐷 ∈
(CMet‘ℂ)) |
64 | 63 | mptru 1546 |
1
⊢ 𝐷 ∈
(CMet‘ℂ) |