MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncmet Structured version   Visualization version   GIF version

Theorem cncmet 25375
Description: The set of complex numbers is a complete metric space under the absolute value metric. (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
cncmet.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cncmet 𝐷 ∈ (CMet‘ℂ)

Proof of Theorem cncmet
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopn 24823 . . . 4 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
3 cncmet.1 . . . . 5 𝐷 = (abs ∘ − )
43fveq2i 6923 . . . 4 (MetOpen‘𝐷) = (MetOpen‘(abs ∘ − ))
52, 4eqtr4i 2771 . . 3 (TopOpen‘ℂfld) = (MetOpen‘𝐷)
6 cnmet 24813 . . . . 5 (abs ∘ − ) ∈ (Met‘ℂ)
73, 6eqeltri 2840 . . . 4 𝐷 ∈ (Met‘ℂ)
87a1i 11 . . 3 (⊤ → 𝐷 ∈ (Met‘ℂ))
9 1rp 13061 . . . 4 1 ∈ ℝ+
109a1i 11 . . 3 (⊤ → 1 ∈ ℝ+)
111cnfldtop 24825 . . . . . 6 (TopOpen‘ℂfld) ∈ Top
12 metxmet 24365 . . . . . . . 8 (𝐷 ∈ (Met‘ℂ) → 𝐷 ∈ (∞Met‘ℂ))
137, 12ax-mp 5 . . . . . . 7 𝐷 ∈ (∞Met‘ℂ)
14 1xr 11349 . . . . . . 7 1 ∈ ℝ*
15 blssm 24449 . . . . . . 7 ((𝐷 ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ ℂ)
1613, 14, 15mp3an13 1452 . . . . . 6 (𝑥 ∈ ℂ → (𝑥(ball‘𝐷)1) ⊆ ℂ)
17 unicntop 24827 . . . . . . 7 ℂ = (TopOpen‘ℂfld)
1817clscld 23076 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ℂ) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)))
1911, 16, 18sylancr 586 . . . . 5 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)))
20 abscl 15327 . . . . . . 7 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
21 peano2re 11463 . . . . . . 7 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
2220, 21syl 17 . . . . . 6 (𝑥 ∈ ℂ → ((abs‘𝑥) + 1) ∈ ℝ)
23 df-rab 3444 . . . . . . . . . . 11 {𝑦 ∈ ℂ ∣ (𝑥𝐷𝑦) ≤ 1} = {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)}
2423eqcomi 2749 . . . . . . . . . 10 {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} = {𝑦 ∈ ℂ ∣ (𝑥𝐷𝑦) ≤ 1}
255, 24blcls 24540 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ*) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)})
2613, 14, 25mp3an13 1452 . . . . . . . 8 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)})
27 abscl 15327 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℝ)
2827ad2antrl 727 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑦) ∈ ℝ)
2920adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑥) ∈ ℝ)
3028, 29resubcld 11718 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ∈ ℝ)
31 simpl 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1) → 𝑦 ∈ ℂ)
32 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
33 subcl 11535 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
3431, 32, 33syl2anr 596 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑦𝑥) ∈ ℂ)
3534abscld 15485 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘(𝑦𝑥)) ∈ ℝ)
36 1red 11291 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 1 ∈ ℝ)
37 simprl 770 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 𝑦 ∈ ℂ)
38 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → 𝑥 ∈ ℂ)
3937, 38abs2difd 15506 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ≤ (abs‘(𝑦𝑥)))
403cnmetdval 24812 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
41 abssub 15375 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥𝑦)) = (abs‘(𝑦𝑥)))
4240, 41eqtrd 2780 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝐷𝑦) = (abs‘(𝑦𝑥)))
4342adantrr 716 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑥𝐷𝑦) = (abs‘(𝑦𝑥)))
44 simprr 772 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (𝑥𝐷𝑦) ≤ 1)
4543, 44eqbrtrrd 5190 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘(𝑦𝑥)) ≤ 1)
4630, 35, 36, 39, 45letrd 11447 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → ((abs‘𝑦) − (abs‘𝑥)) ≤ 1)
4728, 29, 36lesubadd2d 11889 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (((abs‘𝑦) − (abs‘𝑥)) ≤ 1 ↔ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)))
4846, 47mpbid 232 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)) → (abs‘𝑦) ≤ ((abs‘𝑥) + 1))
4948ex 412 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1) → (abs‘𝑦) ≤ ((abs‘𝑥) + 1)))
5049ss2abdv 4089 . . . . . . . 8 (𝑥 ∈ ℂ → {𝑦 ∣ (𝑦 ∈ ℂ ∧ (𝑥𝐷𝑦) ≤ 1)} ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)})
5126, 50sstrd 4019 . . . . . . 7 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)})
52 ssabral 4088 . . . . . . 7 (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ {𝑦 ∣ (abs‘𝑦) ≤ ((abs‘𝑥) + 1)} ↔ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1))
5351, 52sylib 218 . . . . . 6 (𝑥 ∈ ℂ → ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1))
54 brralrspcev 5226 . . . . . 6 ((((abs‘𝑥) + 1) ∈ ℝ ∧ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ ((abs‘𝑥) + 1)) → ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)
5522, 53, 54syl2anc 583 . . . . 5 (𝑥 ∈ ℂ → ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)
5617clsss3 23088 . . . . . . 7 (((TopOpen‘ℂfld) ∈ Top ∧ (𝑥(ball‘𝐷)1) ⊆ ℂ) → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ)
5711, 16, 56sylancr 586 . . . . . 6 (𝑥 ∈ ℂ → ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ)
58 eqid 2740 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) = ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)))
591, 58cnheibor 25006 . . . . . 6 (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ⊆ ℂ → (((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp ↔ (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)))
6057, 59syl 17 . . . . 5 (𝑥 ∈ ℂ → (((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp ↔ (((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1)) ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ∃𝑟 ∈ ℝ ∀𝑦 ∈ ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))(abs‘𝑦) ≤ 𝑟)))
6119, 55, 60mpbir2and 712 . . . 4 (𝑥 ∈ ℂ → ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp)
6261adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → ((TopOpen‘ℂfld) ↾t ((cls‘(TopOpen‘ℂfld))‘(𝑥(ball‘𝐷)1))) ∈ Comp)
635, 8, 10, 62relcmpcmet 25371 . 2 (⊤ → 𝐷 ∈ (CMet‘ℂ))
6463mptru 1544 1 𝐷 ∈ (CMet‘ℂ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  {cab 2717  wral 3067  wrex 3076  {crab 3443  wss 3976   class class class wbr 5166  ccom 5704  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   + caddc 11187  *cxr 11323  cle 11325  cmin 11520  +crp 13057  abscabs 15283  t crest 17480  TopOpenctopn 17481  ∞Metcxmet 21372  Metcmet 21373  ballcbl 21374  MetOpencmopn 21377  fldccnfld 21387  Topctop 22920  Clsdccld 23045  clsccl 23047  Compccmp 23415  CMetccmet 25307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-flim 23968  df-fcls 23970  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-cfil 25308  df-cmet 25310
This theorem is referenced by:  recmet  25376  cncms  25408  cnbn  30901
  Copyright terms: Public domain W3C validator