Proof of Theorem incistruhgr
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rabeq 3451 | . . . . . . . . 9
⊢ (𝑉 = 𝑃 → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}) | 
| 2 | 1 | mpteq2dv 5244 | . . . . . . . 8
⊢ (𝑉 = 𝑃 → (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) | 
| 3 | 2 | eqeq2d 2748 | . . . . . . 7
⊢ (𝑉 = 𝑃 → (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ↔ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) | 
| 4 |  | xpeq1 5699 | . . . . . . . . 9
⊢ (𝑉 = 𝑃 → (𝑉 × 𝐿) = (𝑃 × 𝐿)) | 
| 5 | 4 | sseq2d 4016 | . . . . . . . 8
⊢ (𝑉 = 𝑃 → (𝐼 ⊆ (𝑉 × 𝐿) ↔ 𝐼 ⊆ (𝑃 × 𝐿))) | 
| 6 | 5 | 3anbi2d 1443 | . . . . . . 7
⊢ (𝑉 = 𝑃 → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ↔ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿))) | 
| 7 | 3, 6 | anbi12d 632 | . . . . . 6
⊢ (𝑉 = 𝑃 → ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) ↔ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)))) | 
| 8 |  | dmeq 5914 | . . . . . . . . 9
⊢ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) → dom 𝐸 = dom (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒})) | 
| 9 |  | incistruhgr.v | . . . . . . . . . . . 12
⊢ 𝑉 = (Vtx‘𝐺) | 
| 10 | 9 | fvexi 6920 | . . . . . . . . . . 11
⊢ 𝑉 ∈ V | 
| 11 | 10 | rabex 5339 | . . . . . . . . . 10
⊢ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ V | 
| 12 |  | eqid 2737 | . . . . . . . . . 10
⊢ (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) | 
| 13 | 11, 12 | dmmpti 6712 | . . . . . . . . 9
⊢ dom
(𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = 𝐿 | 
| 14 | 8, 13 | eqtrdi 2793 | . . . . . . . 8
⊢ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) → dom 𝐸 = 𝐿) | 
| 15 |  | ssrab2 4080 | . . . . . . . . . . . . 13
⊢ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ⊆ 𝑉 | 
| 16 | 15 | a1i 11 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ⊆ 𝑉) | 
| 17 | 11 | elpw 4604 | . . . . . . . . . . . 12
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ 𝒫 𝑉 ↔ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ⊆ 𝑉) | 
| 18 | 16, 17 | sylibr 234 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ 𝒫 𝑉) | 
| 19 |  | eleq2 2830 | . . . . . . . . . . . . . . . 16
⊢ (ran
𝐼 = 𝐿 → (𝑒 ∈ ran 𝐼 ↔ 𝑒 ∈ 𝐿)) | 
| 20 | 19 | 3ad2ant3 1136 | . . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼 ↔ 𝑒 ∈ 𝐿)) | 
| 21 |  | ssrelrn 5905 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ⊆ (𝑉 × 𝐿) ∧ 𝑒 ∈ ran 𝐼) → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) | 
| 22 | 21 | ex 412 | . . . . . . . . . . . . . . . 16
⊢ (𝐼 ⊆ (𝑉 × 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒)) | 
| 23 | 22 | 3ad2ant2 1135 | . . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒)) | 
| 24 | 20, 23 | sylbird 260 | . . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ 𝐿 → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒)) | 
| 25 | 24 | imp 406 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) | 
| 26 |  | df-ne 2941 | . . . . . . . . . . . . . 14
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ≠ ∅ ↔ ¬ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = ∅) | 
| 27 |  | rabn0 4389 | . . . . . . . . . . . . . 14
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ≠ ∅ ↔ ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) | 
| 28 | 26, 27 | bitr3i 277 | . . . . . . . . . . . . 13
⊢ (¬
{𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = ∅ ↔ ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) | 
| 29 | 25, 28 | sylibr 234 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → ¬ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = ∅) | 
| 30 | 11 | elsn 4641 | . . . . . . . . . . . 12
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ {∅} ↔ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = ∅) | 
| 31 | 29, 30 | sylnibr 329 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → ¬ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ {∅}) | 
| 32 | 18, 31 | eldifd 3962 | . . . . . . . . . 10
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ (𝒫 𝑉 ∖ {∅})) | 
| 33 | 32 | fmpttd 7135 | . . . . . . . . 9
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}):𝐿⟶(𝒫 𝑉 ∖ {∅})) | 
| 34 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒})) | 
| 35 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → dom 𝐸 = 𝐿) | 
| 36 | 34, 35 | feq12d 6724 | . . . . . . . . 9
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}):𝐿⟶(𝒫 𝑉 ∖ {∅}))) | 
| 37 | 33, 36 | imbitrrid 246 | . . . . . . . 8
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) | 
| 38 | 14, 37 | mpdan 687 | . . . . . . 7
⊢ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) | 
| 39 | 38 | imp 406 | . . . . . 6
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) | 
| 40 | 7, 39 | biimtrrdi 254 | . . . . 5
⊢ (𝑉 = 𝑃 → ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) | 
| 41 | 40 | expdimp 452 | . . . 4
⊢ ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) | 
| 42 | 41 | impcom 407 | . . 3
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) | 
| 43 |  | incistruhgr.e | . . . . . 6
⊢ 𝐸 = (iEdg‘𝐺) | 
| 44 | 9, 43 | isuhgr 29077 | . . . . 5
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) | 
| 45 | 44 | 3ad2ant1 1134 | . . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) | 
| 46 | 45 | adantr 480 | . . 3
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) | 
| 47 | 42, 46 | mpbird 257 | . 2
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) → 𝐺 ∈ UHGraph) | 
| 48 | 47 | ex 412 | 1
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph)) |