Proof of Theorem incistruhgr
Step | Hyp | Ref
| Expression |
1 | | rabeq 3408 |
. . . . . . . . 9
⊢ (𝑉 = 𝑃 → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}) |
2 | 1 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (𝑉 = 𝑃 → (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) |
3 | 2 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑉 = 𝑃 → (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ↔ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) |
4 | | xpeq1 5594 |
. . . . . . . . 9
⊢ (𝑉 = 𝑃 → (𝑉 × 𝐿) = (𝑃 × 𝐿)) |
5 | 4 | sseq2d 3949 |
. . . . . . . 8
⊢ (𝑉 = 𝑃 → (𝐼 ⊆ (𝑉 × 𝐿) ↔ 𝐼 ⊆ (𝑃 × 𝐿))) |
6 | 5 | 3anbi2d 1439 |
. . . . . . 7
⊢ (𝑉 = 𝑃 → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ↔ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿))) |
7 | 3, 6 | anbi12d 630 |
. . . . . 6
⊢ (𝑉 = 𝑃 → ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) ↔ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)))) |
8 | | dmeq 5801 |
. . . . . . . . 9
⊢ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) → dom 𝐸 = dom (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒})) |
9 | | incistruhgr.v |
. . . . . . . . . . . 12
⊢ 𝑉 = (Vtx‘𝐺) |
10 | 9 | fvexi 6770 |
. . . . . . . . . . 11
⊢ 𝑉 ∈ V |
11 | 10 | rabex 5251 |
. . . . . . . . . 10
⊢ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ V |
12 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) |
13 | 11, 12 | dmmpti 6561 |
. . . . . . . . 9
⊢ dom
(𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = 𝐿 |
14 | 8, 13 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) → dom 𝐸 = 𝐿) |
15 | | ssrab2 4009 |
. . . . . . . . . . . . 13
⊢ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ⊆ 𝑉 |
16 | 15 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ⊆ 𝑉) |
17 | 11 | elpw 4534 |
. . . . . . . . . . . 12
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ 𝒫 𝑉 ↔ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ⊆ 𝑉) |
18 | 16, 17 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ 𝒫 𝑉) |
19 | | eleq2 2827 |
. . . . . . . . . . . . . . . 16
⊢ (ran
𝐼 = 𝐿 → (𝑒 ∈ ran 𝐼 ↔ 𝑒 ∈ 𝐿)) |
20 | 19 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼 ↔ 𝑒 ∈ 𝐿)) |
21 | | ssrelrn 5792 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ⊆ (𝑉 × 𝐿) ∧ 𝑒 ∈ ran 𝐼) → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) |
22 | 21 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ⊆ (𝑉 × 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒)) |
23 | 22 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒)) |
24 | 20, 23 | sylbird 259 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ 𝐿 → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒)) |
25 | 24 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) |
26 | | df-ne 2943 |
. . . . . . . . . . . . . 14
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ≠ ∅ ↔ ¬ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = ∅) |
27 | | rabn0 4316 |
. . . . . . . . . . . . . 14
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ≠ ∅ ↔ ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) |
28 | 26, 27 | bitr3i 276 |
. . . . . . . . . . . . 13
⊢ (¬
{𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = ∅ ↔ ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) |
29 | 25, 28 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → ¬ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = ∅) |
30 | 11 | elsn 4573 |
. . . . . . . . . . . 12
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ {∅} ↔ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = ∅) |
31 | 29, 30 | sylnibr 328 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → ¬ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ {∅}) |
32 | 18, 31 | eldifd 3894 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ (𝒫 𝑉 ∖ {∅})) |
33 | 32 | fmpttd 6971 |
. . . . . . . . 9
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}):𝐿⟶(𝒫 𝑉 ∖ {∅})) |
34 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒})) |
35 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → dom 𝐸 = 𝐿) |
36 | 34, 35 | feq12d 6572 |
. . . . . . . . 9
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}):𝐿⟶(𝒫 𝑉 ∖ {∅}))) |
37 | 33, 36 | syl5ibr 245 |
. . . . . . . 8
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
38 | 14, 37 | mpdan 683 |
. . . . . . 7
⊢ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
39 | 38 | imp 406 |
. . . . . 6
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
40 | 7, 39 | syl6bir 253 |
. . . . 5
⊢ (𝑉 = 𝑃 → ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
41 | 40 | expdimp 452 |
. . . 4
⊢ ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
42 | 41 | impcom 407 |
. . 3
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
43 | | incistruhgr.e |
. . . . . 6
⊢ 𝐸 = (iEdg‘𝐺) |
44 | 9, 43 | isuhgr 27333 |
. . . . 5
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
45 | 44 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
46 | 45 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
47 | 42, 46 | mpbird 256 |
. 2
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) → 𝐺 ∈ UHGraph) |
48 | 47 | ex 412 |
1
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph)) |