Proof of Theorem incistruhgr
Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . . . . . 10
⊢ (𝑉 = 𝑃 → 𝑉 = 𝑃) |
2 | 1 | rabeqdv 3378 |
. . . . . . . . 9
⊢ (𝑉 = 𝑃 → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}) |
3 | 2 | mpteq2dv 4938 |
. . . . . . . 8
⊢ (𝑉 = 𝑃 → (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) |
4 | 3 | eqeq2d 2809 |
. . . . . . 7
⊢ (𝑉 = 𝑃 → (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ↔ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) |
5 | | xpeq1 5326 |
. . . . . . . . 9
⊢ (𝑉 = 𝑃 → (𝑉 × 𝐿) = (𝑃 × 𝐿)) |
6 | 5 | sseq2d 3829 |
. . . . . . . 8
⊢ (𝑉 = 𝑃 → (𝐼 ⊆ (𝑉 × 𝐿) ↔ 𝐼 ⊆ (𝑃 × 𝐿))) |
7 | 6 | 3anbi2d 1566 |
. . . . . . 7
⊢ (𝑉 = 𝑃 → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ↔ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿))) |
8 | 4, 7 | anbi12d 625 |
. . . . . 6
⊢ (𝑉 = 𝑃 → ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) ↔ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)))) |
9 | | dmeq 5527 |
. . . . . . . . 9
⊢ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) → dom 𝐸 = dom (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒})) |
10 | | incistruhgr.v |
. . . . . . . . . . . . 13
⊢ 𝑉 = (Vtx‘𝐺) |
11 | 10 | fvexi 6425 |
. . . . . . . . . . . 12
⊢ 𝑉 ∈ V |
12 | 11 | rabex 5007 |
. . . . . . . . . . 11
⊢ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ V |
13 | | eqid 2799 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) |
14 | 12, 13 | dmmpti 6234 |
. . . . . . . . . 10
⊢ dom
(𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = 𝐿 |
15 | 14 | a1i 11 |
. . . . . . . . 9
⊢ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) → dom (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = 𝐿) |
16 | 9, 15 | eqtrd 2833 |
. . . . . . . 8
⊢ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) → dom 𝐸 = 𝐿) |
17 | | ssrab2 3883 |
. . . . . . . . . . . . 13
⊢ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ⊆ 𝑉 |
18 | 17 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ⊆ 𝑉) |
19 | 12 | elpw 4355 |
. . . . . . . . . . . 12
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ 𝒫 𝑉 ↔ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ⊆ 𝑉) |
20 | 18, 19 | sylibr 226 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ 𝒫 𝑉) |
21 | | eleq2 2867 |
. . . . . . . . . . . . . . . 16
⊢ (ran
𝐼 = 𝐿 → (𝑒 ∈ ran 𝐼 ↔ 𝑒 ∈ 𝐿)) |
22 | 21 | 3ad2ant3 1166 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼 ↔ 𝑒 ∈ 𝐿)) |
23 | | ssrelrn 5518 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ⊆ (𝑉 × 𝐿) ∧ 𝑒 ∈ ran 𝐼) → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) |
24 | 23 | ex 402 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ⊆ (𝑉 × 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒)) |
25 | 24 | 3ad2ant2 1165 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒)) |
26 | 22, 25 | sylbird 252 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ 𝐿 → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒)) |
27 | 26 | imp 396 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) |
28 | | df-ne 2972 |
. . . . . . . . . . . . . 14
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ≠ ∅ ↔ ¬ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = ∅) |
29 | | rabn0 4158 |
. . . . . . . . . . . . . 14
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ≠ ∅ ↔ ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) |
30 | 28, 29 | bitr3i 269 |
. . . . . . . . . . . . 13
⊢ (¬
{𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = ∅ ↔ ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) |
31 | 27, 30 | sylibr 226 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → ¬ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = ∅) |
32 | 12 | elsn 4383 |
. . . . . . . . . . . 12
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ {∅} ↔ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = ∅) |
33 | 31, 32 | sylnibr 321 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → ¬ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ {∅}) |
34 | 20, 33 | eldifd 3780 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ (𝒫 𝑉 ∖ {∅})) |
35 | 34 | fmpttd 6611 |
. . . . . . . . 9
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}):𝐿⟶(𝒫 𝑉 ∖ {∅})) |
36 | | simpl 475 |
. . . . . . . . . 10
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒})) |
37 | | simpr 478 |
. . . . . . . . . 10
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → dom 𝐸 = 𝐿) |
38 | 36, 37 | feq12d 6244 |
. . . . . . . . 9
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}):𝐿⟶(𝒫 𝑉 ∖ {∅}))) |
39 | 35, 38 | syl5ibr 238 |
. . . . . . . 8
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
40 | 16, 39 | mpdan 679 |
. . . . . . 7
⊢ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
41 | 40 | imp 396 |
. . . . . 6
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
42 | 8, 41 | syl6bir 246 |
. . . . 5
⊢ (𝑉 = 𝑃 → ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
43 | 42 | expdimp 445 |
. . . 4
⊢ ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
44 | 43 | impcom 397 |
. . 3
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
45 | | incistruhgr.e |
. . . . . 6
⊢ 𝐸 = (iEdg‘𝐺) |
46 | 10, 45 | isuhgr 26295 |
. . . . 5
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
47 | 46 | 3ad2ant1 1164 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
48 | 47 | adantr 473 |
. . 3
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
49 | 44, 48 | mpbird 249 |
. 2
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) → 𝐺 ∈ UHGraph) |
50 | 49 | ex 402 |
1
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph)) |