MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incistruhgr Structured version   Visualization version   GIF version

Theorem incistruhgr 29096
Description: An incidence structure 𝑃, 𝐿, 𝐼 "where 𝑃 is a set whose elements are called points, 𝐿 is a distinct set whose elements are called lines and 𝐼 ⊆ (𝑃 × 𝐿) is the incidence relation" (see Wikipedia "Incidence structure" (24-Oct-2020), https://en.wikipedia.org/wiki/Incidence_structure) implies an undirected hypergraph, if the incidence relation is right-total (to exclude empty edges). The points become the vertices, and the edge function is derived from the incidence relation by mapping each line ("edge") to the set of vertices incident to the line/edge. With 𝑃 = (Base‘𝑆) and by defining two new slots for lines and incidence relations (analogous to LineG and Itv) and enhancing the definition of iEdg accordingly, it would even be possible to express that a corresponding incidence structure is an undirected hypergraph. By choosing the incident relation appropriately, other kinds of undirected graphs (pseudographs, multigraphs, simple graphs, etc.) could be defined. (Contributed by AV, 24-Oct-2020.)
Hypotheses
Ref Expression
incistruhgr.v 𝑉 = (Vtx‘𝐺)
incistruhgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
incistruhgr ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝐼,𝑣   𝑒,𝐿,𝑣   𝑃,𝑒,𝑣   𝑒,𝑉,𝑣   𝑒,𝑊
Allowed substitution hints:   𝐸(𝑣)   𝐺(𝑣)   𝑊(𝑣)

Proof of Theorem incistruhgr
StepHypRef Expression
1 rabeq 3451 . . . . . . . . 9 (𝑉 = 𝑃 → {𝑣𝑉𝑣𝐼𝑒} = {𝑣𝑃𝑣𝐼𝑒})
21mpteq2dv 5244 . . . . . . . 8 (𝑉 = 𝑃 → (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))
32eqeq2d 2748 . . . . . . 7 (𝑉 = 𝑃 → (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ↔ 𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})))
4 xpeq1 5699 . . . . . . . . 9 (𝑉 = 𝑃 → (𝑉 × 𝐿) = (𝑃 × 𝐿))
54sseq2d 4016 . . . . . . . 8 (𝑉 = 𝑃 → (𝐼 ⊆ (𝑉 × 𝐿) ↔ 𝐼 ⊆ (𝑃 × 𝐿)))
653anbi2d 1443 . . . . . . 7 (𝑉 = 𝑃 → ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ↔ (𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)))
73, 6anbi12d 632 . . . . . 6 (𝑉 = 𝑃 → ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) ↔ (𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿))))
8 dmeq 5914 . . . . . . . . 9 (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) → dom 𝐸 = dom (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}))
9 incistruhgr.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
109fvexi 6920 . . . . . . . . . . 11 𝑉 ∈ V
1110rabex 5339 . . . . . . . . . 10 {𝑣𝑉𝑣𝐼𝑒} ∈ V
12 eqid 2737 . . . . . . . . . 10 (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒})
1311, 12dmmpti 6712 . . . . . . . . 9 dom (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) = 𝐿
148, 13eqtrdi 2793 . . . . . . . 8 (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) → dom 𝐸 = 𝐿)
15 ssrab2 4080 . . . . . . . . . . . . 13 {𝑣𝑉𝑣𝐼𝑒} ⊆ 𝑉
1615a1i 11 . . . . . . . . . . . 12 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → {𝑣𝑉𝑣𝐼𝑒} ⊆ 𝑉)
1711elpw 4604 . . . . . . . . . . . 12 ({𝑣𝑉𝑣𝐼𝑒} ∈ 𝒫 𝑉 ↔ {𝑣𝑉𝑣𝐼𝑒} ⊆ 𝑉)
1816, 17sylibr 234 . . . . . . . . . . 11 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → {𝑣𝑉𝑣𝐼𝑒} ∈ 𝒫 𝑉)
19 eleq2 2830 . . . . . . . . . . . . . . . 16 (ran 𝐼 = 𝐿 → (𝑒 ∈ ran 𝐼𝑒𝐿))
20193ad2ant3 1136 . . . . . . . . . . . . . . 15 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼𝑒𝐿))
21 ssrelrn 5905 . . . . . . . . . . . . . . . . 17 ((𝐼 ⊆ (𝑉 × 𝐿) ∧ 𝑒 ∈ ran 𝐼) → ∃𝑣𝑉 𝑣𝐼𝑒)
2221ex 412 . . . . . . . . . . . . . . . 16 (𝐼 ⊆ (𝑉 × 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣𝑉 𝑣𝐼𝑒))
23223ad2ant2 1135 . . . . . . . . . . . . . . 15 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣𝑉 𝑣𝐼𝑒))
2420, 23sylbird 260 . . . . . . . . . . . . . 14 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒𝐿 → ∃𝑣𝑉 𝑣𝐼𝑒))
2524imp 406 . . . . . . . . . . . . 13 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → ∃𝑣𝑉 𝑣𝐼𝑒)
26 df-ne 2941 . . . . . . . . . . . . . 14 ({𝑣𝑉𝑣𝐼𝑒} ≠ ∅ ↔ ¬ {𝑣𝑉𝑣𝐼𝑒} = ∅)
27 rabn0 4389 . . . . . . . . . . . . . 14 ({𝑣𝑉𝑣𝐼𝑒} ≠ ∅ ↔ ∃𝑣𝑉 𝑣𝐼𝑒)
2826, 27bitr3i 277 . . . . . . . . . . . . 13 (¬ {𝑣𝑉𝑣𝐼𝑒} = ∅ ↔ ∃𝑣𝑉 𝑣𝐼𝑒)
2925, 28sylibr 234 . . . . . . . . . . . 12 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → ¬ {𝑣𝑉𝑣𝐼𝑒} = ∅)
3011elsn 4641 . . . . . . . . . . . 12 ({𝑣𝑉𝑣𝐼𝑒} ∈ {∅} ↔ {𝑣𝑉𝑣𝐼𝑒} = ∅)
3129, 30sylnibr 329 . . . . . . . . . . 11 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → ¬ {𝑣𝑉𝑣𝐼𝑒} ∈ {∅})
3218, 31eldifd 3962 . . . . . . . . . 10 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → {𝑣𝑉𝑣𝐼𝑒} ∈ (𝒫 𝑉 ∖ {∅}))
3332fmpttd 7135 . . . . . . . . 9 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}):𝐿⟶(𝒫 𝑉 ∖ {∅}))
34 simpl 482 . . . . . . . . . 10 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → 𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}))
35 simpr 484 . . . . . . . . . 10 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → dom 𝐸 = 𝐿)
3634, 35feq12d 6724 . . . . . . . . 9 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}):𝐿⟶(𝒫 𝑉 ∖ {∅})))
3733, 36imbitrrid 246 . . . . . . . 8 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
3814, 37mpdan 687 . . . . . . 7 (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) → ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
3938imp 406 . . . . . 6 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
407, 39biimtrrdi 254 . . . . 5 (𝑉 = 𝑃 → ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
4140expdimp 452 . . . 4 ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
4241impcom 407 . . 3 (((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
43 incistruhgr.e . . . . . 6 𝐸 = (iEdg‘𝐺)
449, 43isuhgr 29077 . . . . 5 (𝐺𝑊 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
45443ad2ant1 1134 . . . 4 ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
4645adantr 480 . . 3 (((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
4742, 46mpbird 257 . 2 (((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))) → 𝐺 ∈ UHGraph)
4847ex 412 1 ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  cdif 3948  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  dom cdm 5685  ran crn 5686  wf 6557  cfv 6561  Vtxcvtx 29013  iEdgciedg 29014  UHGraphcuhgr 29073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-uhgr 29075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator