MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incistruhgr Structured version   Visualization version   GIF version

Theorem incistruhgr 28606
Description: An incidence structure 𝑃, 𝐿, 𝐼 "where 𝑃 is a set whose elements are called points, 𝐿 is a distinct set whose elements are called lines and 𝐼 ⊆ (𝑃 × 𝐿) is the incidence relation" (see Wikipedia "Incidence structure" (24-Oct-2020), https://en.wikipedia.org/wiki/Incidence_structure) implies an undirected hypergraph, if the incidence relation is right-total (to exclude empty edges). The points become the vertices, and the edge function is derived from the incidence relation by mapping each line ("edge") to the set of vertices incident to the line/edge. With 𝑃 = (Base‘𝑆) and by defining two new slots for lines and incidence relations (analogous to LineG and Itv) and enhancing the definition of iEdg accordingly, it would even be possible to express that a corresponding incidence structure is an undirected hypergraph. By choosing the incident relation appropriately, other kinds of undirected graphs (pseudographs, multigraphs, simple graphs, etc.) could be defined. (Contributed by AV, 24-Oct-2020.)
Hypotheses
Ref Expression
incistruhgr.v 𝑉 = (Vtx‘𝐺)
incistruhgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
incistruhgr ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝐼,𝑣   𝑒,𝐿,𝑣   𝑃,𝑒,𝑣   𝑒,𝑉,𝑣   𝑒,𝑊
Allowed substitution hints:   𝐸(𝑣)   𝐺(𝑣)   𝑊(𝑣)

Proof of Theorem incistruhgr
StepHypRef Expression
1 rabeq 3444 . . . . . . . . 9 (𝑉 = 𝑃 → {𝑣𝑉𝑣𝐼𝑒} = {𝑣𝑃𝑣𝐼𝑒})
21mpteq2dv 5249 . . . . . . . 8 (𝑉 = 𝑃 → (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))
32eqeq2d 2741 . . . . . . 7 (𝑉 = 𝑃 → (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ↔ 𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})))
4 xpeq1 5689 . . . . . . . . 9 (𝑉 = 𝑃 → (𝑉 × 𝐿) = (𝑃 × 𝐿))
54sseq2d 4013 . . . . . . . 8 (𝑉 = 𝑃 → (𝐼 ⊆ (𝑉 × 𝐿) ↔ 𝐼 ⊆ (𝑃 × 𝐿)))
653anbi2d 1439 . . . . . . 7 (𝑉 = 𝑃 → ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ↔ (𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)))
73, 6anbi12d 629 . . . . . 6 (𝑉 = 𝑃 → ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) ↔ (𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿))))
8 dmeq 5902 . . . . . . . . 9 (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) → dom 𝐸 = dom (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}))
9 incistruhgr.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
109fvexi 6904 . . . . . . . . . . 11 𝑉 ∈ V
1110rabex 5331 . . . . . . . . . 10 {𝑣𝑉𝑣𝐼𝑒} ∈ V
12 eqid 2730 . . . . . . . . . 10 (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒})
1311, 12dmmpti 6693 . . . . . . . . 9 dom (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) = 𝐿
148, 13eqtrdi 2786 . . . . . . . 8 (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) → dom 𝐸 = 𝐿)
15 ssrab2 4076 . . . . . . . . . . . . 13 {𝑣𝑉𝑣𝐼𝑒} ⊆ 𝑉
1615a1i 11 . . . . . . . . . . . 12 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → {𝑣𝑉𝑣𝐼𝑒} ⊆ 𝑉)
1711elpw 4605 . . . . . . . . . . . 12 ({𝑣𝑉𝑣𝐼𝑒} ∈ 𝒫 𝑉 ↔ {𝑣𝑉𝑣𝐼𝑒} ⊆ 𝑉)
1816, 17sylibr 233 . . . . . . . . . . 11 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → {𝑣𝑉𝑣𝐼𝑒} ∈ 𝒫 𝑉)
19 eleq2 2820 . . . . . . . . . . . . . . . 16 (ran 𝐼 = 𝐿 → (𝑒 ∈ ran 𝐼𝑒𝐿))
20193ad2ant3 1133 . . . . . . . . . . . . . . 15 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼𝑒𝐿))
21 ssrelrn 5893 . . . . . . . . . . . . . . . . 17 ((𝐼 ⊆ (𝑉 × 𝐿) ∧ 𝑒 ∈ ran 𝐼) → ∃𝑣𝑉 𝑣𝐼𝑒)
2221ex 411 . . . . . . . . . . . . . . . 16 (𝐼 ⊆ (𝑉 × 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣𝑉 𝑣𝐼𝑒))
23223ad2ant2 1132 . . . . . . . . . . . . . . 15 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣𝑉 𝑣𝐼𝑒))
2420, 23sylbird 259 . . . . . . . . . . . . . 14 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒𝐿 → ∃𝑣𝑉 𝑣𝐼𝑒))
2524imp 405 . . . . . . . . . . . . 13 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → ∃𝑣𝑉 𝑣𝐼𝑒)
26 df-ne 2939 . . . . . . . . . . . . . 14 ({𝑣𝑉𝑣𝐼𝑒} ≠ ∅ ↔ ¬ {𝑣𝑉𝑣𝐼𝑒} = ∅)
27 rabn0 4384 . . . . . . . . . . . . . 14 ({𝑣𝑉𝑣𝐼𝑒} ≠ ∅ ↔ ∃𝑣𝑉 𝑣𝐼𝑒)
2826, 27bitr3i 276 . . . . . . . . . . . . 13 (¬ {𝑣𝑉𝑣𝐼𝑒} = ∅ ↔ ∃𝑣𝑉 𝑣𝐼𝑒)
2925, 28sylibr 233 . . . . . . . . . . . 12 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → ¬ {𝑣𝑉𝑣𝐼𝑒} = ∅)
3011elsn 4642 . . . . . . . . . . . 12 ({𝑣𝑉𝑣𝐼𝑒} ∈ {∅} ↔ {𝑣𝑉𝑣𝐼𝑒} = ∅)
3129, 30sylnibr 328 . . . . . . . . . . 11 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → ¬ {𝑣𝑉𝑣𝐼𝑒} ∈ {∅})
3218, 31eldifd 3958 . . . . . . . . . 10 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → {𝑣𝑉𝑣𝐼𝑒} ∈ (𝒫 𝑉 ∖ {∅}))
3332fmpttd 7115 . . . . . . . . 9 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}):𝐿⟶(𝒫 𝑉 ∖ {∅}))
34 simpl 481 . . . . . . . . . 10 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → 𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}))
35 simpr 483 . . . . . . . . . 10 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → dom 𝐸 = 𝐿)
3634, 35feq12d 6704 . . . . . . . . 9 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}):𝐿⟶(𝒫 𝑉 ∖ {∅})))
3733, 36imbitrrid 245 . . . . . . . 8 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
3814, 37mpdan 683 . . . . . . 7 (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) → ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
3938imp 405 . . . . . 6 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
407, 39syl6bir 253 . . . . 5 (𝑉 = 𝑃 → ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
4140expdimp 451 . . . 4 ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
4241impcom 406 . . 3 (((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))) → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
43 incistruhgr.e . . . . . 6 𝐸 = (iEdg‘𝐺)
449, 43isuhgr 28587 . . . . 5 (𝐺𝑊 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
45443ad2ant1 1131 . . . 4 ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
4645adantr 479 . . 3 (((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
4742, 46mpbird 256 . 2 (((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))) → 𝐺 ∈ UHGraph)
4847ex 411 1 ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wne 2938  wrex 3068  {crab 3430  cdif 3944  wss 3947  c0 4321  𝒫 cpw 4601  {csn 4627   class class class wbr 5147  cmpt 5230   × cxp 5673  dom cdm 5675  ran crn 5676  wf 6538  cfv 6542  Vtxcvtx 28523  iEdgciedg 28524  UHGraphcuhgr 28583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-uhgr 28585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator