MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr1 Structured version   Visualization version   GIF version

Theorem 3adantr1 1169
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)

Proof of Theorem 3adantr1
StepHypRef Expression
1 3simpc 1150 . 2 ((𝜏𝜓𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 593 1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  3adant3r1  1182  3ad2antr3  1190  swopo  5599  omeulem1  8581  divmuldiv  11913  imasmnd2  18661  imasgrp2  18937  srgbinomlem2  20049  imasring  20142  abvdiv  20444  mdetunilem9  22121  lly1stc  22999  icccvx  24465  dchrpt  26767  dipsubdir  30096  poimirlem4  36487  fdc  36608  unichnidl  36894  dmncan1  36939  pexmidlem6N  38841  erngdvlem3  39856  erngdvlem3-rN  39864  dvalveclem  39891  dvhvaddass  39963  dvhlveclem  39974  issmflem  45433  prproropf1olem3  46163  imasrng  46668
  Copyright terms: Public domain W3C validator