MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr1 Structured version   Visualization version   GIF version

Theorem 3adantr1 1168
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)

Proof of Theorem 3adantr1
StepHypRef Expression
1 3simpc 1149 . 2 ((𝜏𝜓𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 593 1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3adant3r1  1181  3ad2antr3  1189  swopo  5607  omeulem1  8618  divmuldiv  11964  imasmnd2  18799  imasgrp2  19085  imasrng  20194  srgbinomlem2  20244  imasring  20343  abvdiv  20846  mdetunilem9  22641  lly1stc  23519  icccvx  24994  dchrpt  27325  dipsubdir  30876  poimirlem4  37610  fdc  37731  unichnidl  38017  dmncan1  38062  pexmidlem6N  39957  erngdvlem3  40972  erngdvlem3-rN  40980  dvalveclem  41007  dvhvaddass  41079  dvhlveclem  41090  issmflem  46682  prproropf1olem3  47429
  Copyright terms: Public domain W3C validator