MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr1 Structured version   Visualization version   GIF version

Theorem 3adantr1 1170
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)

Proof of Theorem 3adantr1
StepHypRef Expression
1 3simpc 1150 . 2 ((𝜏𝜓𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 593 1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3adant3r1  1183  3ad2antr3  1191  swopo  5560  omeulem1  8549  divmuldiv  11889  imasmnd2  18708  imasgrp2  18994  imasrng  20093  srgbinomlem2  20143  imasring  20246  abvdiv  20745  mdetunilem9  22514  lly1stc  23390  icccvx  24855  dchrpt  27185  dipsubdir  30784  poimirlem4  37625  fdc  37746  unichnidl  38032  dmncan1  38077  pexmidlem6N  39976  erngdvlem3  40991  erngdvlem3-rN  40999  dvalveclem  41026  dvhvaddass  41098  dvhlveclem  41109  issmflem  46732  prproropf1olem3  47510
  Copyright terms: Public domain W3C validator