| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r1 1183 3ad2antr3 1191 swopo 5560 omeulem1 8549 divmuldiv 11889 imasmnd2 18708 imasgrp2 18994 imasrng 20093 srgbinomlem2 20143 imasring 20246 abvdiv 20745 mdetunilem9 22514 lly1stc 23390 icccvx 24855 dchrpt 27185 dipsubdir 30784 poimirlem4 37625 fdc 37746 unichnidl 38032 dmncan1 38077 pexmidlem6N 39976 erngdvlem3 40991 erngdvlem3-rN 40999 dvalveclem 41026 dvhvaddass 41098 dvhlveclem 41109 issmflem 46732 prproropf1olem3 47510 |
| Copyright terms: Public domain | W3C validator |