![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantr1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1188 | . 2 ⊢ ((𝜏 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 588 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1115 |
This theorem is referenced by: 3adant3r1 1239 3ad2antr3 1247 swopo 5274 omeulem1 7930 divmuldiv 11052 imasmnd2 17681 imasgrp2 17885 srgbinomlem2 18896 imasring 18974 abvdiv 19194 mdetunilem9 20795 lly1stc 21671 icccvx 23120 dchrpt 25406 dipsubdir 28259 poimirlem4 33958 fdc 34084 unichnidl 34373 dmncan1 34418 pexmidlem6N 36051 erngdvlem3 37066 erngdvlem3-rN 37074 dvalveclem 37101 dvhvaddass 37173 dvhlveclem 37184 issmflem 41731 |
Copyright terms: Public domain | W3C validator |