MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr1 Structured version   Visualization version   GIF version

Theorem 3adantr1 1168
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)

Proof of Theorem 3adantr1
StepHypRef Expression
1 3simpc 1149 . 2 ((𝜏𝜓𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 593 1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  3adant3r1  1181  3ad2antr3  1189  swopo  5514  omeulem1  8413  divmuldiv  11675  imasmnd2  18422  imasgrp2  18690  srgbinomlem2  19777  imasring  19858  abvdiv  20097  mdetunilem9  21769  lly1stc  22647  icccvx  24113  dchrpt  26415  dipsubdir  29210  poimirlem4  35781  fdc  35903  unichnidl  36189  dmncan1  36234  pexmidlem6N  37989  erngdvlem3  39004  erngdvlem3-rN  39012  dvalveclem  39039  dvhvaddass  39111  dvhlveclem  39122  issmflem  44263  prproropf1olem3  44957
  Copyright terms: Public domain W3C validator