| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r1 1183 3ad2antr3 1191 swopo 5572 omeulem1 8594 divmuldiv 11941 imasmnd2 18752 imasgrp2 19038 imasrng 20137 srgbinomlem2 20187 imasring 20290 abvdiv 20789 mdetunilem9 22558 lly1stc 23434 icccvx 24899 dchrpt 27230 dipsubdir 30829 poimirlem4 37648 fdc 37769 unichnidl 38055 dmncan1 38100 pexmidlem6N 39994 erngdvlem3 41009 erngdvlem3-rN 41017 dvalveclem 41044 dvhvaddass 41116 dvhlveclem 41127 issmflem 46756 prproropf1olem3 47519 |
| Copyright terms: Public domain | W3C validator |