| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r1 1183 3ad2antr3 1191 swopo 5538 omeulem1 8500 divmuldiv 11824 imasmnd2 18648 imasgrp2 18934 imasrng 20062 srgbinomlem2 20112 imasring 20215 abvdiv 20714 mdetunilem9 22505 lly1stc 23381 icccvx 24846 dchrpt 27176 dipsubdir 30792 poimirlem4 37604 fdc 37725 unichnidl 38011 dmncan1 38056 pexmidlem6N 39954 erngdvlem3 40969 erngdvlem3-rN 40977 dvalveclem 41004 dvhvaddass 41076 dvhlveclem 41087 issmflem 46708 prproropf1olem3 47489 |
| Copyright terms: Public domain | W3C validator |