MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr1 Structured version   Visualization version   GIF version

Theorem 3adantr1 1170
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)

Proof of Theorem 3adantr1
StepHypRef Expression
1 3simpc 1150 . 2 ((𝜏𝜓𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 593 1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3adant3r1  1183  3ad2antr3  1191  swopo  5538  omeulem1  8500  divmuldiv  11824  imasmnd2  18648  imasgrp2  18934  imasrng  20062  srgbinomlem2  20112  imasring  20215  abvdiv  20714  mdetunilem9  22505  lly1stc  23381  icccvx  24846  dchrpt  27176  dipsubdir  30792  poimirlem4  37604  fdc  37725  unichnidl  38011  dmncan1  38056  pexmidlem6N  39954  erngdvlem3  40969  erngdvlem3-rN  40977  dvalveclem  41004  dvhvaddass  41076  dvhlveclem  41087  issmflem  46708  prproropf1olem3  47489
  Copyright terms: Public domain W3C validator