![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantr1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1149 | . 2 ⊢ ((𝜏 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3adant3r1 1181 3ad2antr3 1189 swopo 5607 omeulem1 8618 divmuldiv 11964 imasmnd2 18799 imasgrp2 19085 imasrng 20194 srgbinomlem2 20244 imasring 20343 abvdiv 20846 mdetunilem9 22641 lly1stc 23519 icccvx 24994 dchrpt 27325 dipsubdir 30876 poimirlem4 37610 fdc 37731 unichnidl 38017 dmncan1 38062 pexmidlem6N 39957 erngdvlem3 40972 erngdvlem3-rN 40980 dvalveclem 41007 dvhvaddass 41079 dvhlveclem 41090 issmflem 46682 prproropf1olem3 47429 |
Copyright terms: Public domain | W3C validator |