![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantr1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 592 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3adant3r1 1182 3ad2antr3 1190 swopo 5619 omeulem1 8638 divmuldiv 11994 imasmnd2 18809 imasgrp2 19095 imasrng 20204 srgbinomlem2 20254 imasring 20353 abvdiv 20852 mdetunilem9 22647 lly1stc 23525 icccvx 25000 dchrpt 27329 dipsubdir 30880 poimirlem4 37584 fdc 37705 unichnidl 37991 dmncan1 38036 pexmidlem6N 39932 erngdvlem3 40947 erngdvlem3-rN 40955 dvalveclem 40982 dvhvaddass 41054 dvhlveclem 41065 issmflem 46648 prproropf1olem3 47379 |
Copyright terms: Public domain | W3C validator |