MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr1 Structured version   Visualization version   GIF version

Theorem 3adantr1 1170
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)

Proof of Theorem 3adantr1
StepHypRef Expression
1 3simpc 1150 . 2 ((𝜏𝜓𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 593 1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3adant3r1  1183  3ad2antr3  1191  swopo  5550  omeulem1  8523  divmuldiv  11858  imasmnd2  18677  imasgrp2  18963  imasrng  20062  srgbinomlem2  20112  imasring  20215  abvdiv  20714  mdetunilem9  22483  lly1stc  23359  icccvx  24824  dchrpt  27154  dipsubdir  30750  poimirlem4  37591  fdc  37712  unichnidl  37998  dmncan1  38043  pexmidlem6N  39942  erngdvlem3  40957  erngdvlem3-rN  40965  dvalveclem  40992  dvhvaddass  41064  dvhlveclem  41075  issmflem  46698  prproropf1olem3  47479
  Copyright terms: Public domain W3C validator