Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adantr1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1148 | . 2 ⊢ ((𝜏 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 592 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3adant3r1 1180 3ad2antr3 1188 swopo 5505 omeulem1 8375 divmuldiv 11605 imasmnd2 18337 imasgrp2 18605 srgbinomlem2 19692 imasring 19773 abvdiv 20012 mdetunilem9 21677 lly1stc 22555 icccvx 24019 dchrpt 26320 dipsubdir 29111 poimirlem4 35708 fdc 35830 unichnidl 36116 dmncan1 36161 pexmidlem6N 37916 erngdvlem3 38931 erngdvlem3-rN 38939 dvalveclem 38966 dvhvaddass 39038 dvhlveclem 39049 issmflem 44150 prproropf1olem3 44845 |
Copyright terms: Public domain | W3C validator |