Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adantr1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1149 | . 2 ⊢ ((𝜏 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3adant3r1 1181 3ad2antr3 1189 swopo 5514 omeulem1 8413 divmuldiv 11675 imasmnd2 18422 imasgrp2 18690 srgbinomlem2 19777 imasring 19858 abvdiv 20097 mdetunilem9 21769 lly1stc 22647 icccvx 24113 dchrpt 26415 dipsubdir 29210 poimirlem4 35781 fdc 35903 unichnidl 36189 dmncan1 36234 pexmidlem6N 37989 erngdvlem3 39004 erngdvlem3-rN 39012 dvalveclem 39039 dvhvaddass 39111 dvhlveclem 39122 issmflem 44263 prproropf1olem3 44957 |
Copyright terms: Public domain | W3C validator |