| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r1 1183 3ad2antr3 1191 swopo 5530 omeulem1 8492 divmuldiv 11816 imasmnd2 18677 imasgrp2 18963 imasrng 20090 srgbinomlem2 20140 imasring 20243 abvdiv 20739 mdetunilem9 22530 lly1stc 23406 icccvx 24870 dchrpt 27200 dipsubdir 30820 poimirlem4 37664 fdc 37785 unichnidl 38071 dmncan1 38116 pexmidlem6N 40014 erngdvlem3 41029 erngdvlem3-rN 41037 dvalveclem 41064 dvhvaddass 41136 dvhlveclem 41147 issmflem 46765 prproropf1olem3 47536 |
| Copyright terms: Public domain | W3C validator |