| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝜏 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r1 1183 3ad2antr3 1191 swopo 5557 omeulem1 8546 divmuldiv 11882 imasmnd2 18701 imasgrp2 18987 imasrng 20086 srgbinomlem2 20136 imasring 20239 abvdiv 20738 mdetunilem9 22507 lly1stc 23383 icccvx 24848 dchrpt 27178 dipsubdir 30777 poimirlem4 37618 fdc 37739 unichnidl 38025 dmncan1 38070 pexmidlem6N 39969 erngdvlem3 40984 erngdvlem3-rN 40992 dvalveclem 41019 dvhvaddass 41091 dvhlveclem 41102 issmflem 46725 prproropf1olem3 47506 |
| Copyright terms: Public domain | W3C validator |