MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr1 Structured version   Visualization version   GIF version

Theorem 3adantr1 1170
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)

Proof of Theorem 3adantr1
StepHypRef Expression
1 3simpc 1150 . 2 ((𝜏𝜓𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 593 1 ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3adant3r1  1183  3ad2antr3  1191  swopo  5572  omeulem1  8594  divmuldiv  11941  imasmnd2  18752  imasgrp2  19038  imasrng  20137  srgbinomlem2  20187  imasring  20290  abvdiv  20789  mdetunilem9  22558  lly1stc  23434  icccvx  24899  dchrpt  27230  dipsubdir  30829  poimirlem4  37648  fdc  37769  unichnidl  38055  dmncan1  38100  pexmidlem6N  39994  erngdvlem3  41009  erngdvlem3-rN  41017  dvalveclem  41044  dvhvaddass  41116  dvhlveclem  41127  issmflem  46756  prproropf1olem3  47519
  Copyright terms: Public domain W3C validator