Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltcvrntr | Structured version Visualization version GIF version |
Description: Non-transitive condition for the covers relation. (Contributed by NM, 18-Jun-2012.) |
Ref | Expression |
---|---|
ltltncvr.b | ⊢ 𝐵 = (Base‘𝐾) |
ltltncvr.s | ⊢ < = (lt‘𝐾) |
ltltncvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
ltcvrntr | ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltltncvr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | ltltncvr.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
3 | ltltncvr.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | 1, 2, 3 | cvrlt 36868 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑌𝐶𝑍) → 𝑌 < 𝑍) |
5 | 4 | ex 416 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌𝐶𝑍 → 𝑌 < 𝑍)) |
6 | 5 | 3adant3r1 1179 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌𝐶𝑍 → 𝑌 < 𝑍)) |
7 | 1, 2, 3 | ltltncvr 37021 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → ¬ 𝑋𝐶𝑍)) |
8 | 6, 7 | sylan2d 607 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 Basecbs 16541 ltcplt 17617 ⋖ ccvr 36860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-covers 36864 |
This theorem is referenced by: cvrntr 37023 |
Copyright terms: Public domain | W3C validator |