MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcau Structured version   Visualization version   GIF version

Theorem ulmcau 26248
Description: A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < 𝑥 there is a 𝑗 such that for all 𝑗𝑘 the functions 𝐹(𝑘) and 𝐹(𝑗) are uniformly within 𝑥 of each other on 𝑆. This is the four-quantifier version, see ulmcau2 26249 for the more conventional five-quantifier version. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
ulmcau.z 𝑍 = (ℤ𝑀)
ulmcau.m (𝜑𝑀 ∈ ℤ)
ulmcau.s (𝜑𝑆𝑉)
ulmcau.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
Assertion
Ref Expression
ulmcau (𝜑 → (𝐹 ∈ dom (⇝𝑢𝑆) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝑧,𝐹   𝜑,𝑗,𝑘,𝑥,𝑧   𝑆,𝑗,𝑘,𝑥,𝑧   𝑗,𝑍,𝑘,𝑥,𝑧   𝑗,𝑀,𝑘,𝑧
Allowed substitution hints:   𝑀(𝑥)   𝑉(𝑥,𝑧,𝑗,𝑘)

Proof of Theorem ulmcau
Dummy variables 𝑔 𝑚 𝑛 𝑝 𝑞 𝑟 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5888 . . . 4 (𝐹 ∈ dom (⇝𝑢𝑆) → (𝐹 ∈ dom (⇝𝑢𝑆) ↔ ∃𝑔 𝐹(⇝𝑢𝑆)𝑔))
21ibi 267 . . 3 (𝐹 ∈ dom (⇝𝑢𝑆) → ∃𝑔 𝐹(⇝𝑢𝑆)𝑔)
3 ulmcau.z . . . . . . . 8 𝑍 = (ℤ𝑀)
4 ulmcau.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
54ad2antrr 723 . . . . . . . 8 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
6 ulmcau.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
76ad2antrr 723 . . . . . . . 8 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
8 eqidd 2725 . . . . . . . 8 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
9 eqidd 2725 . . . . . . . 8 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑧𝑆) → (𝑔𝑧) = (𝑔𝑧))
10 simplr 766 . . . . . . . 8 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → 𝐹(⇝𝑢𝑆)𝑔)
11 rphalfcl 12998 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
1211adantl 481 . . . . . . . 8 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
133, 5, 7, 8, 9, 10, 12ulmi 26239 . . . . . . 7 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2))
14 simpr 484 . . . . . . . . . . 11 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗𝑍)
1514, 3eleqtrdi 2835 . . . . . . . . . 10 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
16 eluzelz 12829 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
17 uzid 12834 . . . . . . . . . 10 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
18 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1918fveq1d 6883 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑗)‘𝑧))
2019fvoveq1d 7423 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) = (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))))
2120breq1d 5148 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ↔ (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)))
2221ralbidv 3169 . . . . . . . . . . 11 (𝑘 = 𝑗 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)))
2322rspcv 3600 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)))
2415, 16, 17, 234syl 19 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)))
25 r19.26 3103 . . . . . . . . . . . . . . 15 (∀𝑧𝑆 ((abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) ↔ (∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)))
267ffvelcdmda 7076 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
2726adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
28 elmapi 8839 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑗) ∈ (ℂ ↑m 𝑆) → (𝐹𝑗):𝑆⟶ℂ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗):𝑆⟶ℂ)
3029ffvelcdmda 7076 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑗)‘𝑧) ∈ ℂ)
31 ulmcl 26234 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹(⇝𝑢𝑆)𝑔𝑔:𝑆⟶ℂ)
3231ad4antlr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑔:𝑆⟶ℂ)
3332ffvelcdmda 7076 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (𝑔𝑧) ∈ ℂ)
3430, 33abssubd 15397 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) = (abs‘((𝑔𝑧) − ((𝐹𝑗)‘𝑧))))
3534breq1d 5148 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ↔ (abs‘((𝑔𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
3635biimpd 228 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → (abs‘((𝑔𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
373uztrn2 12838 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
38 ffvelcdm 7073 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
397, 37, 38syl2an 595 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
4039anassrs 467 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
41 elmapi 8839 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘):𝑆⟶ℂ)
4342ffvelcdmda 7076 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
44 rpre 12979 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4544ad4antlr 730 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝑥 ∈ ℝ)
46 abs3lem 15282 . . . . . . . . . . . . . . . . . . 19 (((((𝐹𝑘)‘𝑧) ∈ ℂ ∧ ((𝐹𝑗)‘𝑧) ∈ ℂ) ∧ ((𝑔𝑧) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ (abs‘((𝑔𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
4743, 30, 33, 45, 46syl22anc 836 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (((abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ (abs‘((𝑔𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
4836, 47sylan2d 604 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (((abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
4948ancomsd 465 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (((abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5049ralimdva 3159 . . . . . . . . . . . . . . 15 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 ((abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5125, 50biimtrrid 242 . . . . . . . . . . . . . 14 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5251expdimp 452 . . . . . . . . . . . . 13 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5352an32s 649 . . . . . . . . . . . 12 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5453ralimdva 3159 . . . . . . . . . . 11 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5554ex 412 . . . . . . . . . 10 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥)))
5655com23 86 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → (∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥)))
5724, 56mpdd 43 . . . . . . . 8 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5857reximdva 3160 . . . . . . 7 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5913, 58mpd 15 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥)
6059ralrimiva 3138 . . . . 5 ((𝜑𝐹(⇝𝑢𝑆)𝑔) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥)
6160ex 412 . . . 4 (𝜑 → (𝐹(⇝𝑢𝑆)𝑔 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
6261exlimdv 1928 . . 3 (𝜑 → (∃𝑔 𝐹(⇝𝑢𝑆)𝑔 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
632, 62syl5 34 . 2 (𝜑 → (𝐹 ∈ dom (⇝𝑢𝑆) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
64 ulmrel 26231 . . . 4 Rel (⇝𝑢𝑆)
65 ulmcau.s . . . . . . . . . 10 (𝜑𝑆𝑉)
663, 4, 65, 6ulmcaulem 26247 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6766biimpa 476 . . . . . . . 8 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥)
68 rphalfcl 12998 . . . . . . . 8 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
69 breq2 5142 . . . . . . . . . . . . 13 (𝑥 = (𝑟 / 2) → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
7069ralbidv 3169 . . . . . . . . . . . 12 (𝑥 = (𝑟 / 2) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
71702ralbidv 3210 . . . . . . . . . . 11 (𝑥 = (𝑟 / 2) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
7271rexbidv 3170 . . . . . . . . . 10 (𝑥 = (𝑟 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
73 ralcom 3278 . . . . . . . . . . . . . 14 (∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑚 ∈ (ℤ𝑞)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2))
74 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑞 = 𝑘 → (ℤ𝑞) = (ℤ𝑘))
75 fveq2 6881 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑧 → ((𝐹𝑞)‘𝑤) = ((𝐹𝑞)‘𝑧))
76 fveq2 6881 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑧 → ((𝐹𝑚)‘𝑤) = ((𝐹𝑚)‘𝑧))
7775, 76oveq12d 7419 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑧 → (((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤)) = (((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧)))
7877fveq2d 6885 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) = (abs‘(((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧))))
7978breq1d 5148 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → ((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ (abs‘(((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
8079cbvralvw 3226 . . . . . . . . . . . . . . . 16 (∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2))
81 fveq2 6881 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = 𝑘 → (𝐹𝑞) = (𝐹𝑘))
8281fveq1d 6883 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 𝑘 → ((𝐹𝑞)‘𝑧) = ((𝐹𝑘)‘𝑧))
8382fvoveq1d 7423 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑘 → (abs‘(((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧))) = (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))))
8483breq1d 5148 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑘 → ((abs‘(((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2) ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
8584ralbidv 3169 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑘 → (∀𝑧𝑆 (abs‘(((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2) ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
8680, 85bitrid 283 . . . . . . . . . . . . . . 15 (𝑞 = 𝑘 → (∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
8774, 86raleqbidv 3334 . . . . . . . . . . . . . 14 (𝑞 = 𝑘 → (∀𝑚 ∈ (ℤ𝑞)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
8873, 87bitrid 283 . . . . . . . . . . . . 13 (𝑞 = 𝑘 → (∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
8988cbvralvw 3226 . . . . . . . . . . . 12 (∀𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑘 ∈ (ℤ𝑝)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2))
90 fveq2 6881 . . . . . . . . . . . . 13 (𝑝 = 𝑗 → (ℤ𝑝) = (ℤ𝑗))
9190raleqdv 3317 . . . . . . . . . . . 12 (𝑝 = 𝑗 → (∀𝑘 ∈ (ℤ𝑝)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
9289, 91bitrid 283 . . . . . . . . . . 11 (𝑝 = 𝑗 → (∀𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
9392cbvrexvw 3227 . . . . . . . . . 10 (∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2))
9472, 93bitr4di 289 . . . . . . . . 9 (𝑥 = (𝑟 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2)))
9594rspccva 3603 . . . . . . . 8 ((∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ∧ (𝑟 / 2) ∈ ℝ+) → ∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2))
9667, 68, 95syl2an 595 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) → ∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2))
973uztrn2 12838 . . . . . . . . . . 11 ((𝑝𝑍𝑞 ∈ (ℤ𝑝)) → 𝑞𝑍)
98 eqid 2724 . . . . . . . . . . . . . 14 (ℤ𝑞) = (ℤ𝑞)
99 eluzelz 12829 . . . . . . . . . . . . . . . 16 (𝑞 ∈ (ℤ𝑀) → 𝑞 ∈ ℤ)
10099, 3eleq2s 2843 . . . . . . . . . . . . . . 15 (𝑞𝑍𝑞 ∈ ℤ)
101100ad2antlr 724 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → 𝑞 ∈ ℤ)
10268adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
103102ad2antrr 723 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → (𝑟 / 2) ∈ ℝ+)
104 simplr 766 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → 𝑞𝑍)
1053uztrn2 12838 . . . . . . . . . . . . . . . 16 ((𝑞𝑍𝑚 ∈ (ℤ𝑞)) → 𝑚𝑍)
106104, 105sylan 579 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → 𝑚𝑍)
107 fveq2 6881 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
108107fveq1d 6883 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
109 eqid 2724 . . . . . . . . . . . . . . . 16 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))
110 fvex 6894 . . . . . . . . . . . . . . . 16 ((𝐹𝑚)‘𝑤) ∈ V
111108, 109, 110fvmpt 6988 . . . . . . . . . . . . . . 15 (𝑚𝑍 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))‘𝑚) = ((𝐹𝑚)‘𝑤))
112106, 111syl 17 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))‘𝑚) = ((𝐹𝑚)‘𝑤))
1136adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
114113ffvelcdmda 7076 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑m 𝑆))
115 elmapi 8839 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑛) ∈ (ℂ ↑m 𝑆) → (𝐹𝑛):𝑆⟶ℂ)
116114, 115syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑛𝑍) → (𝐹𝑛):𝑆⟶ℂ)
117116ffvelcdmda 7076 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑛𝑍) ∧ 𝑦𝑆) → ((𝐹𝑛)‘𝑦) ∈ ℂ)
118117an32s 649 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑦) ∈ ℂ)
119118fmpttd 7106 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)):𝑍⟶ℂ)
120119ffvelcdmda 7076 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) ∧ 𝑞𝑍) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) ∈ ℂ)
121 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑦 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑦))
122 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑦 → ((𝐹𝑗)‘𝑧) = ((𝐹𝑗)‘𝑦))
123121, 122oveq12d 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑦 → (((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧)) = (((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦)))
124123fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑦 → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) = (abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))))
125124breq1d 5148 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑦 → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
126125rspcv 3600 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝑆 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 → (abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
127126ralimdv 3161 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝑆 → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
128127reximdv 3162 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝑆 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
129128ralimdv 3161 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑆 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
130129impcom 407 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥𝑦𝑆) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥)
131130adantll 711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥)
132 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑞 = 𝑘 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) = ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘))
133132fvoveq1d 7423 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 = 𝑘 → (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) = (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))))
134133breq1d 5148 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑞 = 𝑘 → ((abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟))
135134cbvralvw 3226 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∀𝑘 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟)
136 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑝 = 𝑗 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝) = ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))
137136oveq2d 7417 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑝 = 𝑗 → (((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝)) = (((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗)))
138137fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑝 = 𝑗 → (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) = (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))))
139138breq1d 5148 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 = 𝑗 → ((abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟))
14090, 139raleqbidv 3334 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = 𝑗 → (∀𝑘 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟))
141135, 140bitrid 283 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = 𝑗 → (∀𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟))
142141cbvrexvw 3227 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑝𝑍𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟)
143 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
144143fveq1d 6883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑛 = 𝑘 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑘)‘𝑦))
145 eqid 2724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))
146 fvex 6894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹𝑘)‘𝑦) ∈ V
147144, 145, 146fvmpt 6988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘𝑍 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) = ((𝐹𝑘)‘𝑦))
14837, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) = ((𝐹𝑘)‘𝑦))
149 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
150149fveq1d 6883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑛 = 𝑗 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑗)‘𝑦))
151 fvex 6894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹𝑗)‘𝑦) ∈ V
152150, 145, 151fvmpt 6988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗𝑍 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗) = ((𝐹𝑗)‘𝑦))
153152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗) = ((𝐹𝑗)‘𝑦))
154148, 153oveq12d 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗)) = (((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦)))
155154fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) = (abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))))
156155breq1d 5148 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → ((abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟 ↔ (abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟))
157156ralbidva 3167 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟))
158157rexbiia 3084 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟)
159142, 158bitri 275 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑝𝑍𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟)
160 breq2 5142 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 = 𝑥 → ((abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟 ↔ (abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
161160ralbidv 3169 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 = 𝑥 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
162161rexbidv 3170 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑥 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
163159, 162bitrid 283 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑥 → (∃𝑝𝑍𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
164163cbvralvw 3226 . . . . . . . . . . . . . . . . . . . 20 (∀𝑟 ∈ ℝ+𝑝𝑍𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥)
165131, 164sylibr 233 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → ∀𝑟 ∈ ℝ+𝑝𝑍𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟)
1663fvexi 6895 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ∈ V
167166mptex 7216 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ V
168167a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ V)
1693, 120, 165, 168caucvg 15622 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ dom ⇝ )
170169ralrimiva 3138 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → ∀𝑦𝑆 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ dom ⇝ )
171170ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) → ∀𝑦𝑆 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ dom ⇝ )
172 fveq2 6881 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑛)‘𝑤))
173172mpteq2dv 5240 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
174173eleq1d 2810 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ dom ⇝ ↔ (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ∈ dom ⇝ ))
175174rspccva 3603 . . . . . . . . . . . . . . . 16 ((∀𝑦𝑆 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ dom ⇝ ∧ 𝑤𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ∈ dom ⇝ )
176171, 175sylan 579 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ∈ dom ⇝ )
177 climdm 15495 . . . . . . . . . . . . . . 15 ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ∈ dom ⇝ ↔ (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ⇝ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))
178176, 177sylib 217 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ⇝ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))
17998, 101, 103, 112, 178climi2 15452 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → ∃𝑣 ∈ (ℤ𝑞)∀𝑚 ∈ (ℤ𝑣)(abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2))
18098r19.29uz 15294 . . . . . . . . . . . . . . 15 ((∀𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ ∃𝑣 ∈ (ℤ𝑞)∀𝑚 ∈ (ℤ𝑣)(abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → ∃𝑣 ∈ (ℤ𝑞)∀𝑚 ∈ (ℤ𝑣)((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)))
18198r19.2uz 15295 . . . . . . . . . . . . . . 15 (∃𝑣 ∈ (ℤ𝑞)∀𝑚 ∈ (ℤ𝑣)((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → ∃𝑚 ∈ (ℤ𝑞)((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)))
182180, 181syl 17 . . . . . . . . . . . . . 14 ((∀𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ ∃𝑣 ∈ (ℤ𝑞)∀𝑚 ∈ (ℤ𝑣)(abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → ∃𝑚 ∈ (ℤ𝑞)((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)))
1836ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
184183ffvelcdmda 7076 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) → (𝐹𝑞) ∈ (ℂ ↑m 𝑆))
185 elmapi 8839 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑞) ∈ (ℂ ↑m 𝑆) → (𝐹𝑞):𝑆⟶ℂ)
186184, 185syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) → (𝐹𝑞):𝑆⟶ℂ)
187186ffvelcdmda 7076 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → ((𝐹𝑞)‘𝑤) ∈ ℂ)
188187adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → ((𝐹𝑞)‘𝑤) ∈ ℂ)
189 climcl 15440 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ⇝ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))) → ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))) ∈ ℂ)
190178, 189syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))) ∈ ℂ)
191190adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))) ∈ ℂ)
1926ad5antr 731 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
193192, 106ffvelcdmd 7077 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → (𝐹𝑚) ∈ (ℂ ↑m 𝑆))
194 elmapi 8839 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑚) ∈ (ℂ ↑m 𝑆) → (𝐹𝑚):𝑆⟶ℂ)
195193, 194syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → (𝐹𝑚):𝑆⟶ℂ)
196 simplr 766 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → 𝑤𝑆)
197195, 196ffvelcdmd 7077 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → ((𝐹𝑚)‘𝑤) ∈ ℂ)
198 rpre 12979 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
199198ad4antlr 730 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → 𝑟 ∈ ℝ)
200 abs3lem 15282 . . . . . . . . . . . . . . . 16 (((((𝐹𝑞)‘𝑤) ∈ ℂ ∧ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))) ∈ ℂ) ∧ (((𝐹𝑚)‘𝑤) ∈ ℂ ∧ 𝑟 ∈ ℝ)) → (((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
201188, 191, 197, 199, 200syl22anc 836 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → (((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
202201rexlimdva 3147 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → (∃𝑚 ∈ (ℤ𝑞)((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
203182, 202syl5 34 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → ((∀𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ ∃𝑣 ∈ (ℤ𝑞)∀𝑚 ∈ (ℤ𝑣)(abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
204179, 203mpan2d 691 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → (∀𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) → (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
205204ralimdva 3159 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) → (∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) → ∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
20697, 205sylan2 592 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑝𝑍𝑞 ∈ (ℤ𝑝))) → (∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) → ∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
207206anassrs 467 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑝𝑍) ∧ 𝑞 ∈ (ℤ𝑝)) → (∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) → ∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
208207ralimdva 3159 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑝𝑍) → (∀𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) → ∀𝑞 ∈ (ℤ𝑝)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
209208reximdva 3160 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) → (∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) → ∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
21096, 209mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) → ∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟)
211210ralrimiva 3138 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → ∀𝑟 ∈ ℝ+𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟)
2124adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → 𝑀 ∈ ℤ)
213 eqidd 2725 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ (𝑞𝑍𝑤𝑆)) → ((𝐹𝑞)‘𝑤) = ((𝐹𝑞)‘𝑤))
214173fveq2d 6885 . . . . . . . 8 (𝑦 = 𝑤 → ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))) = ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))
215 eqid 2724 . . . . . . . 8 (𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)))) = (𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))))
216 fvex 6894 . . . . . . . 8 ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))) ∈ V
217214, 215, 216fvmpt 6988 . . . . . . 7 (𝑤𝑆 → ((𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))))‘𝑤) = ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))
218217adantl 481 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑤𝑆) → ((𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))))‘𝑤) = ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))
219 climdm 15495 . . . . . . . . 9 ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ dom ⇝ ↔ (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ⇝ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))))
220169, 219sylib 217 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ⇝ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))))
221 climcl 15440 . . . . . . . 8 ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ⇝ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))) → ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))) ∈ ℂ)
222220, 221syl 17 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))) ∈ ℂ)
223222fmpttd 7106 . . . . . 6 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → (𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)))):𝑆⟶ℂ)
22465adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → 𝑆𝑉)
2253, 212, 113, 213, 218, 223, 224ulm2 26238 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → (𝐹(⇝𝑢𝑆)(𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)))) ↔ ∀𝑟 ∈ ℝ+𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
226211, 225mpbird 257 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → 𝐹(⇝𝑢𝑆)(𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)))))
227 releldm 5933 . . . 4 ((Rel (⇝𝑢𝑆) ∧ 𝐹(⇝𝑢𝑆)(𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))))) → 𝐹 ∈ dom (⇝𝑢𝑆))
22864, 226, 227sylancr 586 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → 𝐹 ∈ dom (⇝𝑢𝑆))
229228ex 412 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥𝐹 ∈ dom (⇝𝑢𝑆)))
23063, 229impbid 211 1 (𝜑 → (𝐹 ∈ dom (⇝𝑢𝑆) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  wral 3053  wrex 3062  Vcvv 3466   class class class wbr 5138  cmpt 5221  dom cdm 5666  Rel wrel 5671  wf 6529  cfv 6533  (class class class)co 7401  m cmap 8816  cc 11104  cr 11105   < clt 11245  cmin 11441   / cdiv 11868  2c2 12264  cz 12555  cuz 12819  +crp 12971  abscabs 15178  cli 15425  𝑢culm 26229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-ico 13327  df-fl 13754  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-ulm 26230
This theorem is referenced by:  ulmcau2  26249  mtest  26257
  Copyright terms: Public domain W3C validator