MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcau Structured version   Visualization version   GIF version

Theorem ulmcau 24917
Description: A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < 𝑥 there is a 𝑗 such that for all 𝑗𝑘 the functions 𝐹(𝑘) and 𝐹(𝑗) are uniformly within 𝑥 of each other on 𝑆. This is the four-quantifier version, see ulmcau2 24918 for the more conventional five-quantifier version. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
ulmcau.z 𝑍 = (ℤ𝑀)
ulmcau.m (𝜑𝑀 ∈ ℤ)
ulmcau.s (𝜑𝑆𝑉)
ulmcau.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
Assertion
Ref Expression
ulmcau (𝜑 → (𝐹 ∈ dom (⇝𝑢𝑆) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝑧,𝐹   𝜑,𝑗,𝑘,𝑥,𝑧   𝑆,𝑗,𝑘,𝑥,𝑧   𝑗,𝑍,𝑘,𝑥,𝑧   𝑗,𝑀,𝑘,𝑧
Allowed substitution hints:   𝑀(𝑥)   𝑉(𝑥,𝑧,𝑗,𝑘)

Proof of Theorem ulmcau
Dummy variables 𝑔 𝑚 𝑛 𝑝 𝑞 𝑟 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5766 . . . 4 (𝐹 ∈ dom (⇝𝑢𝑆) → (𝐹 ∈ dom (⇝𝑢𝑆) ↔ ∃𝑔 𝐹(⇝𝑢𝑆)𝑔))
21ibi 268 . . 3 (𝐹 ∈ dom (⇝𝑢𝑆) → ∃𝑔 𝐹(⇝𝑢𝑆)𝑔)
3 ulmcau.z . . . . . . . 8 𝑍 = (ℤ𝑀)
4 ulmcau.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
54ad2antrr 722 . . . . . . . 8 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
6 ulmcau.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
76ad2antrr 722 . . . . . . . 8 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
8 eqidd 2827 . . . . . . . 8 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
9 eqidd 2827 . . . . . . . 8 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑧𝑆) → (𝑔𝑧) = (𝑔𝑧))
10 simplr 765 . . . . . . . 8 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → 𝐹(⇝𝑢𝑆)𝑔)
11 rphalfcl 12411 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
1211adantl 482 . . . . . . . 8 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
133, 5, 7, 8, 9, 10, 12ulmi 24908 . . . . . . 7 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2))
14 simpr 485 . . . . . . . . . . 11 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗𝑍)
1514, 3syl6eleq 2928 . . . . . . . . . 10 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
16 eluzelz 12247 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
17 uzid 12252 . . . . . . . . . 10 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
18 fveq2 6669 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1918fveq1d 6671 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑗)‘𝑧))
2019fvoveq1d 7172 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) = (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))))
2120breq1d 5073 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ↔ (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)))
2221ralbidv 3202 . . . . . . . . . . 11 (𝑘 = 𝑗 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)))
2322rspcv 3622 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)))
2415, 16, 17, 234syl 19 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)))
25 r19.26 3175 . . . . . . . . . . . . . . 15 (∀𝑧𝑆 ((abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) ↔ (∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)))
267ffvelrnda 6849 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
2726adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
28 elmapi 8423 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑗) ∈ (ℂ ↑m 𝑆) → (𝐹𝑗):𝑆⟶ℂ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗):𝑆⟶ℂ)
3029ffvelrnda 6849 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑗)‘𝑧) ∈ ℂ)
31 ulmcl 24903 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹(⇝𝑢𝑆)𝑔𝑔:𝑆⟶ℂ)
3231ad4antlr 729 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑔:𝑆⟶ℂ)
3332ffvelrnda 6849 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (𝑔𝑧) ∈ ℂ)
3430, 33abssubd 14808 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) = (abs‘((𝑔𝑧) − ((𝐹𝑗)‘𝑧))))
3534breq1d 5073 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ↔ (abs‘((𝑔𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
3635biimpd 230 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → (abs‘((𝑔𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
373uztrn2 12256 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
38 ffvelrn 6847 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
397, 37, 38syl2an 595 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
4039anassrs 468 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
41 elmapi 8423 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘):𝑆⟶ℂ)
4342ffvelrnda 6849 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
44 rpre 12392 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4544ad4antlr 729 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝑥 ∈ ℝ)
46 abs3lem 14693 . . . . . . . . . . . . . . . . . . 19 (((((𝐹𝑘)‘𝑧) ∈ ℂ ∧ ((𝐹𝑗)‘𝑧) ∈ ℂ) ∧ ((𝑔𝑧) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ (abs‘((𝑔𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
4743, 30, 33, 45, 46syl22anc 836 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (((abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ (abs‘((𝑔𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
4836, 47sylan2d 604 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (((abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
4948ancomsd 466 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (((abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5049ralimdva 3182 . . . . . . . . . . . . . . 15 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 ((abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5125, 50syl5bir 244 . . . . . . . . . . . . . 14 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5251expdimp 453 . . . . . . . . . . . . 13 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5352an32s 648 . . . . . . . . . . . 12 ((((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5453ralimdva 3182 . . . . . . . . . . 11 (((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5554ex 413 . . . . . . . . . 10 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥)))
5655com23 86 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → (∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥)))
5724, 56mpdd 43 . . . . . . . 8 ((((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5857reximdva 3279 . . . . . . 7 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝑔𝑧))) < (𝑥 / 2) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
5913, 58mpd 15 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝑔) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥)
6059ralrimiva 3187 . . . . 5 ((𝜑𝐹(⇝𝑢𝑆)𝑔) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥)
6160ex 413 . . . 4 (𝜑 → (𝐹(⇝𝑢𝑆)𝑔 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
6261exlimdv 1927 . . 3 (𝜑 → (∃𝑔 𝐹(⇝𝑢𝑆)𝑔 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
632, 62syl5 34 . 2 (𝜑 → (𝐹 ∈ dom (⇝𝑢𝑆) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
64 ulmrel 24900 . . . 4 Rel (⇝𝑢𝑆)
65 ulmcau.s . . . . . . . . . 10 (𝜑𝑆𝑉)
663, 4, 65, 6ulmcaulem 24916 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6766biimpa 477 . . . . . . . 8 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥)
68 rphalfcl 12411 . . . . . . . 8 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
69 breq2 5067 . . . . . . . . . . . . 13 (𝑥 = (𝑟 / 2) → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
7069ralbidv 3202 . . . . . . . . . . . 12 (𝑥 = (𝑟 / 2) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
71702ralbidv 3204 . . . . . . . . . . 11 (𝑥 = (𝑟 / 2) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
7271rexbidv 3302 . . . . . . . . . 10 (𝑥 = (𝑟 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
73 ralcom 3359 . . . . . . . . . . . . . 14 (∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑚 ∈ (ℤ𝑞)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2))
74 fveq2 6669 . . . . . . . . . . . . . . 15 (𝑞 = 𝑘 → (ℤ𝑞) = (ℤ𝑘))
75 fveq2 6669 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑧 → ((𝐹𝑞)‘𝑤) = ((𝐹𝑞)‘𝑧))
76 fveq2 6669 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑧 → ((𝐹𝑚)‘𝑤) = ((𝐹𝑚)‘𝑧))
7775, 76oveq12d 7168 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑧 → (((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤)) = (((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧)))
7877fveq2d 6673 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) = (abs‘(((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧))))
7978breq1d 5073 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → ((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ (abs‘(((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
8079cbvralvw 3455 . . . . . . . . . . . . . . . 16 (∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2))
81 fveq2 6669 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = 𝑘 → (𝐹𝑞) = (𝐹𝑘))
8281fveq1d 6671 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 𝑘 → ((𝐹𝑞)‘𝑧) = ((𝐹𝑘)‘𝑧))
8382fvoveq1d 7172 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑘 → (abs‘(((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧))) = (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))))
8483breq1d 5073 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑘 → ((abs‘(((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2) ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
8584ralbidv 3202 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑘 → (∀𝑧𝑆 (abs‘(((𝐹𝑞)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2) ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
8680, 85syl5bb 284 . . . . . . . . . . . . . . 15 (𝑞 = 𝑘 → (∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
8774, 86raleqbidv 3407 . . . . . . . . . . . . . 14 (𝑞 = 𝑘 → (∀𝑚 ∈ (ℤ𝑞)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
8873, 87syl5bb 284 . . . . . . . . . . . . 13 (𝑞 = 𝑘 → (∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
8988cbvralvw 3455 . . . . . . . . . . . 12 (∀𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑘 ∈ (ℤ𝑝)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2))
90 fveq2 6669 . . . . . . . . . . . . 13 (𝑝 = 𝑗 → (ℤ𝑝) = (ℤ𝑗))
9190raleqdv 3421 . . . . . . . . . . . 12 (𝑝 = 𝑗 → (∀𝑘 ∈ (ℤ𝑝)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
9289, 91syl5bb 284 . . . . . . . . . . 11 (𝑝 = 𝑗 → (∀𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2)))
9392cbvrexvw 3456 . . . . . . . . . 10 (∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑟 / 2))
9472, 93syl6bbr 290 . . . . . . . . 9 (𝑥 = (𝑟 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2)))
9594rspccva 3626 . . . . . . . 8 ((∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ∧ (𝑟 / 2) ∈ ℝ+) → ∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2))
9667, 68, 95syl2an 595 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) → ∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2))
973uztrn2 12256 . . . . . . . . . . 11 ((𝑝𝑍𝑞 ∈ (ℤ𝑝)) → 𝑞𝑍)
98 eqid 2826 . . . . . . . . . . . . . 14 (ℤ𝑞) = (ℤ𝑞)
99 eluzelz 12247 . . . . . . . . . . . . . . . 16 (𝑞 ∈ (ℤ𝑀) → 𝑞 ∈ ℤ)
10099, 3eleq2s 2936 . . . . . . . . . . . . . . 15 (𝑞𝑍𝑞 ∈ ℤ)
101100ad2antlr 723 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → 𝑞 ∈ ℤ)
10268adantl 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
103102ad2antrr 722 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → (𝑟 / 2) ∈ ℝ+)
104 simplr 765 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → 𝑞𝑍)
1053uztrn2 12256 . . . . . . . . . . . . . . . 16 ((𝑞𝑍𝑚 ∈ (ℤ𝑞)) → 𝑚𝑍)
106104, 105sylan 580 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → 𝑚𝑍)
107 fveq2 6669 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
108107fveq1d 6671 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
109 eqid 2826 . . . . . . . . . . . . . . . 16 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))
110 fvex 6682 . . . . . . . . . . . . . . . 16 ((𝐹𝑚)‘𝑤) ∈ V
111108, 109, 110fvmpt 6767 . . . . . . . . . . . . . . 15 (𝑚𝑍 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))‘𝑚) = ((𝐹𝑚)‘𝑤))
112106, 111syl 17 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))‘𝑚) = ((𝐹𝑚)‘𝑤))
1136adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
114113ffvelrnda 6849 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑m 𝑆))
115 elmapi 8423 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑛) ∈ (ℂ ↑m 𝑆) → (𝐹𝑛):𝑆⟶ℂ)
116114, 115syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑛𝑍) → (𝐹𝑛):𝑆⟶ℂ)
117116ffvelrnda 6849 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑛𝑍) ∧ 𝑦𝑆) → ((𝐹𝑛)‘𝑦) ∈ ℂ)
118117an32s 648 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑦) ∈ ℂ)
119118fmpttd 6877 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)):𝑍⟶ℂ)
120119ffvelrnda 6849 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) ∧ 𝑞𝑍) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) ∈ ℂ)
121 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑦 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑦))
122 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑦 → ((𝐹𝑗)‘𝑧) = ((𝐹𝑗)‘𝑦))
123121, 122oveq12d 7168 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑦 → (((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧)) = (((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦)))
124123fveq2d 6673 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑦 → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) = (abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))))
125124breq1d 5073 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑦 → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
126125rspcv 3622 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝑆 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 → (abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
127126ralimdv 3183 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝑆 → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
128127reximdv 3278 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝑆 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
129128ralimdv 3183 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑆 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
130129impcom 408 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥𝑦𝑆) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥)
131130adantll 710 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥)
132 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑞 = 𝑘 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) = ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘))
133132fvoveq1d 7172 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 = 𝑘 → (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) = (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))))
134133breq1d 5073 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑞 = 𝑘 → ((abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟))
135134cbvralvw 3455 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∀𝑘 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟)
136 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑝 = 𝑗 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝) = ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))
137136oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑝 = 𝑗 → (((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝)) = (((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗)))
138137fveq2d 6673 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑝 = 𝑗 → (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) = (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))))
139138breq1d 5073 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 = 𝑗 → ((abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟))
14090, 139raleqbidv 3407 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = 𝑗 → (∀𝑘 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟))
141135, 140syl5bb 284 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = 𝑗 → (∀𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟))
142141cbvrexvw 3456 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑝𝑍𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟)
143 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
144143fveq1d 6671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑛 = 𝑘 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑘)‘𝑦))
145 eqid 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))
146 fvex 6682 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹𝑘)‘𝑦) ∈ V
147144, 145, 146fvmpt 6767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘𝑍 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) = ((𝐹𝑘)‘𝑦))
14837, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) = ((𝐹𝑘)‘𝑦))
149 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
150149fveq1d 6671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑛 = 𝑗 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑗)‘𝑦))
151 fvex 6682 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹𝑗)‘𝑦) ∈ V
152150, 145, 151fvmpt 6767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗𝑍 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗) = ((𝐹𝑗)‘𝑦))
153152adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗) = ((𝐹𝑗)‘𝑦))
154148, 153oveq12d 7168 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗)) = (((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦)))
155154fveq2d 6673 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) = (abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))))
156155breq1d 5073 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → ((abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟 ↔ (abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟))
157156ralbidva 3201 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟))
158157rexbiia 3251 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑘) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑗))) < 𝑟 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟)
159142, 158bitri 276 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑝𝑍𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟)
160 breq2 5067 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 = 𝑥 → ((abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟 ↔ (abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
161160ralbidv 3202 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 = 𝑥 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
162161rexbidv 3302 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑥 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑟 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
163159, 162syl5bb 284 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑥 → (∃𝑝𝑍𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥))
164163cbvralvw 3455 . . . . . . . . . . . . . . . . . . . 20 (∀𝑟 ∈ ℝ+𝑝𝑍𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐹𝑘)‘𝑦) − ((𝐹𝑗)‘𝑦))) < 𝑥)
165131, 164sylibr 235 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → ∀𝑟 ∈ ℝ+𝑝𝑍𝑞 ∈ (ℤ𝑝)(abs‘(((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑞) − ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))‘𝑝))) < 𝑟)
1663fvexi 6683 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ∈ V
167166mptex 6983 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ V
168167a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ V)
1693, 120, 165, 168caucvg 15030 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ dom ⇝ )
170169ralrimiva 3187 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → ∀𝑦𝑆 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ dom ⇝ )
171170ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) → ∀𝑦𝑆 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ dom ⇝ )
172 fveq2 6669 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑛)‘𝑤))
173172mpteq2dv 5159 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
174173eleq1d 2902 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ dom ⇝ ↔ (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ∈ dom ⇝ ))
175174rspccva 3626 . . . . . . . . . . . . . . . 16 ((∀𝑦𝑆 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ dom ⇝ ∧ 𝑤𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ∈ dom ⇝ )
176171, 175sylan 580 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ∈ dom ⇝ )
177 climdm 14906 . . . . . . . . . . . . . . 15 ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ∈ dom ⇝ ↔ (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ⇝ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))
178176, 177sylib 219 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ⇝ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))
17998, 101, 103, 112, 178climi2 14863 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → ∃𝑣 ∈ (ℤ𝑞)∀𝑚 ∈ (ℤ𝑣)(abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2))
18098r19.29uz 14705 . . . . . . . . . . . . . . 15 ((∀𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ ∃𝑣 ∈ (ℤ𝑞)∀𝑚 ∈ (ℤ𝑣)(abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → ∃𝑣 ∈ (ℤ𝑞)∀𝑚 ∈ (ℤ𝑣)((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)))
18198r19.2uz 14706 . . . . . . . . . . . . . . 15 (∃𝑣 ∈ (ℤ𝑞)∀𝑚 ∈ (ℤ𝑣)((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → ∃𝑚 ∈ (ℤ𝑞)((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)))
182180, 181syl 17 . . . . . . . . . . . . . 14 ((∀𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ ∃𝑣 ∈ (ℤ𝑞)∀𝑚 ∈ (ℤ𝑣)(abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → ∃𝑚 ∈ (ℤ𝑞)((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)))
1836ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
184183ffvelrnda 6849 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) → (𝐹𝑞) ∈ (ℂ ↑m 𝑆))
185 elmapi 8423 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑞) ∈ (ℂ ↑m 𝑆) → (𝐹𝑞):𝑆⟶ℂ)
186184, 185syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) → (𝐹𝑞):𝑆⟶ℂ)
187186ffvelrnda 6849 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → ((𝐹𝑞)‘𝑤) ∈ ℂ)
188187adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → ((𝐹𝑞)‘𝑤) ∈ ℂ)
189 climcl 14851 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) ⇝ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))) → ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))) ∈ ℂ)
190178, 189syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))) ∈ ℂ)
191190adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))) ∈ ℂ)
1926ad5antr 730 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
193192, 106ffvelrnd 6850 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → (𝐹𝑚) ∈ (ℂ ↑m 𝑆))
194 elmapi 8423 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑚) ∈ (ℂ ↑m 𝑆) → (𝐹𝑚):𝑆⟶ℂ)
195193, 194syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → (𝐹𝑚):𝑆⟶ℂ)
196 simplr 765 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → 𝑤𝑆)
197195, 196ffvelrnd 6850 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → ((𝐹𝑚)‘𝑤) ∈ ℂ)
198 rpre 12392 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
199198ad4antlr 729 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → 𝑟 ∈ ℝ)
200 abs3lem 14693 . . . . . . . . . . . . . . . 16 (((((𝐹𝑞)‘𝑤) ∈ ℂ ∧ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))) ∈ ℂ) ∧ (((𝐹𝑚)‘𝑤) ∈ ℂ ∧ 𝑟 ∈ ℝ)) → (((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
201188, 191, 197, 199, 200syl22anc 836 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) ∧ 𝑚 ∈ (ℤ𝑞)) → (((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
202201rexlimdva 3289 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → (∃𝑚 ∈ (ℤ𝑞)((abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
203182, 202syl5 34 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → ((∀𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) ∧ ∃𝑣 ∈ (ℤ𝑞)∀𝑚 ∈ (ℤ𝑣)(abs‘(((𝐹𝑚)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < (𝑟 / 2)) → (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
204179, 203mpan2d 690 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) ∧ 𝑤𝑆) → (∀𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) → (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
205204ralimdva 3182 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑞𝑍) → (∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) → ∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
20697, 205sylan2 592 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑝𝑍𝑞 ∈ (ℤ𝑝))) → (∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) → ∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
207206anassrs 468 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑝𝑍) ∧ 𝑞 ∈ (ℤ𝑝)) → (∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) → ∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
208207ralimdva 3182 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑝𝑍) → (∀𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) → ∀𝑞 ∈ (ℤ𝑝)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
209208reximdva 3279 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) → (∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆𝑚 ∈ (ℤ𝑞)(abs‘(((𝐹𝑞)‘𝑤) − ((𝐹𝑚)‘𝑤))) < (𝑟 / 2) → ∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
21096, 209mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑟 ∈ ℝ+) → ∃𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟)
211210ralrimiva 3187 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → ∀𝑟 ∈ ℝ+𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟)
2124adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → 𝑀 ∈ ℤ)
213 eqidd 2827 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ (𝑞𝑍𝑤𝑆)) → ((𝐹𝑞)‘𝑤) = ((𝐹𝑞)‘𝑤))
214173fveq2d 6673 . . . . . . . 8 (𝑦 = 𝑤 → ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))) = ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))
215 eqid 2826 . . . . . . . 8 (𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)))) = (𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))))
216 fvex 6682 . . . . . . . 8 ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))) ∈ V
217214, 215, 216fvmpt 6767 . . . . . . 7 (𝑤𝑆 → ((𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))))‘𝑤) = ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))
218217adantl 482 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑤𝑆) → ((𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))))‘𝑤) = ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))
219 climdm 14906 . . . . . . . . 9 ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ∈ dom ⇝ ↔ (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ⇝ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))))
220169, 219sylib 219 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ⇝ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))))
221 climcl 14851 . . . . . . . 8 ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)) ⇝ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))) → ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))) ∈ ℂ)
222220, 221syl 17 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) ∧ 𝑦𝑆) → ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))) ∈ ℂ)
223222fmpttd 6877 . . . . . 6 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → (𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)))):𝑆⟶ℂ)
22465adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → 𝑆𝑉)
2253, 212, 113, 213, 218, 223, 224ulm2 24907 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → (𝐹(⇝𝑢𝑆)(𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)))) ↔ ∀𝑟 ∈ ℝ+𝑝𝑍𝑞 ∈ (ℤ𝑝)∀𝑤𝑆 (abs‘(((𝐹𝑞)‘𝑤) − ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤))))) < 𝑟))
226211, 225mpbird 258 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → 𝐹(⇝𝑢𝑆)(𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦)))))
227 releldm 5813 . . . 4 ((Rel (⇝𝑢𝑆) ∧ 𝐹(⇝𝑢𝑆)(𝑦𝑆 ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑦))))) → 𝐹 ∈ dom (⇝𝑢𝑆))
22864, 226, 227sylancr 587 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥) → 𝐹 ∈ dom (⇝𝑢𝑆))
229228ex 413 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥𝐹 ∈ dom (⇝𝑢𝑆)))
23063, 229impbid 213 1 (𝜑 → (𝐹 ∈ dom (⇝𝑢𝑆) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wex 1773  wcel 2107  wral 3143  wrex 3144  Vcvv 3500   class class class wbr 5063  cmpt 5143  dom cdm 5554  Rel wrel 5559  wf 6350  cfv 6354  (class class class)co 7150  m cmap 8401  cc 10529  cr 10530   < clt 10669  cmin 10864   / cdiv 11291  2c2 11686  cz 11975  cuz 12237  +crp 12384  abscabs 14588  cli 14836  𝑢culm 24898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-map 8403  df-pm 8404  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12385  df-ico 12739  df-fl 13157  df-seq 13365  df-exp 13425  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-ulm 24899
This theorem is referenced by:  ulmcau2  24918  mtest  24926
  Copyright terms: Public domain W3C validator