MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfiOLD Structured version   Visualization version   GIF version

Theorem unfiOLD 9081
Description: Obsolete version of unfi 8955 as of 7-Aug-2024. (Contributed by NM, 16-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unfiOLD ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)

Proof of Theorem unfiOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diffi 8962 . 2 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
2 reeanv 3294 . . . 4 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) ↔ (∃𝑥 ∈ ω 𝐴𝑥 ∧ ∃𝑦 ∈ ω (𝐵𝐴) ≈ 𝑦))
3 isfi 8764 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
4 isfi 8764 . . . . 5 ((𝐵𝐴) ∈ Fin ↔ ∃𝑦 ∈ ω (𝐵𝐴) ≈ 𝑦)
53, 4anbi12i 627 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin) ↔ (∃𝑥 ∈ ω 𝐴𝑥 ∧ ∃𝑦 ∈ ω (𝐵𝐴) ≈ 𝑦))
62, 5bitr4i 277 . . 3 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) ↔ (𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin))
7 nnacl 8442 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 +o 𝑦) ∈ ω)
8 unfilem3 9080 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → 𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥))
9 entr 8792 . . . . . . . 8 (((𝐵𝐴) ≈ 𝑦𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥))
109expcom 414 . . . . . . 7 (𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥) → ((𝐵𝐴) ≈ 𝑦 → (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)))
118, 10syl 17 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐵𝐴) ≈ 𝑦 → (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)))
12 disjdif 4405 . . . . . . . 8 (𝐴 ∩ (𝐵𝐴)) = ∅
13 disjdif 4405 . . . . . . . 8 (𝑥 ∩ ((𝑥 +o 𝑦) ∖ 𝑥)) = ∅
14 unen 8836 . . . . . . . 8 (((𝐴𝑥 ∧ (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) ∧ ((𝐴 ∩ (𝐵𝐴)) = ∅ ∧ (𝑥 ∩ ((𝑥 +o 𝑦) ∖ 𝑥)) = ∅)) → (𝐴 ∪ (𝐵𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)))
1512, 13, 14mpanr12 702 . . . . . . 7 ((𝐴𝑥 ∧ (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐴 ∪ (𝐵𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)))
16 undif2 4410 . . . . . . . . 9 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
1716a1i 11 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵))
18 nnaword1 8460 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → 𝑥 ⊆ (𝑥 +o 𝑦))
19 undif 4415 . . . . . . . . 9 (𝑥 ⊆ (𝑥 +o 𝑦) ↔ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) = (𝑥 +o 𝑦))
2018, 19sylib 217 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) = (𝑥 +o 𝑦))
2117, 20breq12d 5087 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ∪ (𝐵𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) ↔ (𝐴𝐵) ≈ (𝑥 +o 𝑦)))
2215, 21syl5ib 243 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑥 ∧ (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐴𝐵) ≈ (𝑥 +o 𝑦)))
2311, 22sylan2d 605 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) → (𝐴𝐵) ≈ (𝑥 +o 𝑦)))
24 breq2 5078 . . . . . . 7 (𝑧 = (𝑥 +o 𝑦) → ((𝐴𝐵) ≈ 𝑧 ↔ (𝐴𝐵) ≈ (𝑥 +o 𝑦)))
2524rspcev 3561 . . . . . 6 (((𝑥 +o 𝑦) ∈ ω ∧ (𝐴𝐵) ≈ (𝑥 +o 𝑦)) → ∃𝑧 ∈ ω (𝐴𝐵) ≈ 𝑧)
26 isfi 8764 . . . . . 6 ((𝐴𝐵) ∈ Fin ↔ ∃𝑧 ∈ ω (𝐴𝐵) ≈ 𝑧)
2725, 26sylibr 233 . . . . 5 (((𝑥 +o 𝑦) ∈ ω ∧ (𝐴𝐵) ≈ (𝑥 +o 𝑦)) → (𝐴𝐵) ∈ Fin)
287, 23, 27syl6an 681 . . . 4 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) → (𝐴𝐵) ∈ Fin))
2928rexlimivv 3221 . . 3 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) → (𝐴𝐵) ∈ Fin)
306, 29sylbir 234 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin) → (𝐴𝐵) ∈ Fin)
311, 30sylan2 593 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256   class class class wbr 5074  (class class class)co 7275  ωcom 7712   +o coa 8294  cen 8730  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-fin 8737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator