Step | Hyp | Ref
| Expression |
1 | | diffi 8962 |
. 2
⊢ (𝐵 ∈ Fin → (𝐵 ∖ 𝐴) ∈ Fin) |
2 | | reeanv 3294 |
. . . 4
⊢
(∃𝑥 ∈
ω ∃𝑦 ∈
ω (𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ 𝑦) ↔ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ∧ ∃𝑦 ∈ ω (𝐵 ∖ 𝐴) ≈ 𝑦)) |
3 | | isfi 8764 |
. . . . 5
⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
4 | | isfi 8764 |
. . . . 5
⊢ ((𝐵 ∖ 𝐴) ∈ Fin ↔ ∃𝑦 ∈ ω (𝐵 ∖ 𝐴) ≈ 𝑦) |
5 | 3, 4 | anbi12i 627 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin) ↔ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ∧ ∃𝑦 ∈ ω (𝐵 ∖ 𝐴) ≈ 𝑦)) |
6 | 2, 5 | bitr4i 277 |
. . 3
⊢
(∃𝑥 ∈
ω ∃𝑦 ∈
ω (𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ 𝑦) ↔ (𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin)) |
7 | | nnacl 8442 |
. . . . 5
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 +o 𝑦) ∈
ω) |
8 | | unfilem3 9080 |
. . . . . . 7
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → 𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) |
9 | | entr 8792 |
. . . . . . . 8
⊢ (((𝐵 ∖ 𝐴) ≈ 𝑦 ∧ 𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐵 ∖ 𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) |
10 | 9 | expcom 414 |
. . . . . . 7
⊢ (𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥) → ((𝐵 ∖ 𝐴) ≈ 𝑦 → (𝐵 ∖ 𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥))) |
11 | 8, 10 | syl 17 |
. . . . . 6
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐵 ∖ 𝐴) ≈ 𝑦 → (𝐵 ∖ 𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥))) |
12 | | disjdif 4405 |
. . . . . . . 8
⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ |
13 | | disjdif 4405 |
. . . . . . . 8
⊢ (𝑥 ∩ ((𝑥 +o 𝑦) ∖ 𝑥)) = ∅ |
14 | | unen 8836 |
. . . . . . . 8
⊢ (((𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) ∧ ((𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ ∧ (𝑥 ∩ ((𝑥 +o 𝑦) ∖ 𝑥)) = ∅)) → (𝐴 ∪ (𝐵 ∖ 𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥))) |
15 | 12, 13, 14 | mpanr12 702 |
. . . . . . 7
⊢ ((𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐴 ∪ (𝐵 ∖ 𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥))) |
16 | | undif2 4410 |
. . . . . . . . 9
⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
17 | 16 | a1i 11 |
. . . . . . . 8
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵)) |
18 | | nnaword1 8460 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → 𝑥 ⊆ (𝑥 +o 𝑦)) |
19 | | undif 4415 |
. . . . . . . . 9
⊢ (𝑥 ⊆ (𝑥 +o 𝑦) ↔ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) = (𝑥 +o 𝑦)) |
20 | 18, 19 | sylib 217 |
. . . . . . . 8
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) = (𝑥 +o 𝑦)) |
21 | 17, 20 | breq12d 5087 |
. . . . . . 7
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ∪ (𝐵 ∖ 𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) ↔ (𝐴 ∪ 𝐵) ≈ (𝑥 +o 𝑦))) |
22 | 15, 21 | syl5ib 243 |
. . . . . 6
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐴 ∪ 𝐵) ≈ (𝑥 +o 𝑦))) |
23 | 11, 22 | sylan2d 605 |
. . . . 5
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ 𝑦) → (𝐴 ∪ 𝐵) ≈ (𝑥 +o 𝑦))) |
24 | | breq2 5078 |
. . . . . . 7
⊢ (𝑧 = (𝑥 +o 𝑦) → ((𝐴 ∪ 𝐵) ≈ 𝑧 ↔ (𝐴 ∪ 𝐵) ≈ (𝑥 +o 𝑦))) |
25 | 24 | rspcev 3561 |
. . . . . 6
⊢ (((𝑥 +o 𝑦) ∈ ω ∧ (𝐴 ∪ 𝐵) ≈ (𝑥 +o 𝑦)) → ∃𝑧 ∈ ω (𝐴 ∪ 𝐵) ≈ 𝑧) |
26 | | isfi 8764 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ ∃𝑧 ∈ ω (𝐴 ∪ 𝐵) ≈ 𝑧) |
27 | 25, 26 | sylibr 233 |
. . . . 5
⊢ (((𝑥 +o 𝑦) ∈ ω ∧ (𝐴 ∪ 𝐵) ≈ (𝑥 +o 𝑦)) → (𝐴 ∪ 𝐵) ∈ Fin) |
28 | 7, 23, 27 | syl6an 681 |
. . . 4
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ 𝑦) → (𝐴 ∪ 𝐵) ∈ Fin)) |
29 | 28 | rexlimivv 3221 |
. . 3
⊢
(∃𝑥 ∈
ω ∃𝑦 ∈
ω (𝐴 ≈ 𝑥 ∧ (𝐵 ∖ 𝐴) ≈ 𝑦) → (𝐴 ∪ 𝐵) ∈ Fin) |
30 | 6, 29 | sylbir 234 |
. 2
⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∖ 𝐴) ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) |
31 | 1, 30 | sylan2 593 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) |