MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfiOLD Structured version   Visualization version   GIF version

Theorem unfiOLD 8916
Description: Obsolete version of unfi 8828 as of 7-Aug-2024. (Contributed by NM, 16-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unfiOLD ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)

Proof of Theorem unfiOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diffi 8884 . 2 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
2 reeanv 3269 . . . 4 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) ↔ (∃𝑥 ∈ ω 𝐴𝑥 ∧ ∃𝑦 ∈ ω (𝐵𝐴) ≈ 𝑦))
3 isfi 8630 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
4 isfi 8630 . . . . 5 ((𝐵𝐴) ∈ Fin ↔ ∃𝑦 ∈ ω (𝐵𝐴) ≈ 𝑦)
53, 4anbi12i 630 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin) ↔ (∃𝑥 ∈ ω 𝐴𝑥 ∧ ∃𝑦 ∈ ω (𝐵𝐴) ≈ 𝑦))
62, 5bitr4i 281 . . 3 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) ↔ (𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin))
7 nnacl 8317 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 +o 𝑦) ∈ ω)
8 unfilem3 8915 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → 𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥))
9 entr 8658 . . . . . . . 8 (((𝐵𝐴) ≈ 𝑦𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥))
109expcom 417 . . . . . . 7 (𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥) → ((𝐵𝐴) ≈ 𝑦 → (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)))
118, 10syl 17 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐵𝐴) ≈ 𝑦 → (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)))
12 disjdif 4372 . . . . . . . 8 (𝐴 ∩ (𝐵𝐴)) = ∅
13 disjdif 4372 . . . . . . . 8 (𝑥 ∩ ((𝑥 +o 𝑦) ∖ 𝑥)) = ∅
14 unen 8701 . . . . . . . 8 (((𝐴𝑥 ∧ (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) ∧ ((𝐴 ∩ (𝐵𝐴)) = ∅ ∧ (𝑥 ∩ ((𝑥 +o 𝑦) ∖ 𝑥)) = ∅)) → (𝐴 ∪ (𝐵𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)))
1512, 13, 14mpanr12 705 . . . . . . 7 ((𝐴𝑥 ∧ (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐴 ∪ (𝐵𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)))
16 undif2 4377 . . . . . . . . 9 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
1716a1i 11 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵))
18 nnaword1 8335 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → 𝑥 ⊆ (𝑥 +o 𝑦))
19 undif 4382 . . . . . . . . 9 (𝑥 ⊆ (𝑥 +o 𝑦) ↔ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) = (𝑥 +o 𝑦))
2018, 19sylib 221 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) = (𝑥 +o 𝑦))
2117, 20breq12d 5052 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ∪ (𝐵𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) ↔ (𝐴𝐵) ≈ (𝑥 +o 𝑦)))
2215, 21syl5ib 247 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑥 ∧ (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐴𝐵) ≈ (𝑥 +o 𝑦)))
2311, 22sylan2d 608 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) → (𝐴𝐵) ≈ (𝑥 +o 𝑦)))
24 breq2 5043 . . . . . . 7 (𝑧 = (𝑥 +o 𝑦) → ((𝐴𝐵) ≈ 𝑧 ↔ (𝐴𝐵) ≈ (𝑥 +o 𝑦)))
2524rspcev 3527 . . . . . 6 (((𝑥 +o 𝑦) ∈ ω ∧ (𝐴𝐵) ≈ (𝑥 +o 𝑦)) → ∃𝑧 ∈ ω (𝐴𝐵) ≈ 𝑧)
26 isfi 8630 . . . . . 6 ((𝐴𝐵) ∈ Fin ↔ ∃𝑧 ∈ ω (𝐴𝐵) ≈ 𝑧)
2725, 26sylibr 237 . . . . 5 (((𝑥 +o 𝑦) ∈ ω ∧ (𝐴𝐵) ≈ (𝑥 +o 𝑦)) → (𝐴𝐵) ∈ Fin)
287, 23, 27syl6an 684 . . . 4 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) → (𝐴𝐵) ∈ Fin))
2928rexlimivv 3201 . . 3 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) → (𝐴𝐵) ∈ Fin)
306, 29sylbir 238 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin) → (𝐴𝐵) ∈ Fin)
311, 30sylan2 596 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wrex 3052  cdif 3850  cun 3851  cin 3852  wss 3853  c0 4223   class class class wbr 5039  (class class class)co 7191  ωcom 7622   +o coa 8177  cen 8601  Fincfn 8604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-er 8369  df-en 8605  df-fin 8608
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator