MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfiOLD Structured version   Visualization version   GIF version

Theorem unfiOLD 9338
Description: Obsolete version of unfi 9197 as of 7-Aug-2024. (Contributed by NM, 16-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unfiOLD ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)

Proof of Theorem unfiOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diffi 9204 . 2 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
2 reeanv 3223 . . . 4 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) ↔ (∃𝑥 ∈ ω 𝐴𝑥 ∧ ∃𝑦 ∈ ω (𝐵𝐴) ≈ 𝑦))
3 isfi 8997 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
4 isfi 8997 . . . . 5 ((𝐵𝐴) ∈ Fin ↔ ∃𝑦 ∈ ω (𝐵𝐴) ≈ 𝑦)
53, 4anbi12i 627 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin) ↔ (∃𝑥 ∈ ω 𝐴𝑥 ∧ ∃𝑦 ∈ ω (𝐵𝐴) ≈ 𝑦))
62, 5bitr4i 278 . . 3 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) ↔ (𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin))
7 nnacl 8632 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 +o 𝑦) ∈ ω)
8 unfilem3 9337 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → 𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥))
9 entr 9027 . . . . . . . 8 (((𝐵𝐴) ≈ 𝑦𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥))
109expcom 413 . . . . . . 7 (𝑦 ≈ ((𝑥 +o 𝑦) ∖ 𝑥) → ((𝐵𝐴) ≈ 𝑦 → (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)))
118, 10syl 17 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐵𝐴) ≈ 𝑦 → (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)))
12 disjdif 4472 . . . . . . . 8 (𝐴 ∩ (𝐵𝐴)) = ∅
13 disjdif 4472 . . . . . . . 8 (𝑥 ∩ ((𝑥 +o 𝑦) ∖ 𝑥)) = ∅
14 unen 9071 . . . . . . . 8 (((𝐴𝑥 ∧ (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) ∧ ((𝐴 ∩ (𝐵𝐴)) = ∅ ∧ (𝑥 ∩ ((𝑥 +o 𝑦) ∖ 𝑥)) = ∅)) → (𝐴 ∪ (𝐵𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)))
1512, 13, 14mpanr12 704 . . . . . . 7 ((𝐴𝑥 ∧ (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐴 ∪ (𝐵𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)))
16 undif2 4477 . . . . . . . . 9 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
1716a1i 11 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵))
18 nnaword1 8650 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → 𝑥 ⊆ (𝑥 +o 𝑦))
19 undif 4482 . . . . . . . . 9 (𝑥 ⊆ (𝑥 +o 𝑦) ↔ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) = (𝑥 +o 𝑦))
2018, 19sylib 217 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) = (𝑥 +o 𝑦))
2117, 20breq12d 5161 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ∪ (𝐵𝐴)) ≈ (𝑥 ∪ ((𝑥 +o 𝑦) ∖ 𝑥)) ↔ (𝐴𝐵) ≈ (𝑥 +o 𝑦)))
2215, 21imbitrid 243 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑥 ∧ (𝐵𝐴) ≈ ((𝑥 +o 𝑦) ∖ 𝑥)) → (𝐴𝐵) ≈ (𝑥 +o 𝑦)))
2311, 22sylan2d 604 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) → (𝐴𝐵) ≈ (𝑥 +o 𝑦)))
24 breq2 5152 . . . . . . 7 (𝑧 = (𝑥 +o 𝑦) → ((𝐴𝐵) ≈ 𝑧 ↔ (𝐴𝐵) ≈ (𝑥 +o 𝑦)))
2524rspcev 3609 . . . . . 6 (((𝑥 +o 𝑦) ∈ ω ∧ (𝐴𝐵) ≈ (𝑥 +o 𝑦)) → ∃𝑧 ∈ ω (𝐴𝐵) ≈ 𝑧)
26 isfi 8997 . . . . . 6 ((𝐴𝐵) ∈ Fin ↔ ∃𝑧 ∈ ω (𝐴𝐵) ≈ 𝑧)
2725, 26sylibr 233 . . . . 5 (((𝑥 +o 𝑦) ∈ ω ∧ (𝐴𝐵) ≈ (𝑥 +o 𝑦)) → (𝐴𝐵) ∈ Fin)
287, 23, 27syl6an 683 . . . 4 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) → (𝐴𝐵) ∈ Fin))
2928rexlimivv 3196 . . 3 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) → (𝐴𝐵) ∈ Fin)
306, 29sylbir 234 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin) → (𝐴𝐵) ∈ Fin)
311, 30sylan2 592 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wrex 3067  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4323   class class class wbr 5148  (class class class)co 7420  ωcom 7870   +o coa 8484  cen 8961  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-en 8965  df-fin 8968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator