MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1mul Structured version   Visualization version   GIF version

Theorem lo1mul 15189
Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1add2.2 ((𝜑𝑥𝐴) → 𝐶𝑉)
lo1add.3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1add.4 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
lo1mul.5 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
lo1mul (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem lo1mul
Dummy variables 𝑚 𝑐 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1add.3 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1add.4 . 2 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
3 reeanv 3279 . . . 4 (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) ↔ (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
4 o1add2.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3105 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6105 . . . . . . . . . 10 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
8 lo1dm 15080 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
91, 8syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
107, 9eqsstrrd 3940 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
1110adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐴 ⊆ ℝ)
12 rexanre 14910 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
1311, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
14 simprl 771 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑚 ∈ ℝ)
15 simprr 773 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑛 ∈ ℝ)
16 0re 10835 . . . . . . . . . 10 0 ∈ ℝ
17 ifcl 4484 . . . . . . . . . 10 ((𝑛 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
1815, 16, 17sylancl 589 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
1914, 18remulcld 10863 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) ∈ ℝ)
20 simplrr 778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
21 max2 12777 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0))
2216, 20, 21sylancr 590 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0))
23 o1add2.2 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐶𝑉)
2423, 2lo1mptrcl 15183 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
2524adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐶 ∈ ℝ)
2620, 16, 17sylancl 589 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
27 letr 10926 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ) → ((𝐶𝑛𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → 𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
2825, 20, 26, 27syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐶𝑛𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → 𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
2922, 28mpan2d 694 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐶𝑛𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
304, 1lo1mptrcl 15183 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3130adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
32 lo1mul.5 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
3332adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 0 ≤ 𝐵)
3431, 33jca 515 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
35 simplrl 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑚 ∈ ℝ)
36 max1 12775 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑛, 𝑛, 0))
3716, 20, 36sylancr 590 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 0 ≤ if(0 ≤ 𝑛, 𝑛, 0))
3826, 37jca 515 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
39 lemul12b 11689 . . . . . . . . . . . 12 ((((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝑚 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑛, 𝑛, 0)))) → ((𝐵𝑚𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4034, 35, 25, 38, 39syl22anc 839 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑚𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4129, 40sylan2d 608 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑚𝐶𝑛) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4241imim2d 57 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4342ralimdva 3100 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
44 breq2 5057 . . . . . . . . . . 11 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → ((𝐵 · 𝐶) ≤ 𝑝 ↔ (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4544imbi2d 344 . . . . . . . . . 10 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → ((𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝) ↔ (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4645ralbidv 3118 . . . . . . . . 9 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝) ↔ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4746rspcev 3537 . . . . . . . 8 (((𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) ∈ ℝ ∧ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))) → ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝))
4819, 43, 47syl6an 684 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
4948reximdv 3192 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5013, 49sylbird 263 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → ((∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5150rexlimdvva 3213 . . . 4 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
523, 51syl5bir 246 . . 3 (𝜑 → ((∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5310, 30ello1mpt 15082 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚)))
54 rexcom 3268 . . . . 5 (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚))
5553, 54bitrdi 290 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚)))
5610, 24ello1mpt 15082 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
57 rexcom 3268 . . . . 5 (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))
5856, 57bitrdi 290 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
5955, 58anbi12d 634 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴𝐶) ∈ ≤𝑂(1)) ↔ (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
6030, 24remulcld 10863 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ ℝ)
6110, 60ello1mpt 15082 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
6252, 59, 613imtr4d 297 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴𝐶) ∈ ≤𝑂(1)) → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1)))
631, 2, 62mp2and 699 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  wss 3866  ifcif 4439   class class class wbr 5053  cmpt 5135  dom cdm 5551  (class class class)co 7213  cr 10728  0cc0 10729   · cmul 10734  cle 10868  ≤𝑂(1)clo1 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-ico 12941  df-lo1 15052
This theorem is referenced by:  lo1mul2  15190  pntrlog2bndlem4  26461  pntrlog2bndlem5  26462
  Copyright terms: Public domain W3C validator