MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1mul Structured version   Visualization version   GIF version

Theorem lo1mul 15510
Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1add2.2 ((𝜑𝑥𝐴) → 𝐶𝑉)
lo1add.3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1add.4 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
lo1mul.5 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
lo1mul (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem lo1mul
Dummy variables 𝑚 𝑐 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1add.3 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1add.4 . 2 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
3 reeanv 3217 . . . 4 (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) ↔ (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
4 o1add2.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3143 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6194 . . . . . . . . . 10 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
8 lo1dm 15401 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
91, 8syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
107, 9eqsstrrd 3983 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
1110adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐴 ⊆ ℝ)
12 rexanre 15231 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
1311, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
14 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑚 ∈ ℝ)
15 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑛 ∈ ℝ)
16 0re 11157 . . . . . . . . . 10 0 ∈ ℝ
17 ifcl 4531 . . . . . . . . . 10 ((𝑛 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
1815, 16, 17sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
1914, 18remulcld 11185 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) ∈ ℝ)
20 simplrr 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
21 max2 13106 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0))
2216, 20, 21sylancr 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0))
23 o1add2.2 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐶𝑉)
2423, 2lo1mptrcl 15504 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
2524adantlr 713 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐶 ∈ ℝ)
2620, 16, 17sylancl 586 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
27 letr 11249 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ) → ((𝐶𝑛𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → 𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
2825, 20, 26, 27syl3anc 1371 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐶𝑛𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → 𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
2922, 28mpan2d 692 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐶𝑛𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
304, 1lo1mptrcl 15504 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3130adantlr 713 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
32 lo1mul.5 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
3332adantlr 713 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 0 ≤ 𝐵)
3431, 33jca 512 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
35 simplrl 775 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑚 ∈ ℝ)
36 max1 13104 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑛, 𝑛, 0))
3716, 20, 36sylancr 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 0 ≤ if(0 ≤ 𝑛, 𝑛, 0))
3826, 37jca 512 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
39 lemul12b 12012 . . . . . . . . . . . 12 ((((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝑚 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑛, 𝑛, 0)))) → ((𝐵𝑚𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4034, 35, 25, 38, 39syl22anc 837 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑚𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4129, 40sylan2d 605 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑚𝐶𝑛) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4241imim2d 57 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4342ralimdva 3164 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
44 breq2 5109 . . . . . . . . . . 11 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → ((𝐵 · 𝐶) ≤ 𝑝 ↔ (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4544imbi2d 340 . . . . . . . . . 10 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → ((𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝) ↔ (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4645ralbidv 3174 . . . . . . . . 9 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝) ↔ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4746rspcev 3581 . . . . . . . 8 (((𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) ∈ ℝ ∧ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))) → ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝))
4819, 43, 47syl6an 682 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
4948reximdv 3167 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5013, 49sylbird 259 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → ((∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5150rexlimdvva 3205 . . . 4 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
523, 51biimtrrid 242 . . 3 (𝜑 → ((∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5310, 30ello1mpt 15403 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚)))
54 rexcom 3273 . . . . 5 (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚))
5553, 54bitrdi 286 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚)))
5610, 24ello1mpt 15403 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
57 rexcom 3273 . . . . 5 (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))
5856, 57bitrdi 286 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
5955, 58anbi12d 631 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴𝐶) ∈ ≤𝑂(1)) ↔ (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
6030, 24remulcld 11185 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ ℝ)
6110, 60ello1mpt 15403 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
6252, 59, 613imtr4d 293 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴𝐶) ∈ ≤𝑂(1)) → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1)))
631, 2, 62mp2and 697 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  wss 3910  ifcif 4486   class class class wbr 5105  cmpt 5188  dom cdm 5633  (class class class)co 7357  cr 11050  0cc0 11051   · cmul 11056  cle 11190  ≤𝑂(1)clo1 15369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-ico 13270  df-lo1 15373
This theorem is referenced by:  lo1mul2  15511  pntrlog2bndlem4  26928  pntrlog2bndlem5  26929
  Copyright terms: Public domain W3C validator