MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1mul Structured version   Visualization version   GIF version

Theorem lo1mul 14818
Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1add2.2 ((𝜑𝑥𝐴) → 𝐶𝑉)
lo1add.3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1add.4 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
lo1mul.5 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
lo1mul (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem lo1mul
Dummy variables 𝑚 𝑐 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1add.3 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1add.4 . 2 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
3 reeanv 3328 . . . 4 (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) ↔ (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
4 o1add2.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3149 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 5971 . . . . . . . . . 10 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
8 lo1dm 14710 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
91, 8syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
107, 9eqsstrrd 3927 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
1110adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐴 ⊆ ℝ)
12 rexanre 14540 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
1311, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
14 simprl 767 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑚 ∈ ℝ)
15 simprr 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑛 ∈ ℝ)
16 0re 10489 . . . . . . . . . 10 0 ∈ ℝ
17 ifcl 4425 . . . . . . . . . 10 ((𝑛 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
1815, 16, 17sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
1914, 18remulcld 10517 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) ∈ ℝ)
20 simplrr 774 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
21 max2 12430 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0))
2216, 20, 21sylancr 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0))
23 o1add2.2 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐶𝑉)
2423, 2lo1mptrcl 14812 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
2524adantlr 711 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐶 ∈ ℝ)
2620, 16, 17sylancl 586 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
27 letr 10581 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ) → ((𝐶𝑛𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → 𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
2825, 20, 26, 27syl3anc 1364 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐶𝑛𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → 𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
2922, 28mpan2d 690 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐶𝑛𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
304, 1lo1mptrcl 14812 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3130adantlr 711 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
32 lo1mul.5 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
3332adantlr 711 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 0 ≤ 𝐵)
3431, 33jca 512 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
35 simplrl 773 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑚 ∈ ℝ)
36 max1 12428 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑛, 𝑛, 0))
3716, 20, 36sylancr 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 0 ≤ if(0 ≤ 𝑛, 𝑛, 0))
3826, 37jca 512 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
39 lemul12b 11345 . . . . . . . . . . . 12 ((((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝑚 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑛, 𝑛, 0)))) → ((𝐵𝑚𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4034, 35, 25, 38, 39syl22anc 835 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑚𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4129, 40sylan2d 604 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑚𝐶𝑛) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4241imim2d 57 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4342ralimdva 3144 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
44 breq2 4966 . . . . . . . . . . 11 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → ((𝐵 · 𝐶) ≤ 𝑝 ↔ (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4544imbi2d 342 . . . . . . . . . 10 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → ((𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝) ↔ (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4645ralbidv 3164 . . . . . . . . 9 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝) ↔ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4746rspcev 3559 . . . . . . . 8 (((𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) ∈ ℝ ∧ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))) → ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝))
4819, 43, 47syl6an 680 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
4948reximdv 3236 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5013, 49sylbird 261 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → ((∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5150rexlimdvva 3257 . . . 4 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
523, 51syl5bir 244 . . 3 (𝜑 → ((∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5310, 30ello1mpt 14712 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚)))
54 rexcom 3316 . . . . 5 (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚))
5553, 54syl6bb 288 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚)))
5610, 24ello1mpt 14712 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
57 rexcom 3316 . . . . 5 (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))
5856, 57syl6bb 288 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
5955, 58anbi12d 630 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴𝐶) ∈ ≤𝑂(1)) ↔ (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
6030, 24remulcld 10517 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ ℝ)
6110, 60ello1mpt 14712 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
6252, 59, 613imtr4d 295 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴𝐶) ∈ ≤𝑂(1)) → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1)))
631, 2, 62mp2and 695 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wral 3105  wrex 3106  wss 3859  ifcif 4381   class class class wbr 4962  cmpt 5041  dom cdm 5443  (class class class)co 7016  cr 10382  0cc0 10383   · cmul 10388  cle 10522  ≤𝑂(1)clo1 14678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-er 8139  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-ico 12594  df-lo1 14682
This theorem is referenced by:  lo1mul2  14819  pntrlog2bndlem4  25838  pntrlog2bndlem5  25839
  Copyright terms: Public domain W3C validator