MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1mul Structured version   Visualization version   GIF version

Theorem lo1mul 15579
Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1add2.2 ((𝜑𝑥𝐴) → 𝐶𝑉)
lo1add.3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1add.4 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
lo1mul.5 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
lo1mul (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem lo1mul
Dummy variables 𝑚 𝑐 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1add.3 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1add.4 . 2 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
3 reeanv 3225 . . . 4 (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) ↔ (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
4 o1add2.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3145 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6241 . . . . . . . . . 10 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
8 lo1dm 15470 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
91, 8syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
107, 9eqsstrrd 4021 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
1110adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐴 ⊆ ℝ)
12 rexanre 15300 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
1311, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
14 simprl 768 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑚 ∈ ℝ)
15 simprr 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑛 ∈ ℝ)
16 0re 11223 . . . . . . . . . 10 0 ∈ ℝ
17 ifcl 4573 . . . . . . . . . 10 ((𝑛 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
1815, 16, 17sylancl 585 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
1914, 18remulcld 11251 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) ∈ ℝ)
20 simplrr 775 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
21 max2 13173 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0))
2216, 20, 21sylancr 586 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0))
23 o1add2.2 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐶𝑉)
2423, 2lo1mptrcl 15573 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
2524adantlr 712 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐶 ∈ ℝ)
2620, 16, 17sylancl 585 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
27 letr 11315 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ) → ((𝐶𝑛𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → 𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
2825, 20, 26, 27syl3anc 1370 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐶𝑛𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → 𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
2922, 28mpan2d 691 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐶𝑛𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
304, 1lo1mptrcl 15573 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3130adantlr 712 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
32 lo1mul.5 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
3332adantlr 712 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 0 ≤ 𝐵)
3431, 33jca 511 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
35 simplrl 774 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑚 ∈ ℝ)
36 max1 13171 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑛, 𝑛, 0))
3716, 20, 36sylancr 586 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 0 ≤ if(0 ≤ 𝑛, 𝑛, 0))
3826, 37jca 511 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
39 lemul12b 12078 . . . . . . . . . . . 12 ((((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝑚 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑛, 𝑛, 0)))) → ((𝐵𝑚𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4034, 35, 25, 38, 39syl22anc 836 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑚𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4129, 40sylan2d 604 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑚𝐶𝑛) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4241imim2d 57 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4342ralimdva 3166 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
44 breq2 5152 . . . . . . . . . . 11 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → ((𝐵 · 𝐶) ≤ 𝑝 ↔ (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4544imbi2d 340 . . . . . . . . . 10 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → ((𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝) ↔ (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4645ralbidv 3176 . . . . . . . . 9 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝) ↔ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4746rspcev 3612 . . . . . . . 8 (((𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) ∈ ℝ ∧ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))) → ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝))
4819, 43, 47syl6an 681 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
4948reximdv 3169 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5013, 49sylbird 260 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → ((∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5150rexlimdvva 3210 . . . 4 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
523, 51biimtrrid 242 . . 3 (𝜑 → ((∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5310, 30ello1mpt 15472 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚)))
54 rexcom 3286 . . . . 5 (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚))
5553, 54bitrdi 287 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚)))
5610, 24ello1mpt 15472 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
57 rexcom 3286 . . . . 5 (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))
5856, 57bitrdi 287 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
5955, 58anbi12d 630 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴𝐶) ∈ ≤𝑂(1)) ↔ (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
6030, 24remulcld 11251 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ ℝ)
6110, 60ello1mpt 15472 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
6252, 59, 613imtr4d 294 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴𝐶) ∈ ≤𝑂(1)) → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1)))
631, 2, 62mp2and 696 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  wrex 3069  wss 3948  ifcif 4528   class class class wbr 5148  cmpt 5231  dom cdm 5676  (class class class)co 7412  cr 11115  0cc0 11116   · cmul 11121  cle 11256  ≤𝑂(1)clo1 15438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-ico 13337  df-lo1 15442
This theorem is referenced by:  lo1mul2  15580  pntrlog2bndlem4  27425  pntrlog2bndlem5  27426
  Copyright terms: Public domain W3C validator