MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncomlem1 Structured version   Visualization version   GIF version

Theorem pmtr3ncomlem1 18996
Description: Lemma 1 for pmtr3ncom 18998. (Contributed by AV, 17-Mar-2018.)
Hypotheses
Ref Expression
pmtr3ncom.t 𝑇 = (pmTrsp‘𝐷)
pmtr3ncom.f 𝐹 = (𝑇‘{𝑋, 𝑌})
pmtr3ncom.g 𝐺 = (𝑇‘{𝑌, 𝑍})
Assertion
Ref Expression
pmtr3ncomlem1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) ≠ ((𝐹𝐺)‘𝑋))

Proof of Theorem pmtr3ncomlem1
StepHypRef Expression
1 necom 2996 . . . . 5 (𝑌𝑍𝑍𝑌)
21biimpi 215 . . . 4 (𝑌𝑍𝑍𝑌)
323ad2ant3 1133 . . 3 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑌)
433ad2ant3 1133 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑌)
5 simp1 1134 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐷𝑉)
6 simp1 1134 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑋𝐷)
763ad2ant2 1132 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝐷)
8 simp2 1135 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑌𝐷)
983ad2ant2 1132 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝐷)
107, 9prssd 4752 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ⊆ 𝐷)
11 simp1 1134 . . . . . . . . 9 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
12113ad2ant3 1133 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝑌)
13 pr2nelem 9691 . . . . . . . 8 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
147, 9, 12, 13syl3anc 1369 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2o)
15 pmtr3ncom.t . . . . . . . 8 𝑇 = (pmTrsp‘𝐷)
1615pmtrf 18978 . . . . . . 7 ((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2o) → (𝑇‘{𝑋, 𝑌}):𝐷𝐷)
175, 10, 14, 16syl3anc 1369 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑇‘{𝑋, 𝑌}):𝐷𝐷)
18 pmtr3ncom.f . . . . . . 7 𝐹 = (𝑇‘{𝑋, 𝑌})
1918feq1i 6575 . . . . . 6 (𝐹:𝐷𝐷 ↔ (𝑇‘{𝑋, 𝑌}):𝐷𝐷)
2017, 19sylibr 233 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐹:𝐷𝐷)
2120ffnd 6585 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐹 Fn 𝐷)
22 fvco2 6847 . . . 4 ((𝐹 Fn 𝐷𝑋𝐷) → ((𝐺𝐹)‘𝑋) = (𝐺‘(𝐹𝑋)))
2321, 7, 22syl2anc 583 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) = (𝐺‘(𝐹𝑋)))
2418fveq1i 6757 . . . . 5 (𝐹𝑋) = ((𝑇‘{𝑋, 𝑌})‘𝑋)
257, 9, 123jca 1126 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑋𝐷𝑌𝐷𝑋𝑌))
2615pmtrprfv 18976 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
275, 25, 26syl2anc 583 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
2824, 27eqtrid 2790 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐹𝑋) = 𝑌)
2928fveq2d 6760 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺‘(𝐹𝑋)) = (𝐺𝑌))
30 pmtr3ncom.g . . . . 5 𝐺 = (𝑇‘{𝑌, 𝑍})
3130fveq1i 6757 . . . 4 (𝐺𝑌) = ((𝑇‘{𝑌, 𝑍})‘𝑌)
32 simp3 1136 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑍𝐷)
33323ad2ant2 1132 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝐷)
34 simp3 1136 . . . . . . 7 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑌𝑍)
35343ad2ant3 1133 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝑍)
369, 33, 353jca 1126 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑌𝐷𝑍𝐷𝑌𝑍))
3715pmtrprfv 18976 . . . . 5 ((𝐷𝑉 ∧ (𝑌𝐷𝑍𝐷𝑌𝑍)) → ((𝑇‘{𝑌, 𝑍})‘𝑌) = 𝑍)
385, 36, 37syl2anc 583 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑌, 𝑍})‘𝑌) = 𝑍)
3931, 38eqtrid 2790 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺𝑌) = 𝑍)
4023, 29, 393eqtrd 2782 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) = 𝑍)
418, 32prssd 4752 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑌, 𝑍} ⊆ 𝐷)
42413ad2ant2 1132 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑌, 𝑍} ⊆ 𝐷)
43 pr2nelem 9691 . . . . . . 7 ((𝑌𝐷𝑍𝐷𝑌𝑍) → {𝑌, 𝑍} ≈ 2o)
449, 33, 35, 43syl3anc 1369 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑌, 𝑍} ≈ 2o)
4515pmtrf 18978 . . . . . . 7 ((𝐷𝑉 ∧ {𝑌, 𝑍} ⊆ 𝐷 ∧ {𝑌, 𝑍} ≈ 2o) → (𝑇‘{𝑌, 𝑍}):𝐷𝐷)
4630feq1i 6575 . . . . . . 7 (𝐺:𝐷𝐷 ↔ (𝑇‘{𝑌, 𝑍}):𝐷𝐷)
4745, 46sylibr 233 . . . . . 6 ((𝐷𝑉 ∧ {𝑌, 𝑍} ⊆ 𝐷 ∧ {𝑌, 𝑍} ≈ 2o) → 𝐺:𝐷𝐷)
485, 42, 44, 47syl3anc 1369 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐺:𝐷𝐷)
4948ffnd 6585 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐺 Fn 𝐷)
50 fvco2 6847 . . . 4 ((𝐺 Fn 𝐷𝑋𝐷) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
5149, 7, 50syl2anc 583 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
5230fveq1i 6757 . . . . 5 (𝐺𝑋) = ((𝑇‘{𝑌, 𝑍})‘𝑋)
53 id 22 . . . . . 6 (𝐷𝑉𝐷𝑉)
54 3anrot 1098 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) ↔ (𝑌𝐷𝑍𝐷𝑋𝐷))
5554biimpi 215 . . . . . 6 ((𝑋𝐷𝑌𝐷𝑍𝐷) → (𝑌𝐷𝑍𝐷𝑋𝐷))
56 3anrot 1098 . . . . . . 7 ((𝑌𝑍𝑌𝑋𝑍𝑋) ↔ (𝑌𝑋𝑍𝑋𝑌𝑍))
57 necom 2996 . . . . . . . 8 (𝑌𝑋𝑋𝑌)
58 necom 2996 . . . . . . . 8 (𝑍𝑋𝑋𝑍)
59 biid 260 . . . . . . . 8 (𝑌𝑍𝑌𝑍)
6057, 58, 593anbi123i 1153 . . . . . . 7 ((𝑌𝑋𝑍𝑋𝑌𝑍) ↔ (𝑋𝑌𝑋𝑍𝑌𝑍))
6156, 60sylbbr 235 . . . . . 6 ((𝑋𝑌𝑋𝑍𝑌𝑍) → (𝑌𝑍𝑌𝑋𝑍𝑋))
6215pmtrprfv3 18977 . . . . . 6 ((𝐷𝑉 ∧ (𝑌𝐷𝑍𝐷𝑋𝐷) ∧ (𝑌𝑍𝑌𝑋𝑍𝑋)) → ((𝑇‘{𝑌, 𝑍})‘𝑋) = 𝑋)
6353, 55, 61, 62syl3an 1158 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑌, 𝑍})‘𝑋) = 𝑋)
6452, 63eqtrid 2790 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺𝑋) = 𝑋)
6564fveq2d 6760 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐹‘(𝐺𝑋)) = (𝐹𝑋))
6651, 65, 283eqtrd 2782 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐹𝐺)‘𝑋) = 𝑌)
674, 40, 663netr4d 3020 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) ≠ ((𝐹𝐺)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wss 3883  {cpr 4560   class class class wbr 5070  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  2oc2o 8261  cen 8688  pmTrspcpmtr 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pmtr 18965
This theorem is referenced by:  pmtr3ncomlem2  18997
  Copyright terms: Public domain W3C validator