MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncomlem1 Structured version   Visualization version   GIF version

Theorem pmtr3ncomlem1 19178
Description: Lemma 1 for pmtr3ncom 19180. (Contributed by AV, 17-Mar-2018.)
Hypotheses
Ref Expression
pmtr3ncom.t 𝑇 = (pmTrsp‘𝐷)
pmtr3ncom.f 𝐹 = (𝑇‘{𝑋, 𝑌})
pmtr3ncom.g 𝐺 = (𝑇‘{𝑌, 𝑍})
Assertion
Ref Expression
pmtr3ncomlem1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) ≠ ((𝐹𝐺)‘𝑋))

Proof of Theorem pmtr3ncomlem1
StepHypRef Expression
1 necom 2994 . . . . 5 (𝑌𝑍𝑍𝑌)
21biimpi 215 . . . 4 (𝑌𝑍𝑍𝑌)
323ad2ant3 1134 . . 3 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑌)
433ad2ant3 1134 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑌)
5 simp1 1135 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐷𝑉)
6 simp1 1135 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑋𝐷)
763ad2ant2 1133 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝐷)
8 simp2 1136 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑌𝐷)
983ad2ant2 1133 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝐷)
107, 9prssd 4770 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ⊆ 𝐷)
11 simp1 1135 . . . . . . . . 9 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
12113ad2ant3 1134 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝑌)
13 enpr2 9860 . . . . . . . 8 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
147, 9, 12, 13syl3anc 1370 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2o)
15 pmtr3ncom.t . . . . . . . 8 𝑇 = (pmTrsp‘𝐷)
1615pmtrf 19160 . . . . . . 7 ((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2o) → (𝑇‘{𝑋, 𝑌}):𝐷𝐷)
175, 10, 14, 16syl3anc 1370 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑇‘{𝑋, 𝑌}):𝐷𝐷)
18 pmtr3ncom.f . . . . . . 7 𝐹 = (𝑇‘{𝑋, 𝑌})
1918feq1i 6643 . . . . . 6 (𝐹:𝐷𝐷 ↔ (𝑇‘{𝑋, 𝑌}):𝐷𝐷)
2017, 19sylibr 233 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐹:𝐷𝐷)
2120ffnd 6653 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐹 Fn 𝐷)
22 fvco2 6922 . . . 4 ((𝐹 Fn 𝐷𝑋𝐷) → ((𝐺𝐹)‘𝑋) = (𝐺‘(𝐹𝑋)))
2321, 7, 22syl2anc 584 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) = (𝐺‘(𝐹𝑋)))
2418fveq1i 6827 . . . . 5 (𝐹𝑋) = ((𝑇‘{𝑋, 𝑌})‘𝑋)
257, 9, 123jca 1127 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑋𝐷𝑌𝐷𝑋𝑌))
2615pmtrprfv 19158 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
275, 25, 26syl2anc 584 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
2824, 27eqtrid 2788 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐹𝑋) = 𝑌)
2928fveq2d 6830 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺‘(𝐹𝑋)) = (𝐺𝑌))
30 pmtr3ncom.g . . . . 5 𝐺 = (𝑇‘{𝑌, 𝑍})
3130fveq1i 6827 . . . 4 (𝐺𝑌) = ((𝑇‘{𝑌, 𝑍})‘𝑌)
32 simp3 1137 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑍𝐷)
33323ad2ant2 1133 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝐷)
34 simp3 1137 . . . . . . 7 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑌𝑍)
35343ad2ant3 1134 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝑍)
369, 33, 353jca 1127 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑌𝐷𝑍𝐷𝑌𝑍))
3715pmtrprfv 19158 . . . . 5 ((𝐷𝑉 ∧ (𝑌𝐷𝑍𝐷𝑌𝑍)) → ((𝑇‘{𝑌, 𝑍})‘𝑌) = 𝑍)
385, 36, 37syl2anc 584 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑌, 𝑍})‘𝑌) = 𝑍)
3931, 38eqtrid 2788 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺𝑌) = 𝑍)
4023, 29, 393eqtrd 2780 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) = 𝑍)
418, 32prssd 4770 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑌, 𝑍} ⊆ 𝐷)
42413ad2ant2 1133 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑌, 𝑍} ⊆ 𝐷)
43 enpr2 9860 . . . . . . 7 ((𝑌𝐷𝑍𝐷𝑌𝑍) → {𝑌, 𝑍} ≈ 2o)
449, 33, 35, 43syl3anc 1370 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑌, 𝑍} ≈ 2o)
4515pmtrf 19160 . . . . . . 7 ((𝐷𝑉 ∧ {𝑌, 𝑍} ⊆ 𝐷 ∧ {𝑌, 𝑍} ≈ 2o) → (𝑇‘{𝑌, 𝑍}):𝐷𝐷)
4630feq1i 6643 . . . . . . 7 (𝐺:𝐷𝐷 ↔ (𝑇‘{𝑌, 𝑍}):𝐷𝐷)
4745, 46sylibr 233 . . . . . 6 ((𝐷𝑉 ∧ {𝑌, 𝑍} ⊆ 𝐷 ∧ {𝑌, 𝑍} ≈ 2o) → 𝐺:𝐷𝐷)
485, 42, 44, 47syl3anc 1370 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐺:𝐷𝐷)
4948ffnd 6653 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐺 Fn 𝐷)
50 fvco2 6922 . . . 4 ((𝐺 Fn 𝐷𝑋𝐷) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
5149, 7, 50syl2anc 584 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
5230fveq1i 6827 . . . . 5 (𝐺𝑋) = ((𝑇‘{𝑌, 𝑍})‘𝑋)
53 id 22 . . . . . 6 (𝐷𝑉𝐷𝑉)
54 3anrot 1099 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) ↔ (𝑌𝐷𝑍𝐷𝑋𝐷))
5554biimpi 215 . . . . . 6 ((𝑋𝐷𝑌𝐷𝑍𝐷) → (𝑌𝐷𝑍𝐷𝑋𝐷))
56 3anrot 1099 . . . . . . 7 ((𝑌𝑍𝑌𝑋𝑍𝑋) ↔ (𝑌𝑋𝑍𝑋𝑌𝑍))
57 necom 2994 . . . . . . . 8 (𝑌𝑋𝑋𝑌)
58 necom 2994 . . . . . . . 8 (𝑍𝑋𝑋𝑍)
59 biid 260 . . . . . . . 8 (𝑌𝑍𝑌𝑍)
6057, 58, 593anbi123i 1154 . . . . . . 7 ((𝑌𝑋𝑍𝑋𝑌𝑍) ↔ (𝑋𝑌𝑋𝑍𝑌𝑍))
6156, 60sylbbr 235 . . . . . 6 ((𝑋𝑌𝑋𝑍𝑌𝑍) → (𝑌𝑍𝑌𝑋𝑍𝑋))
6215pmtrprfv3 19159 . . . . . 6 ((𝐷𝑉 ∧ (𝑌𝐷𝑍𝐷𝑋𝐷) ∧ (𝑌𝑍𝑌𝑋𝑍𝑋)) → ((𝑇‘{𝑌, 𝑍})‘𝑋) = 𝑋)
6353, 55, 61, 62syl3an 1159 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑌, 𝑍})‘𝑋) = 𝑋)
6452, 63eqtrid 2788 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺𝑋) = 𝑋)
6564fveq2d 6830 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐹‘(𝐺𝑋)) = (𝐹𝑋))
6651, 65, 283eqtrd 2780 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐹𝐺)‘𝑋) = 𝑌)
674, 40, 663netr4d 3018 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) ≠ ((𝐹𝐺)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wss 3898  {cpr 4576   class class class wbr 5093  ccom 5625   Fn wfn 6475  wf 6476  cfv 6480  2oc2o 8362  cen 8802  pmTrspcpmtr 19146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-om 7782  df-1o 8368  df-2o 8369  df-en 8806  df-pmtr 19147
This theorem is referenced by:  pmtr3ncomlem2  19179
  Copyright terms: Public domain W3C validator