MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflf2 Structured version   Visualization version   GIF version

Theorem hausflf2 23502
Description: If a convergent function has its values in a Hausdorff space, then it has a unique limit. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
hausflf.x 𝑋 = 𝐽
Assertion
Ref Expression
hausflf2 (((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ ((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o)

Proof of Theorem hausflf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4347 . . 3 (((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
21biimpi 215 . 2 (((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅ → ∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
3 hausflf.x . . 3 𝑋 = 𝐽
43hausflf 23501 . 2 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
5 euen1b 9027 . . 3 (((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o ↔ ∃!𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
6 df-eu 2564 . . 3 (∃!𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))
75, 6sylbbr 235 . 2 ((∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o)
82, 4, 7syl2anr 598 1 (((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ ((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  ∃*wmo 2533  ∃!weu 2563  wne 2941  c0 4323   cuni 4909   class class class wbr 5149  wf 6540  cfv 6544  (class class class)co 7409  1oc1o 8459  cen 8936  Hauscha 22812  Filcfil 23349   fLimf cflf 23439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1o 8466  df-map 8822  df-en 8940  df-fbas 20941  df-top 22396  df-topon 22413  df-nei 22602  df-haus 22819  df-fil 23350  df-flim 23443  df-flf 23444
This theorem is referenced by:  cnextfvval  23569  cnextcn  23571  cnextfres1  23572
  Copyright terms: Public domain W3C validator