![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hausflf2 | Structured version Visualization version GIF version |
Description: If a convergent function has its values in a Hausdorff space, then it has a unique limit. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
hausflf.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hausflf2 | ⊢ (((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ ((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4345 | . . 3 ⊢ (((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅ → ∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) |
3 | hausflf.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | hausflf 23721 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) |
5 | euen1b 9029 | . . 3 ⊢ (((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o ↔ ∃!𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) | |
6 | df-eu 2561 | . . 3 ⊢ (∃!𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))) | |
7 | 5, 6 | sylbbr 235 | . 2 ⊢ ((∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o) |
8 | 2, 4, 7 | syl2anr 595 | 1 ⊢ (((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ ((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ∃*wmo 2530 ∃!weu 2560 ≠ wne 2938 ∅c0 4321 ∪ cuni 4907 class class class wbr 5147 ⟶wf 6538 ‘cfv 6542 (class class class)co 7411 1oc1o 8461 ≈ cen 8938 Hauscha 23032 Filcfil 23569 fLimf cflf 23659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1o 8468 df-map 8824 df-en 8942 df-fbas 21141 df-top 22616 df-topon 22633 df-nei 22822 df-haus 23039 df-fil 23570 df-flim 23663 df-flf 23664 |
This theorem is referenced by: cnextfvval 23789 cnextcn 23791 cnextfres1 23792 |
Copyright terms: Public domain | W3C validator |