MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflf2 Structured version   Visualization version   GIF version

Theorem hausflf2 22698
Description: If a convergent function has its values in a Hausdorff space, then it has a unique limit. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
hausflf.x 𝑋 = 𝐽
Assertion
Ref Expression
hausflf2 (((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ ((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o)

Proof of Theorem hausflf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4245 . . 3 (((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
21biimpi 219 . 2 (((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅ → ∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
3 hausflf.x . . 3 𝑋 = 𝐽
43hausflf 22697 . 2 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
5 euen1b 8599 . . 3 (((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o ↔ ∃!𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
6 df-eu 2588 . . 3 (∃!𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))
75, 6sylbbr 239 . 2 ((∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o)
82, 4, 7syl2anr 599 1 (((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ ((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  ∃*wmo 2555  ∃!weu 2587  wne 2951  c0 4225   cuni 4798   class class class wbr 5032  wf 6331  cfv 6335  (class class class)co 7150  1oc1o 8105  cen 8524  Hauscha 22008  Filcfil 22545   fLimf cflf 22635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1o 8112  df-map 8418  df-en 8528  df-fbas 20163  df-top 21594  df-topon 21611  df-nei 21798  df-haus 22015  df-fil 22546  df-flim 22639  df-flf 22640
This theorem is referenced by:  cnextfvval  22765  cnextcn  22767  cnextfres1  22768
  Copyright terms: Public domain W3C validator