| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hausflf2 | Structured version Visualization version GIF version | ||
| Description: If a convergent function has its values in a Hausdorff space, then it has a unique limit. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| hausflf.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| hausflf2 | ⊢ (((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ ((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4300 | . . 3 ⊢ (((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅ → ∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) |
| 3 | hausflf.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 3 | hausflf 23912 | . 2 ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) |
| 5 | euen1b 8950 | . . 3 ⊢ (((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o ↔ ∃!𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) | |
| 6 | df-eu 2564 | . . 3 ⊢ (∃!𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))) | |
| 7 | 5, 6 | sylbbr 236 | . 2 ⊢ ((∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o) |
| 8 | 2, 4, 7 | syl2anr 597 | 1 ⊢ (((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ ((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃*wmo 2533 ∃!weu 2563 ≠ wne 2928 ∅c0 4280 ∪ cuni 4856 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ≈ cen 8866 Hauscha 23223 Filcfil 23760 fLimf cflf 23850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1o 8385 df-map 8752 df-en 8870 df-fbas 21288 df-top 22809 df-topon 22826 df-nei 23013 df-haus 23230 df-fil 23761 df-flim 23854 df-flf 23855 |
| This theorem is referenced by: cnextfvval 23980 cnextcn 23982 cnextfres1 23983 |
| Copyright terms: Public domain | W3C validator |