MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflf2 Structured version   Visualization version   GIF version

Theorem hausflf2 23918
Description: If a convergent function has its values in a Hausdorff space, then it has a unique limit. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
hausflf.x 𝑋 = 𝐽
Assertion
Ref Expression
hausflf2 (((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ ((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o)

Proof of Theorem hausflf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4312 . . 3 (((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
21biimpi 216 . 2 (((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅ → ∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
3 hausflf.x . . 3 𝑋 = 𝐽
43hausflf 23917 . 2 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
5 euen1b 8976 . . 3 (((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o ↔ ∃!𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
6 df-eu 2562 . . 3 (∃!𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))
75, 6sylbbr 236 . 2 ((∃𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o)
82, 4, 7syl2anr 597 1 (((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ ((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  wne 2925  c0 4292   cuni 4867   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  1oc1o 8404  cen 8892  Hauscha 23228  Filcfil 23765   fLimf cflf 23855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1o 8411  df-map 8778  df-en 8896  df-fbas 21293  df-top 22814  df-topon 22831  df-nei 23018  df-haus 23235  df-fil 23766  df-flim 23859  df-flf 23860
This theorem is referenced by:  cnextfvval  23985  cnextcn  23987  cnextfres1  23988
  Copyright terms: Public domain W3C validator