Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenval2 Structured version   Visualization version   GIF version

Theorem igenval2 35338
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
igenval2.1 𝐺 = (1st𝑅)
igenval2.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenval2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
Distinct variable groups:   𝑅,𝑗   𝑆,𝑗   𝑗,𝐼
Allowed substitution hints:   𝐺(𝑗)   𝑋(𝑗)

Proof of Theorem igenval2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 igenval2.1 . . . . 5 𝐺 = (1st𝑅)
2 igenval2.2 . . . . 5 𝑋 = ran 𝐺
31, 2igenidl 35335 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅))
41, 2igenss 35334 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆))
5 igenmin 35336 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅) ∧ 𝑆𝑗) → (𝑅 IdlGen 𝑆) ⊆ 𝑗)
653expia 1117 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → (𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗))
76ralrimiva 3182 . . . . 5 (𝑅 ∈ RingOps → ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗))
87adantr 483 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗))
93, 4, 83jca 1124 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ (𝑅 IdlGen 𝑆) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗)))
10 eleq1 2900 . . . 4 ((𝑅 IdlGen 𝑆) = 𝐼 → ((𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅) ↔ 𝐼 ∈ (Idl‘𝑅)))
11 sseq2 3992 . . . 4 ((𝑅 IdlGen 𝑆) = 𝐼 → (𝑆 ⊆ (𝑅 IdlGen 𝑆) ↔ 𝑆𝐼))
12 sseq1 3991 . . . . . 6 ((𝑅 IdlGen 𝑆) = 𝐼 → ((𝑅 IdlGen 𝑆) ⊆ 𝑗𝐼𝑗))
1312imbi2d 343 . . . . 5 ((𝑅 IdlGen 𝑆) = 𝐼 → ((𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗) ↔ (𝑆𝑗𝐼𝑗)))
1413ralbidv 3197 . . . 4 ((𝑅 IdlGen 𝑆) = 𝐼 → (∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗)))
1510, 11, 143anbi123d 1432 . . 3 ((𝑅 IdlGen 𝑆) = 𝐼 → (((𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ (𝑅 IdlGen 𝑆) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗)) ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
169, 15syl5ibcom 247 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 → (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
17 igenmin 35336 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
18173adant3r3 1180 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
1918adantlr 713 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
20 ssint 4884 . . . . . . . 8 (𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖} ↔ ∀𝑗 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖}𝐼𝑗)
21 sseq2 3992 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑆𝑖𝑆𝑗))
2221ralrab 3684 . . . . . . . 8 (∀𝑗 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖}𝐼𝑗 ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))
2320, 22sylbbr 238 . . . . . . 7 (∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗) → 𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
24233ad2ant3 1131 . . . . . 6 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗)) → 𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
2524adantl 484 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → 𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
261, 2igenval 35333 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
2726adantr 483 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) = {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
2825, 27sseqtrrd 4007 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → 𝐼 ⊆ (𝑅 IdlGen 𝑆))
2919, 28eqssd 3983 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) = 𝐼)
3029ex 415 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗)) → (𝑅 IdlGen 𝑆) = 𝐼))
3116, 30impbid 214 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  wss 3935   cint 4868  ran crn 5550  cfv 6349  (class class class)co 7150  1st c1st 7681  RingOpscrngo 35166  Idlcidl 35279   IdlGen cigen 35331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fo 6355  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-grpo 28264  df-gid 28265  df-ablo 28316  df-rngo 35167  df-idl 35282  df-igen 35332
This theorem is referenced by:  prnc  35339
  Copyright terms: Public domain W3C validator