Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenval2 Structured version   Visualization version   GIF version

Theorem igenval2 36872
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
igenval2.1 𝐺 = (1st𝑅)
igenval2.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenval2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
Distinct variable groups:   𝑅,𝑗   𝑆,𝑗   𝑗,𝐼
Allowed substitution hints:   𝐺(𝑗)   𝑋(𝑗)

Proof of Theorem igenval2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 igenval2.1 . . . . 5 𝐺 = (1st𝑅)
2 igenval2.2 . . . . 5 𝑋 = ran 𝐺
31, 2igenidl 36869 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅))
41, 2igenss 36868 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆))
5 igenmin 36870 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅) ∧ 𝑆𝑗) → (𝑅 IdlGen 𝑆) ⊆ 𝑗)
653expia 1122 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → (𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗))
76ralrimiva 3147 . . . . 5 (𝑅 ∈ RingOps → ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗))
87adantr 482 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗))
93, 4, 83jca 1129 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ (𝑅 IdlGen 𝑆) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗)))
10 eleq1 2822 . . . 4 ((𝑅 IdlGen 𝑆) = 𝐼 → ((𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅) ↔ 𝐼 ∈ (Idl‘𝑅)))
11 sseq2 4007 . . . 4 ((𝑅 IdlGen 𝑆) = 𝐼 → (𝑆 ⊆ (𝑅 IdlGen 𝑆) ↔ 𝑆𝐼))
12 sseq1 4006 . . . . . 6 ((𝑅 IdlGen 𝑆) = 𝐼 → ((𝑅 IdlGen 𝑆) ⊆ 𝑗𝐼𝑗))
1312imbi2d 341 . . . . 5 ((𝑅 IdlGen 𝑆) = 𝐼 → ((𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗) ↔ (𝑆𝑗𝐼𝑗)))
1413ralbidv 3178 . . . 4 ((𝑅 IdlGen 𝑆) = 𝐼 → (∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗)))
1510, 11, 143anbi123d 1437 . . 3 ((𝑅 IdlGen 𝑆) = 𝐼 → (((𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ (𝑅 IdlGen 𝑆) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗)) ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
169, 15syl5ibcom 244 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 → (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
17 igenmin 36870 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
18173adant3r3 1185 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
1918adantlr 714 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
20 ssint 4967 . . . . . . . 8 (𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖} ↔ ∀𝑗 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖}𝐼𝑗)
21 sseq2 4007 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑆𝑖𝑆𝑗))
2221ralrab 3688 . . . . . . . 8 (∀𝑗 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖}𝐼𝑗 ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))
2320, 22sylbbr 235 . . . . . . 7 (∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗) → 𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
24233ad2ant3 1136 . . . . . 6 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗)) → 𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
2524adantl 483 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → 𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
261, 2igenval 36867 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
2726adantr 482 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) = {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
2825, 27sseqtrrd 4022 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → 𝐼 ⊆ (𝑅 IdlGen 𝑆))
2919, 28eqssd 3998 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) = 𝐼)
3029ex 414 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗)) → (𝑅 IdlGen 𝑆) = 𝐼))
3116, 30impbid 211 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  {crab 3433  wss 3947   cint 4949  ran crn 5676  cfv 6540  (class class class)co 7404  1st c1st 7968  RingOpscrngo 36700  Idlcidl 36813   IdlGen cigen 36865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7970  df-2nd 7971  df-grpo 29724  df-gid 29725  df-ablo 29776  df-rngo 36701  df-idl 36816  df-igen 36866
This theorem is referenced by:  prnc  36873
  Copyright terms: Public domain W3C validator