Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenval2 Structured version   Visualization version   GIF version

Theorem igenval2 38026
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
igenval2.1 𝐺 = (1st𝑅)
igenval2.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenval2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
Distinct variable groups:   𝑅,𝑗   𝑆,𝑗   𝑗,𝐼
Allowed substitution hints:   𝐺(𝑗)   𝑋(𝑗)

Proof of Theorem igenval2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 igenval2.1 . . . . 5 𝐺 = (1st𝑅)
2 igenval2.2 . . . . 5 𝑋 = ran 𝐺
31, 2igenidl 38023 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅))
41, 2igenss 38022 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆))
5 igenmin 38024 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅) ∧ 𝑆𝑗) → (𝑅 IdlGen 𝑆) ⊆ 𝑗)
653expia 1121 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → (𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗))
76ralrimiva 3152 . . . . 5 (𝑅 ∈ RingOps → ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗))
87adantr 480 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗))
93, 4, 83jca 1128 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ (𝑅 IdlGen 𝑆) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗)))
10 eleq1 2832 . . . 4 ((𝑅 IdlGen 𝑆) = 𝐼 → ((𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅) ↔ 𝐼 ∈ (Idl‘𝑅)))
11 sseq2 4035 . . . 4 ((𝑅 IdlGen 𝑆) = 𝐼 → (𝑆 ⊆ (𝑅 IdlGen 𝑆) ↔ 𝑆𝐼))
12 sseq1 4034 . . . . . 6 ((𝑅 IdlGen 𝑆) = 𝐼 → ((𝑅 IdlGen 𝑆) ⊆ 𝑗𝐼𝑗))
1312imbi2d 340 . . . . 5 ((𝑅 IdlGen 𝑆) = 𝐼 → ((𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗) ↔ (𝑆𝑗𝐼𝑗)))
1413ralbidv 3184 . . . 4 ((𝑅 IdlGen 𝑆) = 𝐼 → (∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗)))
1510, 11, 143anbi123d 1436 . . 3 ((𝑅 IdlGen 𝑆) = 𝐼 → (((𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ (𝑅 IdlGen 𝑆) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗)) ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
169, 15syl5ibcom 245 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 → (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
17 igenmin 38024 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
18173adant3r3 1184 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
1918adantlr 714 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
20 ssint 4988 . . . . . . . 8 (𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖} ↔ ∀𝑗 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖}𝐼𝑗)
21 sseq2 4035 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑆𝑖𝑆𝑗))
2221ralrab 3715 . . . . . . . 8 (∀𝑗 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖}𝐼𝑗 ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))
2320, 22sylbbr 236 . . . . . . 7 (∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗) → 𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
24233ad2ant3 1135 . . . . . 6 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗)) → 𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
2524adantl 481 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → 𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
261, 2igenval 38021 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
2726adantr 480 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) = {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
2825, 27sseqtrrd 4050 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → 𝐼 ⊆ (𝑅 IdlGen 𝑆))
2919, 28eqssd 4026 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) = 𝐼)
3029ex 412 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗)) → (𝑅 IdlGen 𝑆) = 𝐼))
3116, 30impbid 212 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976   cint 4970  ran crn 5701  cfv 6573  (class class class)co 7448  1st c1st 8028  RingOpscrngo 37854  Idlcidl 37967   IdlGen cigen 38019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-grpo 30525  df-gid 30526  df-ablo 30577  df-rngo 37855  df-idl 37970  df-igen 38020
This theorem is referenced by:  prnc  38027
  Copyright terms: Public domain W3C validator