Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenval2 Structured version   Visualization version   GIF version

Theorem igenval2 35213
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
igenval2.1 𝐺 = (1st𝑅)
igenval2.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenval2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
Distinct variable groups:   𝑅,𝑗   𝑆,𝑗   𝑗,𝐼
Allowed substitution hints:   𝐺(𝑗)   𝑋(𝑗)

Proof of Theorem igenval2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 igenval2.1 . . . . 5 𝐺 = (1st𝑅)
2 igenval2.2 . . . . 5 𝑋 = ran 𝐺
31, 2igenidl 35210 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅))
41, 2igenss 35209 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆))
5 igenmin 35211 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅) ∧ 𝑆𝑗) → (𝑅 IdlGen 𝑆) ⊆ 𝑗)
653expia 1115 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → (𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗))
76ralrimiva 3186 . . . . 5 (𝑅 ∈ RingOps → ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗))
87adantr 481 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗))
93, 4, 83jca 1122 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ (𝑅 IdlGen 𝑆) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗)))
10 eleq1 2904 . . . 4 ((𝑅 IdlGen 𝑆) = 𝐼 → ((𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅) ↔ 𝐼 ∈ (Idl‘𝑅)))
11 sseq2 3996 . . . 4 ((𝑅 IdlGen 𝑆) = 𝐼 → (𝑆 ⊆ (𝑅 IdlGen 𝑆) ↔ 𝑆𝐼))
12 sseq1 3995 . . . . . 6 ((𝑅 IdlGen 𝑆) = 𝐼 → ((𝑅 IdlGen 𝑆) ⊆ 𝑗𝐼𝑗))
1312imbi2d 342 . . . . 5 ((𝑅 IdlGen 𝑆) = 𝐼 → ((𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗) ↔ (𝑆𝑗𝐼𝑗)))
1413ralbidv 3201 . . . 4 ((𝑅 IdlGen 𝑆) = 𝐼 → (∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗)))
1510, 11, 143anbi123d 1429 . . 3 ((𝑅 IdlGen 𝑆) = 𝐼 → (((𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ (𝑅 IdlGen 𝑆) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗 → (𝑅 IdlGen 𝑆) ⊆ 𝑗)) ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
169, 15syl5ibcom 246 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 → (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
17 igenmin 35211 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
18173adant3r3 1178 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
1918adantlr 711 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
20 ssint 4889 . . . . . . . 8 (𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖} ↔ ∀𝑗 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖}𝐼𝑗)
21 sseq2 3996 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑆𝑖𝑆𝑗))
2221ralrab 3688 . . . . . . . 8 (∀𝑗 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖}𝐼𝑗 ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))
2320, 22sylbbr 237 . . . . . . 7 (∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗) → 𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
24233ad2ant3 1129 . . . . . 6 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗)) → 𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
2524adantl 482 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → 𝐼 {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
261, 2igenval 35208 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
2726adantr 481 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) = {𝑖 ∈ (Idl‘𝑅) ∣ 𝑆𝑖})
2825, 27sseqtrrd 4011 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → 𝐼 ⊆ (𝑅 IdlGen 𝑆))
2919, 28eqssd 3987 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆𝑋) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))) → (𝑅 IdlGen 𝑆) = 𝐼)
3029ex 413 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗)) → (𝑅 IdlGen 𝑆) = 𝐼))
3116, 30impbid 213 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2106  wral 3142  {crab 3146  wss 3939   cint 4873  ran crn 5554  cfv 6351  (class class class)co 7151  1st c1st 7681  RingOpscrngo 35041  Idlcidl 35154   IdlGen cigen 35206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-fo 6357  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-grpo 28185  df-gid 28186  df-ablo 28237  df-rngo 35042  df-idl 35157  df-igen 35207
This theorem is referenced by:  prnc  35214
  Copyright terms: Public domain W3C validator