MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmima Structured version   Visualization version   GIF version

Theorem ndmima 6011
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) (Proof shortened by OpenAI, 3-Jul-2020.)
Assertion
Ref Expression
ndmima 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)

Proof of Theorem ndmima
StepHypRef Expression
1 imadisj 5988 . 2 ((𝐵 “ {𝐴}) = ∅ ↔ (dom 𝐵 ∩ {𝐴}) = ∅)
2 disjsn 4647 . 2 ((dom 𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐵)
31, 2sylbbr 235 1 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  cin 3886  c0 4256  {csn 4561  dom cdm 5589  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  funfv  6855  dffv2  6863  imafi  8958  fpwwe2lem12  10398  bj-funun  35423
  Copyright terms: Public domain W3C validator