MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthfrgrrn Structured version   Visualization version   GIF version

Theorem 2pthfrgrrn 30262
Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017.) (Revised by AV, 1-Apr-2021.)
Hypotheses
Ref Expression
2pthfrgrrn.v 𝑉 = (Vtx‘𝐺)
2pthfrgrrn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
2pthfrgrrn (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐   𝐺,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐

Proof of Theorem 2pthfrgrrn
StepHypRef Expression
1 2pthfrgrrn.v . . 3 𝑉 = (Vtx‘𝐺)
2 2pthfrgrrn.e . . 3 𝐸 = (Edg‘𝐺)
31, 2isfrgr 30240 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸))
4 reurex 3350 . . . . . 6 (∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸)
5 prcom 4682 . . . . . . . . . 10 {𝑎, 𝑏} = {𝑏, 𝑎}
65eleq1i 2822 . . . . . . . . 9 ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ 𝐸)
76anbi1i 624 . . . . . . . 8 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
8 zfpair2 5369 . . . . . . . . 9 {𝑏, 𝑎} ∈ V
9 zfpair2 5369 . . . . . . . . 9 {𝑏, 𝑐} ∈ V
108, 9prss 4769 . . . . . . . 8 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸)
117, 10sylbbr 236 . . . . . . 7 ({{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
1211reximi 3070 . . . . . 6 (∃𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
134, 12syl 17 . . . . 5 (∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
1413a1i 11 . . . 4 ((𝐺 ∈ USGraph ∧ (𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎}))) → (∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))
1514ralimdvva 3179 . . 3 (𝐺 ∈ USGraph → (∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))
1615imp 406 . 2 ((𝐺 ∈ USGraph ∧ ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸) → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
173, 16sylbi 217 1 (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  cdif 3894  wss 3897  {csn 4573  {cpr 4575  cfv 6481  Vtxcvtx 28974  Edgcedg 29025  USGraphcusgr 29127   FriendGraph cfrgr 30238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-frgr 30239
This theorem is referenced by:  2pthfrgrrn2  30263  3cyclfrgrrn1  30265
  Copyright terms: Public domain W3C validator