Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2pthfrgrrn | Structured version Visualization version GIF version |
Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017.) (Revised by AV, 1-Apr-2021.) |
Ref | Expression |
---|---|
2pthfrgrrn.v | ⊢ 𝑉 = (Vtx‘𝐺) |
2pthfrgrrn.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
2pthfrgrrn | ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2pthfrgrrn.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 2pthfrgrrn.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | isfrgr 28525 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸)) |
4 | reurex 3352 | . . . . . 6 ⊢ (∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸) | |
5 | prcom 4665 | . . . . . . . . . 10 ⊢ {𝑎, 𝑏} = {𝑏, 𝑎} | |
6 | 5 | eleq1i 2829 | . . . . . . . . 9 ⊢ ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ 𝐸) |
7 | 6 | anbi1i 623 | . . . . . . . 8 ⊢ (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
8 | zfpair2 5348 | . . . . . . . . 9 ⊢ {𝑏, 𝑎} ∈ V | |
9 | zfpair2 5348 | . . . . . . . . 9 ⊢ {𝑏, 𝑐} ∈ V | |
10 | 8, 9 | prss 4750 | . . . . . . . 8 ⊢ (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸) |
11 | 7, 10 | sylbbr 235 | . . . . . . 7 ⊢ ({{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
12 | 11 | reximi 3174 | . . . . . 6 ⊢ (∃𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
13 | 4, 12 | syl 17 | . . . . 5 ⊢ (∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
14 | 13 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ (𝑉 ∖ {𝑎}))) → (∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
15 | 14 | ralimdvva 3104 | . . 3 ⊢ (𝐺 ∈ USGraph → (∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
16 | 15 | imp 406 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸) → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
17 | 3, 16 | sylbi 216 | 1 ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∃!wreu 3065 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 {cpr 4560 ‘cfv 6418 Vtxcvtx 27269 Edgcedg 27320 USGraphcusgr 27422 FriendGraph cfrgr 28523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-frgr 28524 |
This theorem is referenced by: 2pthfrgrrn2 28548 3cyclfrgrrn1 28550 |
Copyright terms: Public domain | W3C validator |