![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2pthfrgrrn | Structured version Visualization version GIF version |
Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017.) (Revised by AV, 1-Apr-2021.) |
Ref | Expression |
---|---|
2pthfrgrrn.v | ⊢ 𝑉 = (Vtx‘𝐺) |
2pthfrgrrn.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
2pthfrgrrn | ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2pthfrgrrn.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 2pthfrgrrn.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | isfrgr 30112 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸)) |
4 | reurex 3368 | . . . . . 6 ⊢ (∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸) | |
5 | prcom 4732 | . . . . . . . . . 10 ⊢ {𝑎, 𝑏} = {𝑏, 𝑎} | |
6 | 5 | eleq1i 2816 | . . . . . . . . 9 ⊢ ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ 𝐸) |
7 | 6 | anbi1i 622 | . . . . . . . 8 ⊢ (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
8 | zfpair2 5424 | . . . . . . . . 9 ⊢ {𝑏, 𝑎} ∈ V | |
9 | zfpair2 5424 | . . . . . . . . 9 ⊢ {𝑏, 𝑐} ∈ V | |
10 | 8, 9 | prss 4819 | . . . . . . . 8 ⊢ (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸) |
11 | 7, 10 | sylbbr 235 | . . . . . . 7 ⊢ ({{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
12 | 11 | reximi 3074 | . . . . . 6 ⊢ (∃𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
13 | 4, 12 | syl 17 | . . . . 5 ⊢ (∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
14 | 13 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ (𝑉 ∖ {𝑎}))) → (∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
15 | 14 | ralimdvva 3195 | . . 3 ⊢ (𝐺 ∈ USGraph → (∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
16 | 15 | imp 405 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸) → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
17 | 3, 16 | sylbi 216 | 1 ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ∃wrex 3060 ∃!wreu 3362 ∖ cdif 3937 ⊆ wss 3940 {csn 4624 {cpr 4626 ‘cfv 6542 Vtxcvtx 28851 Edgcedg 28902 USGraphcusgr 29004 FriendGraph cfrgr 30110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-dif 3943 df-un 3945 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-iota 6494 df-fv 6550 df-frgr 30111 |
This theorem is referenced by: 2pthfrgrrn2 30135 3cyclfrgrrn1 30137 |
Copyright terms: Public domain | W3C validator |