![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2pthfrgrrn | Structured version Visualization version GIF version |
Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017.) (Revised by AV, 1-Apr-2021.) |
Ref | Expression |
---|---|
2pthfrgrrn.v | ⊢ 𝑉 = (Vtx‘𝐺) |
2pthfrgrrn.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
2pthfrgrrn | ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2pthfrgrrn.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 2pthfrgrrn.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | isfrgr 30022 | . 2 ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸)) |
4 | reurex 3374 | . . . . . 6 ⊢ (∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸) | |
5 | prcom 4731 | . . . . . . . . . 10 ⊢ {𝑎, 𝑏} = {𝑏, 𝑎} | |
6 | 5 | eleq1i 2818 | . . . . . . . . 9 ⊢ ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ 𝐸) |
7 | 6 | anbi1i 623 | . . . . . . . 8 ⊢ (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
8 | zfpair2 5421 | . . . . . . . . 9 ⊢ {𝑏, 𝑎} ∈ V | |
9 | zfpair2 5421 | . . . . . . . . 9 ⊢ {𝑏, 𝑐} ∈ V | |
10 | 8, 9 | prss 4818 | . . . . . . . 8 ⊢ (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸) |
11 | 7, 10 | sylbbr 235 | . . . . . . 7 ⊢ ({{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
12 | 11 | reximi 3078 | . . . . . 6 ⊢ (∃𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
13 | 4, 12 | syl 17 | . . . . 5 ⊢ (∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
14 | 13 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ (𝑉 ∖ {𝑎}))) → (∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
15 | 14 | ralimdvva 3198 | . . 3 ⊢ (𝐺 ∈ USGraph → (∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))) |
16 | 15 | imp 406 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏 ∈ 𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸) → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
17 | 3, 16 | sylbi 216 | 1 ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ∃!wreu 3368 ∖ cdif 3940 ⊆ wss 3943 {csn 4623 {cpr 4625 ‘cfv 6537 Vtxcvtx 28764 Edgcedg 28815 USGraphcusgr 28917 FriendGraph cfrgr 30020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6489 df-fv 6545 df-frgr 30021 |
This theorem is referenced by: 2pthfrgrrn2 30045 3cyclfrgrrn1 30047 |
Copyright terms: Public domain | W3C validator |