Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthfrgrrn Structured version   Visualization version   GIF version

Theorem 2pthfrgrrn 28074
 Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017.) (Revised by AV, 1-Apr-2021.)
Hypotheses
Ref Expression
2pthfrgrrn.v 𝑉 = (Vtx‘𝐺)
2pthfrgrrn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
2pthfrgrrn (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐   𝐺,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐

Proof of Theorem 2pthfrgrrn
StepHypRef Expression
1 2pthfrgrrn.v . . 3 𝑉 = (Vtx‘𝐺)
2 2pthfrgrrn.e . . 3 𝐸 = (Edg‘𝐺)
31, 2isfrgr 28052 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸))
4 reurex 3376 . . . . . 6 (∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸)
5 prcom 4628 . . . . . . . . . 10 {𝑎, 𝑏} = {𝑏, 𝑎}
65eleq1i 2880 . . . . . . . . 9 ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ 𝐸)
76anbi1i 626 . . . . . . . 8 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ ({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
8 zfpair2 5296 . . . . . . . . 9 {𝑏, 𝑎} ∈ V
9 zfpair2 5296 . . . . . . . . 9 {𝑏, 𝑐} ∈ V
108, 9prss 4713 . . . . . . . 8 (({𝑏, 𝑎} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ↔ {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸)
117, 10sylbbr 239 . . . . . . 7 ({{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
1211reximi 3206 . . . . . 6 (∃𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
134, 12syl 17 . . . . 5 (∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
1413a1i 11 . . . 4 ((𝐺 ∈ USGraph ∧ (𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎}))) → (∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))
1514ralimdvva 3146 . . 3 (𝐺 ∈ USGraph → (∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸 → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)))
1615imp 410 . 2 ((𝐺 ∈ USGraph ∧ ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃!𝑏𝑉 {{𝑏, 𝑎}, {𝑏, 𝑐}} ⊆ 𝐸) → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
173, 16sylbi 220 1 (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  ∃!wreu 3108   ∖ cdif 3878   ⊆ wss 3881  {csn 4525  {cpr 4527  ‘cfv 6324  Vtxcvtx 26796  Edgcedg 26847  USGraphcusgr 26949   FriendGraph cfrgr 28050 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-frgr 28051 This theorem is referenced by:  2pthfrgrrn2  28075  3cyclfrgrrn1  28077
 Copyright terms: Public domain W3C validator