| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invrcn | Structured version Visualization version GIF version | ||
| Description: The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to the field. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mulrcn.j | ⊢ 𝐽 = (TopOpen‘𝑅) |
| invrcn.i | ⊢ 𝐼 = (invr‘𝑅) |
| invrcn.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| invrcn | ⊢ (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tdrgtps 24120 | . . 3 ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopSp) | |
| 2 | mulrcn.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝑅) | |
| 3 | 2 | tpstop 22880 | . . 3 ⊢ (𝑅 ∈ TopSp → 𝐽 ∈ Top) |
| 4 | cnrest2r 23230 | . . 3 ⊢ (𝐽 ∈ Top → ((𝐽 ↾t 𝑈) Cn (𝐽 ↾t 𝑈)) ⊆ ((𝐽 ↾t 𝑈) Cn 𝐽)) | |
| 5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝑅 ∈ TopDRing → ((𝐽 ↾t 𝑈) Cn (𝐽 ↾t 𝑈)) ⊆ ((𝐽 ↾t 𝑈) Cn 𝐽)) |
| 6 | invrcn.i | . . 3 ⊢ 𝐼 = (invr‘𝑅) | |
| 7 | invrcn.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 8 | 2, 6, 7 | invrcn2 24123 | . 2 ⊢ (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn (𝐽 ↾t 𝑈))) |
| 9 | 5, 8 | sseldd 3964 | 1 ⊢ (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 ↾t crest 17439 TopOpenctopn 17440 Unitcui 20320 invrcinvr 20352 Topctop 22836 TopSpctps 22875 Cn ccn 23167 TopDRingctdrg 24100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9428 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-tset 17295 df-rest 17441 df-topn 17442 df-topgen 17462 df-minusg 18925 df-mgp 20106 df-invr 20353 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cn 23170 df-tmd 24015 df-tgp 24016 df-trg 24103 df-tdrg 24104 |
| This theorem is referenced by: dvrcn 24127 |
| Copyright terms: Public domain | W3C validator |