| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diag2f1olem | Structured version Visualization version GIF version | ||
| Description: Lemma for diag2f1o 49523. (Contributed by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| diag2f1o.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| diag2f1o.a | ⊢ 𝐴 = (Base‘𝐶) |
| diag2f1o.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| diag2f1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| diag2f1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| diag2f1o.n | ⊢ 𝑁 = (𝐷 Nat 𝐶) |
| diag2f1o.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| diag2f1olem.m | ⊢ (𝜑 → 𝑀 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) |
| diag2f1olem.b | ⊢ 𝐵 = (Base‘𝐷) |
| diag2f1olem.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| diag2f1olem.f | ⊢ 𝐹 = (𝑀‘𝑍) |
| Ref | Expression |
|---|---|
| diag2f1olem | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑀 = ((𝑋(2nd ‘𝐿)𝑌)‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2f1olem.f | . . 3 ⊢ 𝐹 = (𝑀‘𝑍) | |
| 2 | diag2f1o.n | . . . . 5 ⊢ 𝑁 = (𝐷 Nat 𝐶) | |
| 3 | diag2f1olem.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (((1st ‘𝐿)‘𝑋)𝑁((1st ‘𝐿)‘𝑌))) | |
| 4 | 2, 3 | nat1st2nd 17916 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (〈(1st ‘((1st ‘𝐿)‘𝑋)), (2nd ‘((1st ‘𝐿)‘𝑋))〉𝑁〈(1st ‘((1st ‘𝐿)‘𝑌)), (2nd ‘((1st ‘𝐿)‘𝑌))〉)) |
| 5 | diag2f1olem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐷) | |
| 6 | diag2f1o.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 7 | diag2f1olem.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 8 | 2, 4, 5, 6, 7 | natcl 17918 | . . . 4 ⊢ (𝜑 → (𝑀‘𝑍) ∈ (((1st ‘((1st ‘𝐿)‘𝑋))‘𝑍)𝐻((1st ‘((1st ‘𝐿)‘𝑌))‘𝑍))) |
| 9 | diag2f1o.l | . . . . . 6 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 10 | 2, 4 | natrcl2 49210 | . . . . . . 7 ⊢ (𝜑 → (1st ‘((1st ‘𝐿)‘𝑋))(𝐷 Func 𝐶)(2nd ‘((1st ‘𝐿)‘𝑋))) |
| 11 | 10 | funcrcl3 49066 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 12 | diag2f1o.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 13 | 12 | termccd 49465 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 14 | diag2f1o.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐶) | |
| 15 | diag2f1o.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 16 | eqid 2729 | . . . . . 6 ⊢ ((1st ‘𝐿)‘𝑋) = ((1st ‘𝐿)‘𝑋) | |
| 17 | 9, 11, 13, 14, 15, 16, 5, 7 | diag11 18204 | . . . . 5 ⊢ (𝜑 → ((1st ‘((1st ‘𝐿)‘𝑋))‘𝑍) = 𝑋) |
| 18 | diag2f1o.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 19 | eqid 2729 | . . . . . 6 ⊢ ((1st ‘𝐿)‘𝑌) = ((1st ‘𝐿)‘𝑌) | |
| 20 | 9, 11, 13, 14, 18, 19, 5, 7 | diag11 18204 | . . . . 5 ⊢ (𝜑 → ((1st ‘((1st ‘𝐿)‘𝑌))‘𝑍) = 𝑌) |
| 21 | 17, 20 | oveq12d 7405 | . . . 4 ⊢ (𝜑 → (((1st ‘((1st ‘𝐿)‘𝑋))‘𝑍)𝐻((1st ‘((1st ‘𝐿)‘𝑌))‘𝑍)) = (𝑋𝐻𝑌)) |
| 22 | 8, 21 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → (𝑀‘𝑍) ∈ (𝑋𝐻𝑌)) |
| 23 | 1, 22 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| 24 | 12, 2, 3, 5, 7, 1 | termcnatval 49521 | . . 3 ⊢ (𝜑 → 𝑀 = {〈𝑍, 𝐹〉}) |
| 25 | 9, 14, 5, 6, 11, 13, 15, 18, 23 | diag2 18206 | . . . 4 ⊢ (𝜑 → ((𝑋(2nd ‘𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹})) |
| 26 | 12, 5, 7 | termcbas2 49468 | . . . . 5 ⊢ (𝜑 → 𝐵 = {𝑍}) |
| 27 | 26 | xpeq1d 5667 | . . . 4 ⊢ (𝜑 → (𝐵 × {𝐹}) = ({𝑍} × {𝐹})) |
| 28 | xpsng 7111 | . . . . 5 ⊢ ((𝑍 ∈ 𝐵 ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → ({𝑍} × {𝐹}) = {〈𝑍, 𝐹〉}) | |
| 29 | 7, 23, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ({𝑍} × {𝐹}) = {〈𝑍, 𝐹〉}) |
| 30 | 25, 27, 29 | 3eqtrd 2768 | . . 3 ⊢ (𝜑 → ((𝑋(2nd ‘𝐿)𝑌)‘𝐹) = {〈𝑍, 𝐹〉}) |
| 31 | 24, 30 | eqtr4d 2767 | . 2 ⊢ (𝜑 → 𝑀 = ((𝑋(2nd ‘𝐿)𝑌)‘𝐹)) |
| 32 | 23, 31 | jca 511 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑀 = ((𝑋(2nd ‘𝐿)𝑌)‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 〈cop 4595 × cxp 5636 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 Basecbs 17179 Hom chom 17231 Nat cnat 17906 Δfunccdiag 18173 TermCatctermc 49458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-cat 17629 df-cid 17630 df-func 17820 df-nat 17908 df-xpc 18133 df-1stf 18134 df-curf 18175 df-diag 18177 df-thinc 49404 df-termc 49459 |
| This theorem is referenced by: diag2f1o 49523 |
| Copyright terms: Public domain | W3C validator |