Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diag2f1olem Structured version   Visualization version   GIF version

Theorem diag2f1olem 49522
Description: Lemma for diag2f1o 49523. (Contributed by Zhi Wang, 21-Oct-2025.)
Hypotheses
Ref Expression
diag2f1o.l 𝐿 = (𝐶Δfunc𝐷)
diag2f1o.a 𝐴 = (Base‘𝐶)
diag2f1o.h 𝐻 = (Hom ‘𝐶)
diag2f1o.x (𝜑𝑋𝐴)
diag2f1o.y (𝜑𝑌𝐴)
diag2f1o.n 𝑁 = (𝐷 Nat 𝐶)
diag2f1o.d (𝜑𝐷 ∈ TermCat)
diag2f1olem.m (𝜑𝑀 ∈ (((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)))
diag2f1olem.b 𝐵 = (Base‘𝐷)
diag2f1olem.z (𝜑𝑍𝐵)
diag2f1olem.f 𝐹 = (𝑀𝑍)
Assertion
Ref Expression
diag2f1olem (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑀 = ((𝑋(2nd𝐿)𝑌)‘𝐹)))

Proof of Theorem diag2f1olem
StepHypRef Expression
1 diag2f1olem.f . . 3 𝐹 = (𝑀𝑍)
2 diag2f1o.n . . . . 5 𝑁 = (𝐷 Nat 𝐶)
3 diag2f1olem.m . . . . . 6 (𝜑𝑀 ∈ (((1st𝐿)‘𝑋)𝑁((1st𝐿)‘𝑌)))
42, 3nat1st2nd 17916 . . . . 5 (𝜑𝑀 ∈ (⟨(1st ‘((1st𝐿)‘𝑋)), (2nd ‘((1st𝐿)‘𝑋))⟩𝑁⟨(1st ‘((1st𝐿)‘𝑌)), (2nd ‘((1st𝐿)‘𝑌))⟩))
5 diag2f1olem.b . . . . 5 𝐵 = (Base‘𝐷)
6 diag2f1o.h . . . . 5 𝐻 = (Hom ‘𝐶)
7 diag2f1olem.z . . . . 5 (𝜑𝑍𝐵)
82, 4, 5, 6, 7natcl 17918 . . . 4 (𝜑 → (𝑀𝑍) ∈ (((1st ‘((1st𝐿)‘𝑋))‘𝑍)𝐻((1st ‘((1st𝐿)‘𝑌))‘𝑍)))
9 diag2f1o.l . . . . . 6 𝐿 = (𝐶Δfunc𝐷)
102, 4natrcl2 49210 . . . . . . 7 (𝜑 → (1st ‘((1st𝐿)‘𝑋))(𝐷 Func 𝐶)(2nd ‘((1st𝐿)‘𝑋)))
1110funcrcl3 49066 . . . . . 6 (𝜑𝐶 ∈ Cat)
12 diag2f1o.d . . . . . . 7 (𝜑𝐷 ∈ TermCat)
1312termccd 49465 . . . . . 6 (𝜑𝐷 ∈ Cat)
14 diag2f1o.a . . . . . 6 𝐴 = (Base‘𝐶)
15 diag2f1o.x . . . . . 6 (𝜑𝑋𝐴)
16 eqid 2729 . . . . . 6 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
179, 11, 13, 14, 15, 16, 5, 7diag11 18204 . . . . 5 (𝜑 → ((1st ‘((1st𝐿)‘𝑋))‘𝑍) = 𝑋)
18 diag2f1o.y . . . . . 6 (𝜑𝑌𝐴)
19 eqid 2729 . . . . . 6 ((1st𝐿)‘𝑌) = ((1st𝐿)‘𝑌)
209, 11, 13, 14, 18, 19, 5, 7diag11 18204 . . . . 5 (𝜑 → ((1st ‘((1st𝐿)‘𝑌))‘𝑍) = 𝑌)
2117, 20oveq12d 7405 . . . 4 (𝜑 → (((1st ‘((1st𝐿)‘𝑋))‘𝑍)𝐻((1st ‘((1st𝐿)‘𝑌))‘𝑍)) = (𝑋𝐻𝑌))
228, 21eleqtrd 2830 . . 3 (𝜑 → (𝑀𝑍) ∈ (𝑋𝐻𝑌))
231, 22eqeltrid 2832 . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
2412, 2, 3, 5, 7, 1termcnatval 49521 . . 3 (𝜑𝑀 = {⟨𝑍, 𝐹⟩})
259, 14, 5, 6, 11, 13, 15, 18, 23diag2 18206 . . . 4 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = (𝐵 × {𝐹}))
2612, 5, 7termcbas2 49468 . . . . 5 (𝜑𝐵 = {𝑍})
2726xpeq1d 5667 . . . 4 (𝜑 → (𝐵 × {𝐹}) = ({𝑍} × {𝐹}))
28 xpsng 7111 . . . . 5 ((𝑍𝐵𝐹 ∈ (𝑋𝐻𝑌)) → ({𝑍} × {𝐹}) = {⟨𝑍, 𝐹⟩})
297, 23, 28syl2anc 584 . . . 4 (𝜑 → ({𝑍} × {𝐹}) = {⟨𝑍, 𝐹⟩})
3025, 27, 293eqtrd 2768 . . 3 (𝜑 → ((𝑋(2nd𝐿)𝑌)‘𝐹) = {⟨𝑍, 𝐹⟩})
3124, 30eqtr4d 2767 . 2 (𝜑𝑀 = ((𝑋(2nd𝐿)𝑌)‘𝐹))
3223, 31jca 511 1 (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑀 = ((𝑋(2nd𝐿)𝑌)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4589  cop 4595   × cxp 5636  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231   Nat cnat 17906  Δfunccdiag 18173  TermCatctermc 49458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-func 17820  df-nat 17908  df-xpc 18133  df-1stf 18134  df-curf 18175  df-diag 18177  df-thinc 49404  df-termc 49459
This theorem is referenced by:  diag2f1o  49523
  Copyright terms: Public domain W3C validator