Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcfuncval Structured version   Visualization version   GIF version

Theorem termcfuncval 49278
Description: The value of a functor from a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
diag1f1o.a 𝐴 = (Base‘𝐶)
diag1f1o.d (𝜑𝐷 ∈ TermCat)
termcfuncval.k (𝜑𝐾 ∈ (𝐷 Func 𝐶))
termcfuncval.b 𝐵 = (Base‘𝐷)
termcfuncval.y (𝜑𝑌𝐵)
termcfuncval.x 𝑋 = ((1st𝐾)‘𝑌)
termcfuncval.1 1 = (Id‘𝐶)
termcfuncval.i 𝐼 = (Id‘𝐷)
Assertion
Ref Expression
termcfuncval (𝜑 → (𝑋𝐴𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩))

Proof of Theorem termcfuncval
StepHypRef Expression
1 termcfuncval.x . . 3 𝑋 = ((1st𝐾)‘𝑌)
2 termcfuncval.b . . . . 5 𝐵 = (Base‘𝐷)
3 diag1f1o.a . . . . 5 𝐴 = (Base‘𝐶)
4 termcfuncval.k . . . . . 6 (𝜑𝐾 ∈ (𝐷 Func 𝐶))
54func1st2nd 48936 . . . . 5 (𝜑 → (1st𝐾)(𝐷 Func 𝐶)(2nd𝐾))
62, 3, 5funcf1 17866 . . . 4 (𝜑 → (1st𝐾):𝐵𝐴)
7 termcfuncval.y . . . 4 (𝜑𝑌𝐵)
86, 7ffvelcdmd 7072 . . 3 (𝜑 → ((1st𝐾)‘𝑌) ∈ 𝐴)
91, 8eqeltrid 2837 . 2 (𝜑𝑋𝐴)
10 relfunc 17862 . . . 4 Rel (𝐷 Func 𝐶)
11 1st2nd 8033 . . . 4 ((Rel (𝐷 Func 𝐶) ∧ 𝐾 ∈ (𝐷 Func 𝐶)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
1210, 4, 11sylancr 587 . . 3 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
13 diag1f1o.d . . . . . . . . . 10 (𝜑𝐷 ∈ TermCat)
1413, 2, 7termcbas2 49228 . . . . . . . . 9 (𝜑𝐵 = {𝑌})
1514feq2d 6689 . . . . . . . 8 (𝜑 → ((1st𝐾):𝐵𝐴 ↔ (1st𝐾):{𝑌}⟶𝐴))
166, 15mpbid 232 . . . . . . 7 (𝜑 → (1st𝐾):{𝑌}⟶𝐴)
17 fsn2g 7125 . . . . . . . 8 (𝑌𝐵 → ((1st𝐾):{𝑌}⟶𝐴 ↔ (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})))
187, 17syl 17 . . . . . . 7 (𝜑 → ((1st𝐾):{𝑌}⟶𝐴 ↔ (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})))
1916, 18mpbid 232 . . . . . 6 (𝜑 → (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩}))
2019simprd 495 . . . . 5 (𝜑 → (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})
211opeq2i 4851 . . . . . 6 𝑌, 𝑋⟩ = ⟨𝑌, ((1st𝐾)‘𝑌)⟩
2221sneqi 4610 . . . . 5 {⟨𝑌, 𝑋⟩} = {⟨𝑌, ((1st𝐾)‘𝑌)⟩}
2320, 22eqtr4di 2787 . . . 4 (𝜑 → (1st𝐾) = {⟨𝑌, 𝑋⟩})
242, 5funcfn2 17869 . . . . . . 7 (𝜑 → (2nd𝐾) Fn (𝐵 × 𝐵))
2514sqxpeqd 5684 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐵) = ({𝑌} × {𝑌}))
26 xpsng 7126 . . . . . . . . . 10 ((𝑌𝐵𝑌𝐵) → ({𝑌} × {𝑌}) = {⟨𝑌, 𝑌⟩})
277, 7, 26syl2anc 584 . . . . . . . . 9 (𝜑 → ({𝑌} × {𝑌}) = {⟨𝑌, 𝑌⟩})
2825, 27eqtrd 2769 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = {⟨𝑌, 𝑌⟩})
2928fneq2d 6629 . . . . . . 7 (𝜑 → ((2nd𝐾) Fn (𝐵 × 𝐵) ↔ (2nd𝐾) Fn {⟨𝑌, 𝑌⟩}))
3024, 29mpbid 232 . . . . . 6 (𝜑 → (2nd𝐾) Fn {⟨𝑌, 𝑌⟩})
31 opex 5437 . . . . . . 7 𝑌, 𝑌⟩ ∈ V
3231fnsnb 7154 . . . . . 6 ((2nd𝐾) Fn {⟨𝑌, 𝑌⟩} ↔ (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩})
3330, 32sylib 218 . . . . 5 (𝜑 → (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩})
34 df-ov 7403 . . . . . . . 8 (𝑌(2nd𝐾)𝑌) = ((2nd𝐾)‘⟨𝑌, 𝑌⟩)
35 eqid 2734 . . . . . . . . . . . . 13 (Hom ‘𝐷) = (Hom ‘𝐷)
36 eqid 2734 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
372, 35, 36, 5, 7, 7funcf2 17868 . . . . . . . . . . . 12 (𝜑 → (𝑌(2nd𝐾)𝑌):(𝑌(Hom ‘𝐷)𝑌)⟶(((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌)))
38 termcfuncval.i . . . . . . . . . . . . . . 15 𝐼 = (Id‘𝐷)
3913, 2, 7, 7, 35, 38termchom 49234 . . . . . . . . . . . . . 14 (𝜑 → (𝑌(Hom ‘𝐷)𝑌) = {(𝐼𝑌)})
4039eqcomd 2740 . . . . . . . . . . . . 13 (𝜑 → {(𝐼𝑌)} = (𝑌(Hom ‘𝐷)𝑌))
411, 1oveq12i 7412 . . . . . . . . . . . . . 14 (𝑋(Hom ‘𝐶)𝑋) = (((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌))
4241a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(Hom ‘𝐶)𝑋) = (((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌)))
4340, 42feq23d 6698 . . . . . . . . . . . 12 (𝜑 → ((𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋) ↔ (𝑌(2nd𝐾)𝑌):(𝑌(Hom ‘𝐷)𝑌)⟶(((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌))))
4437, 43mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋))
45 fvex 6886 . . . . . . . . . . . 12 (𝐼𝑌) ∈ V
4645fsn2 7123 . . . . . . . . . . 11 ((𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋) ↔ (((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩}))
4744, 46sylib 218 . . . . . . . . . 10 (𝜑 → (((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩}))
4847simprd 495 . . . . . . . . 9 (𝜑 → (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩})
49 termcfuncval.1 . . . . . . . . . . . . 13 1 = (Id‘𝐶)
502, 38, 49, 5, 7funcid 17870 . . . . . . . . . . . 12 (𝜑 → ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) = ( 1 ‘((1st𝐾)‘𝑌)))
511fveq2i 6876 . . . . . . . . . . . 12 ( 1𝑋) = ( 1 ‘((1st𝐾)‘𝑌))
5250, 51eqtr4di 2787 . . . . . . . . . . 11 (𝜑 → ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) = ( 1𝑋))
5352opeq2d 4854 . . . . . . . . . 10 (𝜑 → ⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩ = ⟨(𝐼𝑌), ( 1𝑋)⟩)
5453sneqd 4611 . . . . . . . . 9 (𝜑 → {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩} = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5548, 54eqtrd 2769 . . . . . . . 8 (𝜑 → (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5634, 55eqtr3id 2783 . . . . . . 7 (𝜑 → ((2nd𝐾)‘⟨𝑌, 𝑌⟩) = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5756opeq2d 4854 . . . . . 6 (𝜑 → ⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩ = ⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩)
5857sneqd 4611 . . . . 5 (𝜑 → {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩} = {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩})
5933, 58eqtrd 2769 . . . 4 (𝜑 → (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩})
6023, 59opeq12d 4855 . . 3 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩)
6112, 60eqtrd 2769 . 2 (𝜑𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩)
629, 61jca 511 1 (𝜑 → (𝑋𝐴𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {csn 4599  cop 4605   × cxp 5650  Rel wrel 5657   Fn wfn 6523  wf 6524  cfv 6528  (class class class)co 7400  1st c1st 7981  2nd c2nd 7982  Basecbs 17215  Hom chom 17269  Idccid 17664   Func cfunc 17854  TermCatctermc 49219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-map 8837  df-ixp 8907  df-cat 17667  df-cid 17668  df-func 17858  df-thinc 49167  df-termc 49220
This theorem is referenced by:  diag1f1olem  49279
  Copyright terms: Public domain W3C validator