Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcfuncval Structured version   Visualization version   GIF version

Theorem termcfuncval 49516
Description: The value of a functor from a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
diag1f1o.a 𝐴 = (Base‘𝐶)
diag1f1o.d (𝜑𝐷 ∈ TermCat)
termcfuncval.k (𝜑𝐾 ∈ (𝐷 Func 𝐶))
termcfuncval.b 𝐵 = (Base‘𝐷)
termcfuncval.y (𝜑𝑌𝐵)
termcfuncval.x 𝑋 = ((1st𝐾)‘𝑌)
termcfuncval.1 1 = (Id‘𝐶)
termcfuncval.i 𝐼 = (Id‘𝐷)
Assertion
Ref Expression
termcfuncval (𝜑 → (𝑋𝐴𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩))

Proof of Theorem termcfuncval
StepHypRef Expression
1 termcfuncval.x . . 3 𝑋 = ((1st𝐾)‘𝑌)
2 termcfuncval.b . . . . 5 𝐵 = (Base‘𝐷)
3 diag1f1o.a . . . . 5 𝐴 = (Base‘𝐶)
4 termcfuncval.k . . . . . 6 (𝜑𝐾 ∈ (𝐷 Func 𝐶))
54func1st2nd 49060 . . . . 5 (𝜑 → (1st𝐾)(𝐷 Func 𝐶)(2nd𝐾))
62, 3, 5funcf1 17810 . . . 4 (𝜑 → (1st𝐾):𝐵𝐴)
7 termcfuncval.y . . . 4 (𝜑𝑌𝐵)
86, 7ffvelcdmd 7040 . . 3 (𝜑 → ((1st𝐾)‘𝑌) ∈ 𝐴)
91, 8eqeltrid 2832 . 2 (𝜑𝑋𝐴)
10 relfunc 17806 . . . 4 Rel (𝐷 Func 𝐶)
11 1st2nd 7998 . . . 4 ((Rel (𝐷 Func 𝐶) ∧ 𝐾 ∈ (𝐷 Func 𝐶)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
1210, 4, 11sylancr 587 . . 3 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
13 diag1f1o.d . . . . . . . . . 10 (𝜑𝐷 ∈ TermCat)
1413, 2, 7termcbas2 49466 . . . . . . . . 9 (𝜑𝐵 = {𝑌})
1514feq2d 6655 . . . . . . . 8 (𝜑 → ((1st𝐾):𝐵𝐴 ↔ (1st𝐾):{𝑌}⟶𝐴))
166, 15mpbid 232 . . . . . . 7 (𝜑 → (1st𝐾):{𝑌}⟶𝐴)
17 fsn2g 7093 . . . . . . . 8 (𝑌𝐵 → ((1st𝐾):{𝑌}⟶𝐴 ↔ (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})))
187, 17syl 17 . . . . . . 7 (𝜑 → ((1st𝐾):{𝑌}⟶𝐴 ↔ (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})))
1916, 18mpbid 232 . . . . . 6 (𝜑 → (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩}))
2019simprd 495 . . . . 5 (𝜑 → (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})
211opeq2i 4837 . . . . . 6 𝑌, 𝑋⟩ = ⟨𝑌, ((1st𝐾)‘𝑌)⟩
2221sneqi 4596 . . . . 5 {⟨𝑌, 𝑋⟩} = {⟨𝑌, ((1st𝐾)‘𝑌)⟩}
2320, 22eqtr4di 2782 . . . 4 (𝜑 → (1st𝐾) = {⟨𝑌, 𝑋⟩})
242, 5funcfn2 17813 . . . . . . 7 (𝜑 → (2nd𝐾) Fn (𝐵 × 𝐵))
2514sqxpeqd 5663 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐵) = ({𝑌} × {𝑌}))
26 xpsng 7094 . . . . . . . . . 10 ((𝑌𝐵𝑌𝐵) → ({𝑌} × {𝑌}) = {⟨𝑌, 𝑌⟩})
277, 7, 26syl2anc 584 . . . . . . . . 9 (𝜑 → ({𝑌} × {𝑌}) = {⟨𝑌, 𝑌⟩})
2825, 27eqtrd 2764 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = {⟨𝑌, 𝑌⟩})
2928fneq2d 6595 . . . . . . 7 (𝜑 → ((2nd𝐾) Fn (𝐵 × 𝐵) ↔ (2nd𝐾) Fn {⟨𝑌, 𝑌⟩}))
3024, 29mpbid 232 . . . . . 6 (𝜑 → (2nd𝐾) Fn {⟨𝑌, 𝑌⟩})
31 opex 5419 . . . . . . 7 𝑌, 𝑌⟩ ∈ V
3231fnsnb 7122 . . . . . 6 ((2nd𝐾) Fn {⟨𝑌, 𝑌⟩} ↔ (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩})
3330, 32sylib 218 . . . . 5 (𝜑 → (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩})
34 df-ov 7373 . . . . . . . 8 (𝑌(2nd𝐾)𝑌) = ((2nd𝐾)‘⟨𝑌, 𝑌⟩)
35 eqid 2729 . . . . . . . . . . . . 13 (Hom ‘𝐷) = (Hom ‘𝐷)
36 eqid 2729 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
372, 35, 36, 5, 7, 7funcf2 17812 . . . . . . . . . . . 12 (𝜑 → (𝑌(2nd𝐾)𝑌):(𝑌(Hom ‘𝐷)𝑌)⟶(((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌)))
38 termcfuncval.i . . . . . . . . . . . . . . 15 𝐼 = (Id‘𝐷)
3913, 2, 7, 7, 35, 38termchom 49472 . . . . . . . . . . . . . 14 (𝜑 → (𝑌(Hom ‘𝐷)𝑌) = {(𝐼𝑌)})
4039eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → {(𝐼𝑌)} = (𝑌(Hom ‘𝐷)𝑌))
411, 1oveq12i 7382 . . . . . . . . . . . . . 14 (𝑋(Hom ‘𝐶)𝑋) = (((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌))
4241a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(Hom ‘𝐶)𝑋) = (((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌)))
4340, 42feq23d 6666 . . . . . . . . . . . 12 (𝜑 → ((𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋) ↔ (𝑌(2nd𝐾)𝑌):(𝑌(Hom ‘𝐷)𝑌)⟶(((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌))))
4437, 43mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋))
45 fvex 6854 . . . . . . . . . . . 12 (𝐼𝑌) ∈ V
4645fsn2 7091 . . . . . . . . . . 11 ((𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋) ↔ (((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩}))
4744, 46sylib 218 . . . . . . . . . 10 (𝜑 → (((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩}))
4847simprd 495 . . . . . . . . 9 (𝜑 → (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩})
49 termcfuncval.1 . . . . . . . . . . . . 13 1 = (Id‘𝐶)
502, 38, 49, 5, 7funcid 17814 . . . . . . . . . . . 12 (𝜑 → ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) = ( 1 ‘((1st𝐾)‘𝑌)))
511fveq2i 6844 . . . . . . . . . . . 12 ( 1𝑋) = ( 1 ‘((1st𝐾)‘𝑌))
5250, 51eqtr4di 2782 . . . . . . . . . . 11 (𝜑 → ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) = ( 1𝑋))
5352opeq2d 4840 . . . . . . . . . 10 (𝜑 → ⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩ = ⟨(𝐼𝑌), ( 1𝑋)⟩)
5453sneqd 4597 . . . . . . . . 9 (𝜑 → {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩} = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5548, 54eqtrd 2764 . . . . . . . 8 (𝜑 → (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5634, 55eqtr3id 2778 . . . . . . 7 (𝜑 → ((2nd𝐾)‘⟨𝑌, 𝑌⟩) = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5756opeq2d 4840 . . . . . 6 (𝜑 → ⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩ = ⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩)
5857sneqd 4597 . . . . 5 (𝜑 → {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩} = {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩})
5933, 58eqtrd 2764 . . . 4 (𝜑 → (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩})
6023, 59opeq12d 4841 . . 3 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩)
6112, 60eqtrd 2764 . 2 (𝜑𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩)
629, 61jca 511 1 (𝜑 → (𝑋𝐴𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4585  cop 4591   × cxp 5629  Rel wrel 5636   Fn wfn 6495  wf 6496  cfv 6500  (class class class)co 7370  1st c1st 7946  2nd c2nd 7947  Basecbs 17157  Hom chom 17209  Idccid 17608   Func cfunc 17798  TermCatctermc 49456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-1st 7948  df-2nd 7949  df-map 8779  df-ixp 8849  df-cat 17611  df-cid 17612  df-func 17802  df-thinc 49402  df-termc 49457
This theorem is referenced by:  diag1f1olem  49517
  Copyright terms: Public domain W3C validator