Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcfuncval Structured version   Visualization version   GIF version

Theorem termcfuncval 49384
Description: The value of a functor from a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
diag1f1o.a 𝐴 = (Base‘𝐶)
diag1f1o.d (𝜑𝐷 ∈ TermCat)
termcfuncval.k (𝜑𝐾 ∈ (𝐷 Func 𝐶))
termcfuncval.b 𝐵 = (Base‘𝐷)
termcfuncval.y (𝜑𝑌𝐵)
termcfuncval.x 𝑋 = ((1st𝐾)‘𝑌)
termcfuncval.1 1 = (Id‘𝐶)
termcfuncval.i 𝐼 = (Id‘𝐷)
Assertion
Ref Expression
termcfuncval (𝜑 → (𝑋𝐴𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩))

Proof of Theorem termcfuncval
StepHypRef Expression
1 termcfuncval.x . . 3 𝑋 = ((1st𝐾)‘𝑌)
2 termcfuncval.b . . . . 5 𝐵 = (Base‘𝐷)
3 diag1f1o.a . . . . 5 𝐴 = (Base‘𝐶)
4 termcfuncval.k . . . . . 6 (𝜑𝐾 ∈ (𝐷 Func 𝐶))
54func1st2nd 49010 . . . . 5 (𝜑 → (1st𝐾)(𝐷 Func 𝐶)(2nd𝐾))
62, 3, 5funcf1 17884 . . . 4 (𝜑 → (1st𝐾):𝐵𝐴)
7 termcfuncval.y . . . 4 (𝜑𝑌𝐵)
86, 7ffvelcdmd 7080 . . 3 (𝜑 → ((1st𝐾)‘𝑌) ∈ 𝐴)
91, 8eqeltrid 2839 . 2 (𝜑𝑋𝐴)
10 relfunc 17880 . . . 4 Rel (𝐷 Func 𝐶)
11 1st2nd 8043 . . . 4 ((Rel (𝐷 Func 𝐶) ∧ 𝐾 ∈ (𝐷 Func 𝐶)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
1210, 4, 11sylancr 587 . . 3 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
13 diag1f1o.d . . . . . . . . . 10 (𝜑𝐷 ∈ TermCat)
1413, 2, 7termcbas2 49334 . . . . . . . . 9 (𝜑𝐵 = {𝑌})
1514feq2d 6697 . . . . . . . 8 (𝜑 → ((1st𝐾):𝐵𝐴 ↔ (1st𝐾):{𝑌}⟶𝐴))
166, 15mpbid 232 . . . . . . 7 (𝜑 → (1st𝐾):{𝑌}⟶𝐴)
17 fsn2g 7133 . . . . . . . 8 (𝑌𝐵 → ((1st𝐾):{𝑌}⟶𝐴 ↔ (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})))
187, 17syl 17 . . . . . . 7 (𝜑 → ((1st𝐾):{𝑌}⟶𝐴 ↔ (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})))
1916, 18mpbid 232 . . . . . 6 (𝜑 → (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩}))
2019simprd 495 . . . . 5 (𝜑 → (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})
211opeq2i 4858 . . . . . 6 𝑌, 𝑋⟩ = ⟨𝑌, ((1st𝐾)‘𝑌)⟩
2221sneqi 4617 . . . . 5 {⟨𝑌, 𝑋⟩} = {⟨𝑌, ((1st𝐾)‘𝑌)⟩}
2320, 22eqtr4di 2789 . . . 4 (𝜑 → (1st𝐾) = {⟨𝑌, 𝑋⟩})
242, 5funcfn2 17887 . . . . . . 7 (𝜑 → (2nd𝐾) Fn (𝐵 × 𝐵))
2514sqxpeqd 5691 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐵) = ({𝑌} × {𝑌}))
26 xpsng 7134 . . . . . . . . . 10 ((𝑌𝐵𝑌𝐵) → ({𝑌} × {𝑌}) = {⟨𝑌, 𝑌⟩})
277, 7, 26syl2anc 584 . . . . . . . . 9 (𝜑 → ({𝑌} × {𝑌}) = {⟨𝑌, 𝑌⟩})
2825, 27eqtrd 2771 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = {⟨𝑌, 𝑌⟩})
2928fneq2d 6637 . . . . . . 7 (𝜑 → ((2nd𝐾) Fn (𝐵 × 𝐵) ↔ (2nd𝐾) Fn {⟨𝑌, 𝑌⟩}))
3024, 29mpbid 232 . . . . . 6 (𝜑 → (2nd𝐾) Fn {⟨𝑌, 𝑌⟩})
31 opex 5444 . . . . . . 7 𝑌, 𝑌⟩ ∈ V
3231fnsnb 7162 . . . . . 6 ((2nd𝐾) Fn {⟨𝑌, 𝑌⟩} ↔ (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩})
3330, 32sylib 218 . . . . 5 (𝜑 → (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩})
34 df-ov 7413 . . . . . . . 8 (𝑌(2nd𝐾)𝑌) = ((2nd𝐾)‘⟨𝑌, 𝑌⟩)
35 eqid 2736 . . . . . . . . . . . . 13 (Hom ‘𝐷) = (Hom ‘𝐷)
36 eqid 2736 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
372, 35, 36, 5, 7, 7funcf2 17886 . . . . . . . . . . . 12 (𝜑 → (𝑌(2nd𝐾)𝑌):(𝑌(Hom ‘𝐷)𝑌)⟶(((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌)))
38 termcfuncval.i . . . . . . . . . . . . . . 15 𝐼 = (Id‘𝐷)
3913, 2, 7, 7, 35, 38termchom 49340 . . . . . . . . . . . . . 14 (𝜑 → (𝑌(Hom ‘𝐷)𝑌) = {(𝐼𝑌)})
4039eqcomd 2742 . . . . . . . . . . . . 13 (𝜑 → {(𝐼𝑌)} = (𝑌(Hom ‘𝐷)𝑌))
411, 1oveq12i 7422 . . . . . . . . . . . . . 14 (𝑋(Hom ‘𝐶)𝑋) = (((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌))
4241a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(Hom ‘𝐶)𝑋) = (((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌)))
4340, 42feq23d 6706 . . . . . . . . . . . 12 (𝜑 → ((𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋) ↔ (𝑌(2nd𝐾)𝑌):(𝑌(Hom ‘𝐷)𝑌)⟶(((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌))))
4437, 43mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋))
45 fvex 6894 . . . . . . . . . . . 12 (𝐼𝑌) ∈ V
4645fsn2 7131 . . . . . . . . . . 11 ((𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋) ↔ (((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩}))
4744, 46sylib 218 . . . . . . . . . 10 (𝜑 → (((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩}))
4847simprd 495 . . . . . . . . 9 (𝜑 → (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩})
49 termcfuncval.1 . . . . . . . . . . . . 13 1 = (Id‘𝐶)
502, 38, 49, 5, 7funcid 17888 . . . . . . . . . . . 12 (𝜑 → ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) = ( 1 ‘((1st𝐾)‘𝑌)))
511fveq2i 6884 . . . . . . . . . . . 12 ( 1𝑋) = ( 1 ‘((1st𝐾)‘𝑌))
5250, 51eqtr4di 2789 . . . . . . . . . . 11 (𝜑 → ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) = ( 1𝑋))
5352opeq2d 4861 . . . . . . . . . 10 (𝜑 → ⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩ = ⟨(𝐼𝑌), ( 1𝑋)⟩)
5453sneqd 4618 . . . . . . . . 9 (𝜑 → {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩} = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5548, 54eqtrd 2771 . . . . . . . 8 (𝜑 → (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5634, 55eqtr3id 2785 . . . . . . 7 (𝜑 → ((2nd𝐾)‘⟨𝑌, 𝑌⟩) = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5756opeq2d 4861 . . . . . 6 (𝜑 → ⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩ = ⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩)
5857sneqd 4618 . . . . 5 (𝜑 → {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩} = {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩})
5933, 58eqtrd 2771 . . . 4 (𝜑 → (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩})
6023, 59opeq12d 4862 . . 3 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩)
6112, 60eqtrd 2771 . 2 (𝜑𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩)
629, 61jca 511 1 (𝜑 → (𝑋𝐴𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4606  cop 4612   × cxp 5657  Rel wrel 5664   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Basecbs 17233  Hom chom 17287  Idccid 17682   Func cfunc 17872  TermCatctermc 49325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-ixp 8917  df-cat 17685  df-cid 17686  df-func 17876  df-thinc 49271  df-termc 49326
This theorem is referenced by:  diag1f1olem  49385
  Copyright terms: Public domain W3C validator