Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcfuncval Structured version   Visualization version   GIF version

Theorem termcfuncval 49190
Description: The value of a functor from a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
diag1f1o.a 𝐴 = (Base‘𝐶)
diag1f1o.d (𝜑𝐷 ∈ TermCat)
termcfuncval.k (𝜑𝐾 ∈ (𝐷 Func 𝐶))
termcfuncval.b 𝐵 = (Base‘𝐷)
termcfuncval.y (𝜑𝑌𝐵)
termcfuncval.x 𝑋 = ((1st𝐾)‘𝑌)
termcfuncval.1 1 = (Id‘𝐶)
termcfuncval.i 𝐼 = (Id‘𝐷)
Assertion
Ref Expression
termcfuncval (𝜑 → (𝑋𝐴𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩))

Proof of Theorem termcfuncval
StepHypRef Expression
1 termcfuncval.x . . 3 𝑋 = ((1st𝐾)‘𝑌)
2 termcfuncval.b . . . . 5 𝐵 = (Base‘𝐷)
3 diag1f1o.a . . . . 5 𝐴 = (Base‘𝐶)
4 termcfuncval.k . . . . . 6 (𝜑𝐾 ∈ (𝐷 Func 𝐶))
54func1st2nd 48927 . . . . 5 (𝜑 → (1st𝐾)(𝐷 Func 𝐶)(2nd𝐾))
62, 3, 5funcf1 17912 . . . 4 (𝜑 → (1st𝐾):𝐵𝐴)
7 termcfuncval.y . . . 4 (𝜑𝑌𝐵)
86, 7ffvelcdmd 7104 . . 3 (𝜑 → ((1st𝐾)‘𝑌) ∈ 𝐴)
91, 8eqeltrid 2844 . 2 (𝜑𝑋𝐴)
10 relfunc 17908 . . . 4 Rel (𝐷 Func 𝐶)
11 1st2nd 8065 . . . 4 ((Rel (𝐷 Func 𝐶) ∧ 𝐾 ∈ (𝐷 Func 𝐶)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
1210, 4, 11sylancr 587 . . 3 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
13 diag1f1o.d . . . . . . . . . 10 (𝜑𝐷 ∈ TermCat)
1413, 2, 7termcbas2 49153 . . . . . . . . 9 (𝜑𝐵 = {𝑌})
1514feq2d 6721 . . . . . . . 8 (𝜑 → ((1st𝐾):𝐵𝐴 ↔ (1st𝐾):{𝑌}⟶𝐴))
166, 15mpbid 232 . . . . . . 7 (𝜑 → (1st𝐾):{𝑌}⟶𝐴)
17 fsn2g 7157 . . . . . . . 8 (𝑌𝐵 → ((1st𝐾):{𝑌}⟶𝐴 ↔ (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})))
187, 17syl 17 . . . . . . 7 (𝜑 → ((1st𝐾):{𝑌}⟶𝐴 ↔ (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})))
1916, 18mpbid 232 . . . . . 6 (𝜑 → (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩}))
2019simprd 495 . . . . 5 (𝜑 → (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})
211opeq2i 4876 . . . . . 6 𝑌, 𝑋⟩ = ⟨𝑌, ((1st𝐾)‘𝑌)⟩
2221sneqi 4636 . . . . 5 {⟨𝑌, 𝑋⟩} = {⟨𝑌, ((1st𝐾)‘𝑌)⟩}
2320, 22eqtr4di 2794 . . . 4 (𝜑 → (1st𝐾) = {⟨𝑌, 𝑋⟩})
242, 5funcfn2 17915 . . . . . . 7 (𝜑 → (2nd𝐾) Fn (𝐵 × 𝐵))
2514sqxpeqd 5716 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐵) = ({𝑌} × {𝑌}))
26 xpsng 7158 . . . . . . . . . 10 ((𝑌𝐵𝑌𝐵) → ({𝑌} × {𝑌}) = {⟨𝑌, 𝑌⟩})
277, 7, 26syl2anc 584 . . . . . . . . 9 (𝜑 → ({𝑌} × {𝑌}) = {⟨𝑌, 𝑌⟩})
2825, 27eqtrd 2776 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = {⟨𝑌, 𝑌⟩})
2928fneq2d 6661 . . . . . . 7 (𝜑 → ((2nd𝐾) Fn (𝐵 × 𝐵) ↔ (2nd𝐾) Fn {⟨𝑌, 𝑌⟩}))
3024, 29mpbid 232 . . . . . 6 (𝜑 → (2nd𝐾) Fn {⟨𝑌, 𝑌⟩})
31 opex 5468 . . . . . . 7 𝑌, 𝑌⟩ ∈ V
3231fnsnb 7186 . . . . . 6 ((2nd𝐾) Fn {⟨𝑌, 𝑌⟩} ↔ (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩})
3330, 32sylib 218 . . . . 5 (𝜑 → (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩})
34 df-ov 7435 . . . . . . . 8 (𝑌(2nd𝐾)𝑌) = ((2nd𝐾)‘⟨𝑌, 𝑌⟩)
35 eqid 2736 . . . . . . . . . . . . 13 (Hom ‘𝐷) = (Hom ‘𝐷)
36 eqid 2736 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
372, 35, 36, 5, 7, 7funcf2 17914 . . . . . . . . . . . 12 (𝜑 → (𝑌(2nd𝐾)𝑌):(𝑌(Hom ‘𝐷)𝑌)⟶(((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌)))
38 termcfuncval.i . . . . . . . . . . . . . . 15 𝐼 = (Id‘𝐷)
3913, 2, 7, 7, 35, 38termchom 49159 . . . . . . . . . . . . . 14 (𝜑 → (𝑌(Hom ‘𝐷)𝑌) = {(𝐼𝑌)})
4039eqcomd 2742 . . . . . . . . . . . . 13 (𝜑 → {(𝐼𝑌)} = (𝑌(Hom ‘𝐷)𝑌))
411, 1oveq12i 7444 . . . . . . . . . . . . . 14 (𝑋(Hom ‘𝐶)𝑋) = (((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌))
4241a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(Hom ‘𝐶)𝑋) = (((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌)))
4340, 42feq23d 6730 . . . . . . . . . . . 12 (𝜑 → ((𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋) ↔ (𝑌(2nd𝐾)𝑌):(𝑌(Hom ‘𝐷)𝑌)⟶(((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌))))
4437, 43mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋))
45 fvex 6918 . . . . . . . . . . . 12 (𝐼𝑌) ∈ V
4645fsn2 7155 . . . . . . . . . . 11 ((𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋) ↔ (((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩}))
4744, 46sylib 218 . . . . . . . . . 10 (𝜑 → (((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩}))
4847simprd 495 . . . . . . . . 9 (𝜑 → (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩})
49 termcfuncval.1 . . . . . . . . . . . . 13 1 = (Id‘𝐶)
502, 38, 49, 5, 7funcid 17916 . . . . . . . . . . . 12 (𝜑 → ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) = ( 1 ‘((1st𝐾)‘𝑌)))
511fveq2i 6908 . . . . . . . . . . . 12 ( 1𝑋) = ( 1 ‘((1st𝐾)‘𝑌))
5250, 51eqtr4di 2794 . . . . . . . . . . 11 (𝜑 → ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) = ( 1𝑋))
5352opeq2d 4879 . . . . . . . . . 10 (𝜑 → ⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩ = ⟨(𝐼𝑌), ( 1𝑋)⟩)
5453sneqd 4637 . . . . . . . . 9 (𝜑 → {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩} = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5548, 54eqtrd 2776 . . . . . . . 8 (𝜑 → (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5634, 55eqtr3id 2790 . . . . . . 7 (𝜑 → ((2nd𝐾)‘⟨𝑌, 𝑌⟩) = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5756opeq2d 4879 . . . . . 6 (𝜑 → ⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩ = ⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩)
5857sneqd 4637 . . . . 5 (𝜑 → {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩} = {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩})
5933, 58eqtrd 2776 . . . 4 (𝜑 → (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩})
6023, 59opeq12d 4880 . . 3 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩)
6112, 60eqtrd 2776 . 2 (𝜑𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩)
629, 61jca 511 1 (𝜑 → (𝑋𝐴𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {csn 4625  cop 4631   × cxp 5682  Rel wrel 5689   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  1st c1st 8013  2nd c2nd 8014  Basecbs 17248  Hom chom 17309  Idccid 17709   Func cfunc 17900  TermCatctermc 49144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-map 8869  df-ixp 8939  df-cat 17712  df-cid 17713  df-func 17904  df-thinc 49092  df-termc 49145
This theorem is referenced by:  diag1f1olem  49191
  Copyright terms: Public domain W3C validator