Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcfuncval Structured version   Visualization version   GIF version

Theorem termcfuncval 49638
Description: The value of a functor from a terminal category. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
diag1f1o.a 𝐴 = (Base‘𝐶)
diag1f1o.d (𝜑𝐷 ∈ TermCat)
termcfuncval.k (𝜑𝐾 ∈ (𝐷 Func 𝐶))
termcfuncval.b 𝐵 = (Base‘𝐷)
termcfuncval.y (𝜑𝑌𝐵)
termcfuncval.x 𝑋 = ((1st𝐾)‘𝑌)
termcfuncval.1 1 = (Id‘𝐶)
termcfuncval.i 𝐼 = (Id‘𝐷)
Assertion
Ref Expression
termcfuncval (𝜑 → (𝑋𝐴𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩))

Proof of Theorem termcfuncval
StepHypRef Expression
1 termcfuncval.x . . 3 𝑋 = ((1st𝐾)‘𝑌)
2 termcfuncval.b . . . . 5 𝐵 = (Base‘𝐷)
3 diag1f1o.a . . . . 5 𝐴 = (Base‘𝐶)
4 termcfuncval.k . . . . . 6 (𝜑𝐾 ∈ (𝐷 Func 𝐶))
54func1st2nd 49182 . . . . 5 (𝜑 → (1st𝐾)(𝐷 Func 𝐶)(2nd𝐾))
62, 3, 5funcf1 17779 . . . 4 (𝜑 → (1st𝐾):𝐵𝐴)
7 termcfuncval.y . . . 4 (𝜑𝑌𝐵)
86, 7ffvelcdmd 7024 . . 3 (𝜑 → ((1st𝐾)‘𝑌) ∈ 𝐴)
91, 8eqeltrid 2835 . 2 (𝜑𝑋𝐴)
10 relfunc 17775 . . . 4 Rel (𝐷 Func 𝐶)
11 1st2nd 7977 . . . 4 ((Rel (𝐷 Func 𝐶) ∧ 𝐾 ∈ (𝐷 Func 𝐶)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
1210, 4, 11sylancr 587 . . 3 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
13 diag1f1o.d . . . . . . . . . 10 (𝜑𝐷 ∈ TermCat)
1413, 2, 7termcbas2 49588 . . . . . . . . 9 (𝜑𝐵 = {𝑌})
1514feq2d 6641 . . . . . . . 8 (𝜑 → ((1st𝐾):𝐵𝐴 ↔ (1st𝐾):{𝑌}⟶𝐴))
166, 15mpbid 232 . . . . . . 7 (𝜑 → (1st𝐾):{𝑌}⟶𝐴)
17 fsn2g 7077 . . . . . . . 8 (𝑌𝐵 → ((1st𝐾):{𝑌}⟶𝐴 ↔ (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})))
187, 17syl 17 . . . . . . 7 (𝜑 → ((1st𝐾):{𝑌}⟶𝐴 ↔ (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})))
1916, 18mpbid 232 . . . . . 6 (𝜑 → (((1st𝐾)‘𝑌) ∈ 𝐴 ∧ (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩}))
2019simprd 495 . . . . 5 (𝜑 → (1st𝐾) = {⟨𝑌, ((1st𝐾)‘𝑌)⟩})
211opeq2i 4828 . . . . . 6 𝑌, 𝑋⟩ = ⟨𝑌, ((1st𝐾)‘𝑌)⟩
2221sneqi 4586 . . . . 5 {⟨𝑌, 𝑋⟩} = {⟨𝑌, ((1st𝐾)‘𝑌)⟩}
2320, 22eqtr4di 2784 . . . 4 (𝜑 → (1st𝐾) = {⟨𝑌, 𝑋⟩})
242, 5funcfn2 17782 . . . . . . 7 (𝜑 → (2nd𝐾) Fn (𝐵 × 𝐵))
2514sqxpeqd 5651 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐵) = ({𝑌} × {𝑌}))
26 xpsng 7078 . . . . . . . . . 10 ((𝑌𝐵𝑌𝐵) → ({𝑌} × {𝑌}) = {⟨𝑌, 𝑌⟩})
277, 7, 26syl2anc 584 . . . . . . . . 9 (𝜑 → ({𝑌} × {𝑌}) = {⟨𝑌, 𝑌⟩})
2825, 27eqtrd 2766 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = {⟨𝑌, 𝑌⟩})
2928fneq2d 6581 . . . . . . 7 (𝜑 → ((2nd𝐾) Fn (𝐵 × 𝐵) ↔ (2nd𝐾) Fn {⟨𝑌, 𝑌⟩}))
3024, 29mpbid 232 . . . . . 6 (𝜑 → (2nd𝐾) Fn {⟨𝑌, 𝑌⟩})
31 opex 5407 . . . . . . 7 𝑌, 𝑌⟩ ∈ V
3231fnsnb 7105 . . . . . 6 ((2nd𝐾) Fn {⟨𝑌, 𝑌⟩} ↔ (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩})
3330, 32sylib 218 . . . . 5 (𝜑 → (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩})
34 df-ov 7355 . . . . . . . 8 (𝑌(2nd𝐾)𝑌) = ((2nd𝐾)‘⟨𝑌, 𝑌⟩)
35 eqid 2731 . . . . . . . . . . . . 13 (Hom ‘𝐷) = (Hom ‘𝐷)
36 eqid 2731 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
372, 35, 36, 5, 7, 7funcf2 17781 . . . . . . . . . . . 12 (𝜑 → (𝑌(2nd𝐾)𝑌):(𝑌(Hom ‘𝐷)𝑌)⟶(((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌)))
38 termcfuncval.i . . . . . . . . . . . . . . 15 𝐼 = (Id‘𝐷)
3913, 2, 7, 7, 35, 38termchom 49594 . . . . . . . . . . . . . 14 (𝜑 → (𝑌(Hom ‘𝐷)𝑌) = {(𝐼𝑌)})
4039eqcomd 2737 . . . . . . . . . . . . 13 (𝜑 → {(𝐼𝑌)} = (𝑌(Hom ‘𝐷)𝑌))
411, 1oveq12i 7364 . . . . . . . . . . . . . 14 (𝑋(Hom ‘𝐶)𝑋) = (((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌))
4241a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(Hom ‘𝐶)𝑋) = (((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌)))
4340, 42feq23d 6652 . . . . . . . . . . . 12 (𝜑 → ((𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋) ↔ (𝑌(2nd𝐾)𝑌):(𝑌(Hom ‘𝐷)𝑌)⟶(((1st𝐾)‘𝑌)(Hom ‘𝐶)((1st𝐾)‘𝑌))))
4437, 43mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋))
45 fvex 6841 . . . . . . . . . . . 12 (𝐼𝑌) ∈ V
4645fsn2 7075 . . . . . . . . . . 11 ((𝑌(2nd𝐾)𝑌):{(𝐼𝑌)}⟶(𝑋(Hom ‘𝐶)𝑋) ↔ (((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩}))
4744, 46sylib 218 . . . . . . . . . 10 (𝜑 → (((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) ∈ (𝑋(Hom ‘𝐶)𝑋) ∧ (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩}))
4847simprd 495 . . . . . . . . 9 (𝜑 → (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩})
49 termcfuncval.1 . . . . . . . . . . . . 13 1 = (Id‘𝐶)
502, 38, 49, 5, 7funcid 17783 . . . . . . . . . . . 12 (𝜑 → ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) = ( 1 ‘((1st𝐾)‘𝑌)))
511fveq2i 6831 . . . . . . . . . . . 12 ( 1𝑋) = ( 1 ‘((1st𝐾)‘𝑌))
5250, 51eqtr4di 2784 . . . . . . . . . . 11 (𝜑 → ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌)) = ( 1𝑋))
5352opeq2d 4831 . . . . . . . . . 10 (𝜑 → ⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩ = ⟨(𝐼𝑌), ( 1𝑋)⟩)
5453sneqd 4587 . . . . . . . . 9 (𝜑 → {⟨(𝐼𝑌), ((𝑌(2nd𝐾)𝑌)‘(𝐼𝑌))⟩} = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5548, 54eqtrd 2766 . . . . . . . 8 (𝜑 → (𝑌(2nd𝐾)𝑌) = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5634, 55eqtr3id 2780 . . . . . . 7 (𝜑 → ((2nd𝐾)‘⟨𝑌, 𝑌⟩) = {⟨(𝐼𝑌), ( 1𝑋)⟩})
5756opeq2d 4831 . . . . . 6 (𝜑 → ⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩ = ⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩)
5857sneqd 4587 . . . . 5 (𝜑 → {⟨⟨𝑌, 𝑌⟩, ((2nd𝐾)‘⟨𝑌, 𝑌⟩)⟩} = {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩})
5933, 58eqtrd 2766 . . . 4 (𝜑 → (2nd𝐾) = {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩})
6023, 59opeq12d 4832 . . 3 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩)
6112, 60eqtrd 2766 . 2 (𝜑𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩)
629, 61jca 511 1 (𝜑 → (𝑋𝐴𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨(𝐼𝑌), ( 1𝑋)⟩}⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {csn 4575  cop 4581   × cxp 5617  Rel wrel 5624   Fn wfn 6482  wf 6483  cfv 6487  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  Basecbs 17126  Hom chom 17178  Idccid 17577   Func cfunc 17767  TermCatctermc 49578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828  df-cat 17580  df-cid 17581  df-func 17771  df-thinc 49524  df-termc 49579
This theorem is referenced by:  diag1f1olem  49639
  Copyright terms: Public domain W3C validator