Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diag1f1olem Structured version   Visualization version   GIF version

Theorem diag1f1olem 49544
Description: To any functor from a terminal category can an object in the target base be assigned. (Contributed by Zhi Wang, 21-Oct-2025.)
Hypotheses
Ref Expression
diag1f1o.a 𝐴 = (Base‘𝐶)
diag1f1o.d (𝜑𝐷 ∈ TermCat)
termcfuncval.k (𝜑𝐾 ∈ (𝐷 Func 𝐶))
termcfuncval.b 𝐵 = (Base‘𝐷)
termcfuncval.y (𝜑𝑌𝐵)
termcfuncval.x 𝑋 = ((1st𝐾)‘𝑌)
diag1f1olem.l 𝐿 = (𝐶Δfunc𝐷)
Assertion
Ref Expression
diag1f1olem (𝜑 → (𝑋𝐴𝐾 = ((1st𝐿)‘𝑋)))

Proof of Theorem diag1f1olem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diag1f1o.a . . . 4 𝐴 = (Base‘𝐶)
2 diag1f1o.d . . . 4 (𝜑𝐷 ∈ TermCat)
3 termcfuncval.k . . . 4 (𝜑𝐾 ∈ (𝐷 Func 𝐶))
4 termcfuncval.b . . . 4 𝐵 = (Base‘𝐷)
5 termcfuncval.y . . . 4 (𝜑𝑌𝐵)
6 termcfuncval.x . . . 4 𝑋 = ((1st𝐾)‘𝑌)
7 eqid 2730 . . . 4 (Id‘𝐶) = (Id‘𝐶)
8 eqid 2730 . . . 4 (Id‘𝐷) = (Id‘𝐷)
91, 2, 3, 4, 5, 6, 7, 8termcfuncval 49543 . . 3 (𝜑 → (𝑋𝐴𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩}⟩}⟩))
109simpld 494 . 2 (𝜑𝑋𝐴)
112, 4, 5termcbas2 49493 . . . . . 6 (𝜑𝐵 = {𝑌})
1211xpeq1d 5643 . . . . 5 (𝜑 → (𝐵 × {𝑋}) = ({𝑌} × {𝑋}))
13 xpsng 7067 . . . . . 6 ((𝑌𝐵𝑋𝐴) → ({𝑌} × {𝑋}) = {⟨𝑌, 𝑋⟩})
145, 10, 13syl2anc 584 . . . . 5 (𝜑 → ({𝑌} × {𝑋}) = {⟨𝑌, 𝑋⟩})
1512, 14eqtrd 2765 . . . 4 (𝜑 → (𝐵 × {𝑋}) = {⟨𝑌, 𝑋⟩})
1611adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐵 = {𝑌})
172adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐷 ∈ TermCat)
18 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
19 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
20 eqid 2730 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
215adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑌𝐵)
2217, 4, 18, 19, 20, 8, 21termchom2 49500 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(Hom ‘𝐷)𝑧) = {((Id‘𝐷)‘𝑌)})
2322xpeq1d 5643 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)}) = ({((Id‘𝐷)‘𝑌)} × {((Id‘𝐶)‘𝑋)}))
24 fvex 6830 . . . . . . . 8 ((Id‘𝐷)‘𝑌) ∈ V
25 fvex 6830 . . . . . . . 8 ((Id‘𝐶)‘𝑋) ∈ V
2624, 25xpsn 7069 . . . . . . 7 ({((Id‘𝐷)‘𝑌)} × {((Id‘𝐶)‘𝑋)}) = {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩}
2723, 26eqtrdi 2781 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)}) = {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩})
2811, 16, 27mpoeq123dva 7415 . . . . 5 (𝜑 → (𝑦𝐵, 𝑧𝐵 ↦ ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)})) = (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩}))
29 snex 5372 . . . . . . 7 {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩} ∈ V
3029a1i 11 . . . . . 6 (𝜑 → {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩} ∈ V)
31 eqid 2730 . . . . . . 7 (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩}) = (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩})
32 eqidd 2731 . . . . . . 7 (𝑦 = 𝑌 → {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩} = {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩})
33 eqidd 2731 . . . . . . 7 (𝑧 = 𝑌 → {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩} = {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩})
3431, 32, 33mposn 8028 . . . . . 6 ((𝑌𝐵𝑌𝐵 ∧ {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩} ∈ V) → (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩}) = {⟨⟨𝑌, 𝑌⟩, {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩}⟩})
355, 5, 30, 34syl3anc 1373 . . . . 5 (𝜑 → (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩}) = {⟨⟨𝑌, 𝑌⟩, {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩}⟩})
3628, 35eqtrd 2765 . . . 4 (𝜑 → (𝑦𝐵, 𝑧𝐵 ↦ ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)})) = {⟨⟨𝑌, 𝑌⟩, {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩}⟩})
3715, 36opeq12d 4831 . . 3 (𝜑 → ⟨(𝐵 × {𝑋}), (𝑦𝐵, 𝑧𝐵 ↦ ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)}))⟩ = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩}⟩}⟩)
38 diag1f1olem.l . . . 4 𝐿 = (𝐶Δfunc𝐷)
393func1st2nd 49087 . . . . 5 (𝜑 → (1st𝐾)(𝐷 Func 𝐶)(2nd𝐾))
4039funcrcl3 49091 . . . 4 (𝜑𝐶 ∈ Cat)
412termccd 49490 . . . 4 (𝜑𝐷 ∈ Cat)
42 eqid 2730 . . . 4 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
4338, 40, 41, 1, 10, 42, 4, 20, 7diag1a 49316 . . 3 (𝜑 → ((1st𝐿)‘𝑋) = ⟨(𝐵 × {𝑋}), (𝑦𝐵, 𝑧𝐵 ↦ ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)}))⟩)
449simprd 495 . . 3 (𝜑𝐾 = ⟨{⟨𝑌, 𝑋⟩}, {⟨⟨𝑌, 𝑌⟩, {⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩}⟩}⟩)
4537, 43, 443eqtr4rd 2776 . 2 (𝜑𝐾 = ((1st𝐿)‘𝑋))
4610, 45jca 511 1 (𝜑 → (𝑋𝐴𝐾 = ((1st𝐿)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  Vcvv 3434  {csn 4574  cop 4580   × cxp 5612  cfv 6477  (class class class)co 7341  cmpo 7343  1st c1st 7914  2nd c2nd 7915  Basecbs 17112  Hom chom 17164  Idccid 17563   Func cfunc 17753  Δfunccdiag 18110  TermCatctermc 49483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-slot 17085  df-ndx 17097  df-base 17113  df-hom 17177  df-cco 17178  df-cat 17566  df-cid 17567  df-func 17757  df-nat 17845  df-fuc 17846  df-xpc 18070  df-1stf 18071  df-curf 18112  df-diag 18114  df-thinc 49429  df-termc 49484
This theorem is referenced by:  diag1f1o  49545
  Copyright terms: Public domain W3C validator