| Step | Hyp | Ref
| Expression |
| 1 | | diag1f1o.a |
. . . 4
⊢ 𝐴 = (Base‘𝐶) |
| 2 | | diag1f1o.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ TermCat) |
| 3 | | termcfuncval.k |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐶)) |
| 4 | | termcfuncval.b |
. . . 4
⊢ 𝐵 = (Base‘𝐷) |
| 5 | | termcfuncval.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 6 | | termcfuncval.x |
. . . 4
⊢ 𝑋 = ((1st ‘𝐾)‘𝑌) |
| 7 | | eqid 2736 |
. . . 4
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 8 | | eqid 2736 |
. . . 4
⊢
(Id‘𝐷) =
(Id‘𝐷) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | termcfuncval 49397 |
. . 3
⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ 𝐾 = 〈{〈𝑌, 𝑋〉}, {〈〈𝑌, 𝑌〉, {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}〉}〉)) |
| 10 | 9 | simpld 494 |
. 2
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 11 | 2, 4, 5 | termcbas2 49347 |
. . . . . 6
⊢ (𝜑 → 𝐵 = {𝑌}) |
| 12 | 11 | xpeq1d 5688 |
. . . . 5
⊢ (𝜑 → (𝐵 × {𝑋}) = ({𝑌} × {𝑋})) |
| 13 | | xpsng 7134 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → ({𝑌} × {𝑋}) = {〈𝑌, 𝑋〉}) |
| 14 | 5, 10, 13 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ({𝑌} × {𝑋}) = {〈𝑌, 𝑋〉}) |
| 15 | 12, 14 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → (𝐵 × {𝑋}) = {〈𝑌, 𝑋〉}) |
| 16 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐵 = {𝑌}) |
| 17 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐷 ∈ TermCat) |
| 18 | | simprl 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 19 | | simprr 772 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
| 20 | | eqid 2736 |
. . . . . . . . 9
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 21 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
| 22 | 17, 4, 18, 19, 20, 8, 21 | termchom2 49354 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(Hom ‘𝐷)𝑧) = {((Id‘𝐷)‘𝑌)}) |
| 23 | 22 | xpeq1d 5688 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)}) = ({((Id‘𝐷)‘𝑌)} × {((Id‘𝐶)‘𝑋)})) |
| 24 | | fvex 6894 |
. . . . . . . 8
⊢
((Id‘𝐷)‘𝑌) ∈ V |
| 25 | | fvex 6894 |
. . . . . . . 8
⊢
((Id‘𝐶)‘𝑋) ∈ V |
| 26 | 24, 25 | xpsn 7136 |
. . . . . . 7
⊢
({((Id‘𝐷)‘𝑌)} × {((Id‘𝐶)‘𝑋)}) = {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉} |
| 27 | 23, 26 | eqtrdi 2787 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)}) = {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) |
| 28 | 11, 16, 27 | mpoeq123dva 7486 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)})) = (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉})) |
| 29 | | snex 5411 |
. . . . . . 7
⊢
{〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉} ∈ V |
| 30 | 29 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉} ∈ V) |
| 31 | | eqid 2736 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) = (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) |
| 32 | | eqidd 2737 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉} = {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) |
| 33 | | eqidd 2737 |
. . . . . . 7
⊢ (𝑧 = 𝑌 → {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉} = {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) |
| 34 | 31, 32, 33 | mposn 8107 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉} ∈ V) → (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) = {〈〈𝑌, 𝑌〉, {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}〉}) |
| 35 | 5, 5, 30, 34 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) = {〈〈𝑌, 𝑌〉, {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}〉}) |
| 36 | 28, 35 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)})) = {〈〈𝑌, 𝑌〉, {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}〉}) |
| 37 | 15, 36 | opeq12d 4862 |
. . 3
⊢ (𝜑 → 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)}))〉 = 〈{〈𝑌, 𝑋〉}, {〈〈𝑌, 𝑌〉, {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}〉}〉) |
| 38 | | diag1f1olem.l |
. . . 4
⊢ 𝐿 = (𝐶Δfunc𝐷) |
| 39 | 3 | func1st2nd 49023 |
. . . . 5
⊢ (𝜑 → (1st
‘𝐾)(𝐷 Func 𝐶)(2nd ‘𝐾)) |
| 40 | 39 | funcrcl3 49025 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 41 | 2 | termccd 49345 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 42 | | eqid 2736 |
. . . 4
⊢
((1st ‘𝐿)‘𝑋) = ((1st ‘𝐿)‘𝑋) |
| 43 | 38, 40, 41, 1, 10, 42, 4, 20, 7 | diag1a 49196 |
. . 3
⊢ (𝜑 → ((1st
‘𝐿)‘𝑋) = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) |
| 44 | 9 | simprd 495 |
. . 3
⊢ (𝜑 → 𝐾 = 〈{〈𝑌, 𝑋〉}, {〈〈𝑌, 𝑌〉, {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}〉}〉) |
| 45 | 37, 43, 44 | 3eqtr4rd 2782 |
. 2
⊢ (𝜑 → 𝐾 = ((1st ‘𝐿)‘𝑋)) |
| 46 | 10, 45 | jca 511 |
1
⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ 𝐾 = ((1st ‘𝐿)‘𝑋))) |