| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | diag1f1o.a | . . . 4
⊢ 𝐴 = (Base‘𝐶) | 
| 2 |  | diag1f1o.d | . . . 4
⊢ (𝜑 → 𝐷 ∈ TermCat) | 
| 3 |  | termcfuncval.k | . . . 4
⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐶)) | 
| 4 |  | termcfuncval.b | . . . 4
⊢ 𝐵 = (Base‘𝐷) | 
| 5 |  | termcfuncval.y | . . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| 6 |  | termcfuncval.x | . . . 4
⊢ 𝑋 = ((1st ‘𝐾)‘𝑌) | 
| 7 |  | eqid 2736 | . . . 4
⊢
(Id‘𝐶) =
(Id‘𝐶) | 
| 8 |  | eqid 2736 | . . . 4
⊢
(Id‘𝐷) =
(Id‘𝐷) | 
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | termcfuncval 49190 | . . 3
⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ 𝐾 = 〈{〈𝑌, 𝑋〉}, {〈〈𝑌, 𝑌〉, {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}〉}〉)) | 
| 10 | 9 | simpld 494 | . 2
⊢ (𝜑 → 𝑋 ∈ 𝐴) | 
| 11 | 2, 4, 5 | termcbas2 49153 | . . . . . 6
⊢ (𝜑 → 𝐵 = {𝑌}) | 
| 12 | 11 | xpeq1d 5713 | . . . . 5
⊢ (𝜑 → (𝐵 × {𝑋}) = ({𝑌} × {𝑋})) | 
| 13 |  | xpsng 7158 | . . . . . 6
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → ({𝑌} × {𝑋}) = {〈𝑌, 𝑋〉}) | 
| 14 | 5, 10, 13 | syl2anc 584 | . . . . 5
⊢ (𝜑 → ({𝑌} × {𝑋}) = {〈𝑌, 𝑋〉}) | 
| 15 | 12, 14 | eqtrd 2776 | . . . 4
⊢ (𝜑 → (𝐵 × {𝑋}) = {〈𝑌, 𝑋〉}) | 
| 16 | 11 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐵 = {𝑌}) | 
| 17 | 2 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐷 ∈ TermCat) | 
| 18 |  | simprl 770 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | 
| 19 |  | simprr 772 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) | 
| 20 |  | eqid 2736 | . . . . . . . . 9
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) | 
| 21 | 5 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | 
| 22 | 17, 4, 18, 19, 20, 8, 21 | termchom2 49160 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(Hom ‘𝐷)𝑧) = {((Id‘𝐷)‘𝑌)}) | 
| 23 | 22 | xpeq1d 5713 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)}) = ({((Id‘𝐷)‘𝑌)} × {((Id‘𝐶)‘𝑋)})) | 
| 24 |  | fvex 6918 | . . . . . . . 8
⊢
((Id‘𝐷)‘𝑌) ∈ V | 
| 25 |  | fvex 6918 | . . . . . . . 8
⊢
((Id‘𝐶)‘𝑋) ∈ V | 
| 26 | 24, 25 | xpsn 7160 | . . . . . . 7
⊢
({((Id‘𝐷)‘𝑌)} × {((Id‘𝐶)‘𝑋)}) = {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉} | 
| 27 | 23, 26 | eqtrdi 2792 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)}) = {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) | 
| 28 | 11, 16, 27 | mpoeq123dva 7508 | . . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)})) = (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉})) | 
| 29 |  | snex 5435 | . . . . . . 7
⊢
{〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉} ∈ V | 
| 30 | 29 | a1i 11 | . . . . . 6
⊢ (𝜑 → {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉} ∈ V) | 
| 31 |  | eqid 2736 | . . . . . . 7
⊢ (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) = (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) | 
| 32 |  | eqidd 2737 | . . . . . . 7
⊢ (𝑦 = 𝑌 → {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉} = {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) | 
| 33 |  | eqidd 2737 | . . . . . . 7
⊢ (𝑧 = 𝑌 → {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉} = {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) | 
| 34 | 31, 32, 33 | mposn 8129 | . . . . . 6
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉} ∈ V) → (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) = {〈〈𝑌, 𝑌〉, {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}〉}) | 
| 35 | 5, 5, 30, 34 | syl3anc 1372 | . . . . 5
⊢ (𝜑 → (𝑦 ∈ {𝑌}, 𝑧 ∈ {𝑌} ↦ {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}) = {〈〈𝑌, 𝑌〉, {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}〉}) | 
| 36 | 28, 35 | eqtrd 2776 | . . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)})) = {〈〈𝑌, 𝑌〉, {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}〉}) | 
| 37 | 15, 36 | opeq12d 4880 | . . 3
⊢ (𝜑 → 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)}))〉 = 〈{〈𝑌, 𝑋〉}, {〈〈𝑌, 𝑌〉, {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}〉}〉) | 
| 38 |  | diag1f1olem.l | . . . 4
⊢ 𝐿 = (𝐶Δfunc𝐷) | 
| 39 | 3 | func1st2nd 48927 | . . . . 5
⊢ (𝜑 → (1st
‘𝐾)(𝐷 Func 𝐶)(2nd ‘𝐾)) | 
| 40 | 39 | funcrcl3 48929 | . . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) | 
| 41 | 2 | termccd 49151 | . . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) | 
| 42 |  | eqid 2736 | . . . 4
⊢
((1st ‘𝐿)‘𝑋) = ((1st ‘𝐿)‘𝑋) | 
| 43 | 38, 40, 41, 1, 10, 42, 4, 20, 7 | diag1a 49023 | . . 3
⊢ (𝜑 → ((1st
‘𝐿)‘𝑋) = 〈(𝐵 × {𝑋}), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ ((𝑦(Hom ‘𝐷)𝑧) × {((Id‘𝐶)‘𝑋)}))〉) | 
| 44 | 9 | simprd 495 | . . 3
⊢ (𝜑 → 𝐾 = 〈{〈𝑌, 𝑋〉}, {〈〈𝑌, 𝑌〉, {〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉}〉}〉) | 
| 45 | 37, 43, 44 | 3eqtr4rd 2787 | . 2
⊢ (𝜑 → 𝐾 = ((1st ‘𝐿)‘𝑋)) | 
| 46 | 10, 45 | jca 511 | 1
⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ 𝐾 = ((1st ‘𝐿)‘𝑋))) |