| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcnatval | Structured version Visualization version GIF version | ||
| Description: Value of natural transformations for a terminal category. (Contributed by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcnatval.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcnatval.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| termcnatval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) |
| termcnatval.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcnatval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termcnatval.r | ⊢ 𝑅 = (𝐴‘𝑋) |
| Ref | Expression |
|---|---|
| termcnatval | ⊢ (𝜑 → 𝐴 = {〈𝑋, 𝑅〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcnatval.n | . . . . 5 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 2 | termcnatval.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | |
| 3 | 1, 2 | nat1st2nd 17861 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
| 4 | termcnatval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 1, 3, 4 | natfn 17864 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐵) |
| 6 | termcnatval.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 7 | termcnatval.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | 6, 4, 7 | termcbas2 49582 | . . . . 5 ⊢ (𝜑 → 𝐵 = {𝑋}) |
| 9 | 8 | fneq2d 6575 | . . . 4 ⊢ (𝜑 → (𝐴 Fn 𝐵 ↔ 𝐴 Fn {𝑋})) |
| 10 | 5, 9 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐴 Fn {𝑋}) |
| 11 | fnsnbg 7098 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝐴 Fn {𝑋} ↔ 𝐴 = {〈𝑋, (𝐴‘𝑋)〉})) | |
| 12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 Fn {𝑋} ↔ 𝐴 = {〈𝑋, (𝐴‘𝑋)〉})) |
| 13 | 10, 12 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐴 = {〈𝑋, (𝐴‘𝑋)〉}) |
| 14 | termcnatval.r | . . . 4 ⊢ 𝑅 = (𝐴‘𝑋) | |
| 15 | 14 | opeq2i 4826 | . . 3 ⊢ 〈𝑋, 𝑅〉 = 〈𝑋, (𝐴‘𝑋)〉 |
| 16 | 15 | sneqi 4584 | . 2 ⊢ {〈𝑋, 𝑅〉} = {〈𝑋, (𝐴‘𝑋)〉} |
| 17 | 13, 16 | eqtr4di 2784 | 1 ⊢ (𝜑 → 𝐴 = {〈𝑋, 𝑅〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {csn 4573 〈cop 4579 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17120 Nat cnat 17851 TermCatctermc 49572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-ixp 8822 df-func 17765 df-nat 17853 df-termc 49573 |
| This theorem is referenced by: diag2f1olem 49636 |
| Copyright terms: Public domain | W3C validator |