|   | Mathbox for Zhi Wang | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcnatval | Structured version Visualization version GIF version | ||
| Description: Value of natural transformations for a terminal category. (Contributed by Zhi Wang, 21-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| termcnatval.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) | 
| termcnatval.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) | 
| termcnatval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | 
| termcnatval.b | ⊢ 𝐵 = (Base‘𝐶) | 
| termcnatval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| termcnatval.r | ⊢ 𝑅 = (𝐴‘𝑋) | 
| Ref | Expression | 
|---|---|
| termcnatval | ⊢ (𝜑 → 𝐴 = {〈𝑋, 𝑅〉}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | termcnatval.n | . . . . 5 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 2 | termcnatval.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | |
| 3 | 1, 2 | nat1st2nd 18000 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) | 
| 4 | termcnatval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 1, 3, 4 | natfn 18003 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐵) | 
| 6 | termcnatval.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 7 | termcnatval.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | 6, 4, 7 | termcbas2 49153 | . . . . 5 ⊢ (𝜑 → 𝐵 = {𝑋}) | 
| 9 | 8 | fneq2d 6661 | . . . 4 ⊢ (𝜑 → (𝐴 Fn 𝐵 ↔ 𝐴 Fn {𝑋})) | 
| 10 | 5, 9 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐴 Fn {𝑋}) | 
| 11 | fnsnbg 7185 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝐴 Fn {𝑋} ↔ 𝐴 = {〈𝑋, (𝐴‘𝑋)〉})) | |
| 12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 Fn {𝑋} ↔ 𝐴 = {〈𝑋, (𝐴‘𝑋)〉})) | 
| 13 | 10, 12 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐴 = {〈𝑋, (𝐴‘𝑋)〉}) | 
| 14 | termcnatval.r | . . . 4 ⊢ 𝑅 = (𝐴‘𝑋) | |
| 15 | 14 | opeq2i 4876 | . . 3 ⊢ 〈𝑋, 𝑅〉 = 〈𝑋, (𝐴‘𝑋)〉 | 
| 16 | 15 | sneqi 4636 | . 2 ⊢ {〈𝑋, 𝑅〉} = {〈𝑋, (𝐴‘𝑋)〉} | 
| 17 | 13, 16 | eqtr4di 2794 | 1 ⊢ (𝜑 → 𝐴 = {〈𝑋, 𝑅〉}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {csn 4625 〈cop 4631 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 1st c1st 8013 2nd c2nd 8014 Basecbs 17248 Nat cnat 17990 TermCatctermc 49144 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-ixp 8939 df-func 17904 df-nat 17992 df-termc 49145 | 
| This theorem is referenced by: diag2f1olem 49194 | 
| Copyright terms: Public domain | W3C validator |