| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcnatval | Structured version Visualization version GIF version | ||
| Description: Value of natural transformations for a terminal category. (Contributed by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcnatval.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcnatval.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| termcnatval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) |
| termcnatval.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcnatval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termcnatval.r | ⊢ 𝑅 = (𝐴‘𝑋) |
| Ref | Expression |
|---|---|
| termcnatval | ⊢ (𝜑 → 𝐴 = {〈𝑋, 𝑅〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcnatval.n | . . . . 5 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 2 | termcnatval.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | |
| 3 | 1, 2 | nat1st2nd 17954 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
| 4 | termcnatval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 1, 3, 4 | natfn 17957 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐵) |
| 6 | termcnatval.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 7 | termcnatval.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | 6, 4, 7 | termcbas2 49228 | . . . . 5 ⊢ (𝜑 → 𝐵 = {𝑋}) |
| 9 | 8 | fneq2d 6629 | . . . 4 ⊢ (𝜑 → (𝐴 Fn 𝐵 ↔ 𝐴 Fn {𝑋})) |
| 10 | 5, 9 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐴 Fn {𝑋}) |
| 11 | fnsnbg 7153 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝐴 Fn {𝑋} ↔ 𝐴 = {〈𝑋, (𝐴‘𝑋)〉})) | |
| 12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 Fn {𝑋} ↔ 𝐴 = {〈𝑋, (𝐴‘𝑋)〉})) |
| 13 | 10, 12 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐴 = {〈𝑋, (𝐴‘𝑋)〉}) |
| 14 | termcnatval.r | . . . 4 ⊢ 𝑅 = (𝐴‘𝑋) | |
| 15 | 14 | opeq2i 4851 | . . 3 ⊢ 〈𝑋, 𝑅〉 = 〈𝑋, (𝐴‘𝑋)〉 |
| 16 | 15 | sneqi 4610 | . 2 ⊢ {〈𝑋, 𝑅〉} = {〈𝑋, (𝐴‘𝑋)〉} |
| 17 | 13, 16 | eqtr4di 2787 | 1 ⊢ (𝜑 → 𝐴 = {〈𝑋, 𝑅〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {csn 4599 〈cop 4605 Fn wfn 6523 ‘cfv 6528 (class class class)co 7400 1st c1st 7981 2nd c2nd 7982 Basecbs 17215 Nat cnat 17944 TermCatctermc 49219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-ixp 8907 df-func 17858 df-nat 17946 df-termc 49220 |
| This theorem is referenced by: diag2f1olem 49282 |
| Copyright terms: Public domain | W3C validator |