| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcnatval | Structured version Visualization version GIF version | ||
| Description: Value of natural transformations for a terminal category. (Contributed by Zhi Wang, 21-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcnatval.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcnatval.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| termcnatval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) |
| termcnatval.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcnatval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termcnatval.r | ⊢ 𝑅 = (𝐴‘𝑋) |
| Ref | Expression |
|---|---|
| termcnatval | ⊢ (𝜑 → 𝐴 = {〈𝑋, 𝑅〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcnatval.n | . . . . 5 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 2 | termcnatval.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | |
| 3 | 1, 2 | nat1st2nd 17898 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
| 4 | termcnatval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 1, 3, 4 | natfn 17901 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐵) |
| 6 | termcnatval.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 7 | termcnatval.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | 6, 4, 7 | termcbas2 49466 | . . . . 5 ⊢ (𝜑 → 𝐵 = {𝑋}) |
| 9 | 8 | fneq2d 6595 | . . . 4 ⊢ (𝜑 → (𝐴 Fn 𝐵 ↔ 𝐴 Fn {𝑋})) |
| 10 | 5, 9 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐴 Fn {𝑋}) |
| 11 | fnsnbg 7121 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝐴 Fn {𝑋} ↔ 𝐴 = {〈𝑋, (𝐴‘𝑋)〉})) | |
| 12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 Fn {𝑋} ↔ 𝐴 = {〈𝑋, (𝐴‘𝑋)〉})) |
| 13 | 10, 12 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐴 = {〈𝑋, (𝐴‘𝑋)〉}) |
| 14 | termcnatval.r | . . . 4 ⊢ 𝑅 = (𝐴‘𝑋) | |
| 15 | 14 | opeq2i 4837 | . . 3 ⊢ 〈𝑋, 𝑅〉 = 〈𝑋, (𝐴‘𝑋)〉 |
| 16 | 15 | sneqi 4596 | . 2 ⊢ {〈𝑋, 𝑅〉} = {〈𝑋, (𝐴‘𝑋)〉} |
| 17 | 13, 16 | eqtr4di 2782 | 1 ⊢ (𝜑 → 𝐴 = {〈𝑋, 𝑅〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4585 〈cop 4591 Fn wfn 6495 ‘cfv 6500 (class class class)co 7370 1st c1st 7946 2nd c2nd 7947 Basecbs 17157 Nat cnat 17888 TermCatctermc 49456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7373 df-oprab 7374 df-mpo 7375 df-1st 7948 df-2nd 7949 df-ixp 8849 df-func 17802 df-nat 17890 df-termc 49457 |
| This theorem is referenced by: diag2f1olem 49520 |
| Copyright terms: Public domain | W3C validator |