Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcnatval Structured version   Visualization version   GIF version

Theorem termcnatval 49519
Description: Value of natural transformations for a terminal category. (Contributed by Zhi Wang, 21-Oct-2025.)
Hypotheses
Ref Expression
termcnatval.c (𝜑𝐶 ∈ TermCat)
termcnatval.n 𝑁 = (𝐶 Nat 𝐷)
termcnatval.a (𝜑𝐴 ∈ (𝐹𝑁𝐺))
termcnatval.b 𝐵 = (Base‘𝐶)
termcnatval.x (𝜑𝑋𝐵)
termcnatval.r 𝑅 = (𝐴𝑋)
Assertion
Ref Expression
termcnatval (𝜑𝐴 = {⟨𝑋, 𝑅⟩})

Proof of Theorem termcnatval
StepHypRef Expression
1 termcnatval.n . . . . 5 𝑁 = (𝐶 Nat 𝐷)
2 termcnatval.a . . . . . 6 (𝜑𝐴 ∈ (𝐹𝑁𝐺))
31, 2nat1st2nd 17898 . . . . 5 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
4 termcnatval.b . . . . 5 𝐵 = (Base‘𝐶)
51, 3, 4natfn 17901 . . . 4 (𝜑𝐴 Fn 𝐵)
6 termcnatval.c . . . . . 6 (𝜑𝐶 ∈ TermCat)
7 termcnatval.x . . . . . 6 (𝜑𝑋𝐵)
86, 4, 7termcbas2 49466 . . . . 5 (𝜑𝐵 = {𝑋})
98fneq2d 6595 . . . 4 (𝜑 → (𝐴 Fn 𝐵𝐴 Fn {𝑋}))
105, 9mpbid 232 . . 3 (𝜑𝐴 Fn {𝑋})
11 fnsnbg 7121 . . . 4 (𝑋𝐵 → (𝐴 Fn {𝑋} ↔ 𝐴 = {⟨𝑋, (𝐴𝑋)⟩}))
127, 11syl 17 . . 3 (𝜑 → (𝐴 Fn {𝑋} ↔ 𝐴 = {⟨𝑋, (𝐴𝑋)⟩}))
1310, 12mpbid 232 . 2 (𝜑𝐴 = {⟨𝑋, (𝐴𝑋)⟩})
14 termcnatval.r . . . 4 𝑅 = (𝐴𝑋)
1514opeq2i 4837 . . 3 𝑋, 𝑅⟩ = ⟨𝑋, (𝐴𝑋)⟩
1615sneqi 4596 . 2 {⟨𝑋, 𝑅⟩} = {⟨𝑋, (𝐴𝑋)⟩}
1713, 16eqtr4di 2782 1 (𝜑𝐴 = {⟨𝑋, 𝑅⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {csn 4585  cop 4591   Fn wfn 6495  cfv 6500  (class class class)co 7370  1st c1st 7946  2nd c2nd 7947  Basecbs 17157   Nat cnat 17888  TermCatctermc 49456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7373  df-oprab 7374  df-mpo 7375  df-1st 7948  df-2nd 7949  df-ixp 8849  df-func 17802  df-nat 17890  df-termc 49457
This theorem is referenced by:  diag2f1olem  49520
  Copyright terms: Public domain W3C validator