Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstf | Structured version Visualization version GIF version |
Description: The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signstf | ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) ∈ Word ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
2 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
3 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
4 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
5 | 1, 2, 3, 4 | signstfv 32521 | . . 3 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
6 | neg1rr 12071 | . . . . 5 ⊢ -1 ∈ ℝ | |
7 | 0re 10961 | . . . . 5 ⊢ 0 ∈ ℝ | |
8 | 1re 10959 | . . . . 5 ⊢ 1 ∈ ℝ | |
9 | tpssi 4774 | . . . . 5 ⊢ ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 0, 1} ⊆ ℝ) | |
10 | 6, 7, 8, 9 | mp3an 1459 | . . . 4 ⊢ {-1, 0, 1} ⊆ ℝ |
11 | 1, 2 | signswbase 32512 | . . . . 5 ⊢ {-1, 0, 1} = (Base‘𝑊) |
12 | 1, 2 | signswmnd 32515 | . . . . . 6 ⊢ 𝑊 ∈ Mnd |
13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑊 ∈ Mnd) |
14 | fzo0ssnn0 13449 | . . . . . . . 8 ⊢ (0..^(♯‘𝐹)) ⊆ ℕ0 | |
15 | nn0uz 12602 | . . . . . . . 8 ⊢ ℕ0 = (ℤ≥‘0) | |
16 | 14, 15 | sseqtri 3961 | . . . . . . 7 ⊢ (0..^(♯‘𝐹)) ⊆ (ℤ≥‘0) |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) ⊆ (ℤ≥‘0)) |
18 | 17 | sselda 3925 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑛 ∈ (ℤ≥‘0)) |
19 | wrdf 14203 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → 𝐹:(0..^(♯‘𝐹))⟶ℝ) | |
20 | 19 | ad2antrr 722 | . . . . . . . 8 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝐹:(0..^(♯‘𝐹))⟶ℝ) |
21 | fzssfzo 32497 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (0..^(♯‘𝐹)) → (0...𝑛) ⊆ (0..^(♯‘𝐹))) | |
22 | 21 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (0...𝑛) ⊆ (0..^(♯‘𝐹))) |
23 | 22 | sselda 3925 | . . . . . . . 8 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝑖 ∈ (0..^(♯‘𝐹))) |
24 | 20, 23 | ffvelrnd 6956 | . . . . . . 7 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹‘𝑖) ∈ ℝ) |
25 | 24 | rexrd 11009 | . . . . . 6 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹‘𝑖) ∈ ℝ*) |
26 | sgncl 32484 | . . . . . 6 ⊢ ((𝐹‘𝑖) ∈ ℝ* → (sgn‘(𝐹‘𝑖)) ∈ {-1, 0, 1}) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (sgn‘(𝐹‘𝑖)) ∈ {-1, 0, 1}) |
28 | 11, 13, 18, 27 | gsumncl 32498 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) ∈ {-1, 0, 1}) |
29 | 10, 28 | sselid 3923 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) ∈ ℝ) |
30 | 5, 29 | fmpt3d 6984 | . 2 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹):(0..^(♯‘𝐹))⟶ℝ) |
31 | iswrdi 14202 | . 2 ⊢ ((𝑇‘𝐹):(0..^(♯‘𝐹))⟶ℝ → (𝑇‘𝐹) ∈ Word ℝ) | |
32 | 30, 31 | syl 17 | 1 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) ∈ Word ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ⊆ wss 3891 ifcif 4464 {cpr 4568 {ctp 4570 〈cop 4572 ↦ cmpt 5161 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 ℝcr 10854 0cc0 10855 1c1 10856 ℝ*cxr 10992 − cmin 11188 -cneg 11189 ℕ0cn0 12216 ℤ≥cuz 12564 ...cfz 13221 ..^cfzo 13364 ♯chash 14025 Word cword 14198 sgncsgn 14778 Σcsu 15378 ndxcnx 16875 Basecbs 16893 +gcplusg 16943 Σg cgsu 17132 Mndcmnd 18366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-seq 13703 df-hash 14026 df-word 14199 df-sgn 14779 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-0g 17133 df-gsum 17134 df-mgm 18307 df-sgrp 18356 df-mnd 18367 |
This theorem is referenced by: signstres 32533 signsvtp 32541 signsvtn 32542 |
Copyright terms: Public domain | W3C validator |