Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstf | Structured version Visualization version GIF version |
Description: The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signstf | ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) ∈ Word ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
2 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
3 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
4 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
5 | 1, 2, 3, 4 | signstfv 32442 | . . 3 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
6 | neg1rr 12018 | . . . . 5 ⊢ -1 ∈ ℝ | |
7 | 0re 10908 | . . . . 5 ⊢ 0 ∈ ℝ | |
8 | 1re 10906 | . . . . 5 ⊢ 1 ∈ ℝ | |
9 | tpssi 4766 | . . . . 5 ⊢ ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 0, 1} ⊆ ℝ) | |
10 | 6, 7, 8, 9 | mp3an 1459 | . . . 4 ⊢ {-1, 0, 1} ⊆ ℝ |
11 | 1, 2 | signswbase 32433 | . . . . 5 ⊢ {-1, 0, 1} = (Base‘𝑊) |
12 | 1, 2 | signswmnd 32436 | . . . . . 6 ⊢ 𝑊 ∈ Mnd |
13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑊 ∈ Mnd) |
14 | fzo0ssnn0 13396 | . . . . . . . 8 ⊢ (0..^(♯‘𝐹)) ⊆ ℕ0 | |
15 | nn0uz 12549 | . . . . . . . 8 ⊢ ℕ0 = (ℤ≥‘0) | |
16 | 14, 15 | sseqtri 3953 | . . . . . . 7 ⊢ (0..^(♯‘𝐹)) ⊆ (ℤ≥‘0) |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) ⊆ (ℤ≥‘0)) |
18 | 17 | sselda 3917 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑛 ∈ (ℤ≥‘0)) |
19 | wrdf 14150 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → 𝐹:(0..^(♯‘𝐹))⟶ℝ) | |
20 | 19 | ad2antrr 722 | . . . . . . . 8 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝐹:(0..^(♯‘𝐹))⟶ℝ) |
21 | fzssfzo 32418 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (0..^(♯‘𝐹)) → (0...𝑛) ⊆ (0..^(♯‘𝐹))) | |
22 | 21 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (0...𝑛) ⊆ (0..^(♯‘𝐹))) |
23 | 22 | sselda 3917 | . . . . . . . 8 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝑖 ∈ (0..^(♯‘𝐹))) |
24 | 20, 23 | ffvelrnd 6944 | . . . . . . 7 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹‘𝑖) ∈ ℝ) |
25 | 24 | rexrd 10956 | . . . . . 6 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹‘𝑖) ∈ ℝ*) |
26 | sgncl 32405 | . . . . . 6 ⊢ ((𝐹‘𝑖) ∈ ℝ* → (sgn‘(𝐹‘𝑖)) ∈ {-1, 0, 1}) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (sgn‘(𝐹‘𝑖)) ∈ {-1, 0, 1}) |
28 | 11, 13, 18, 27 | gsumncl 32419 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) ∈ {-1, 0, 1}) |
29 | 10, 28 | sselid 3915 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) ∈ ℝ) |
30 | 5, 29 | fmpt3d 6972 | . 2 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹):(0..^(♯‘𝐹))⟶ℝ) |
31 | iswrdi 14149 | . 2 ⊢ ((𝑇‘𝐹):(0..^(♯‘𝐹))⟶ℝ → (𝑇‘𝐹) ∈ Word ℝ) | |
32 | 30, 31 | syl 17 | 1 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) ∈ Word ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 ifcif 4456 {cpr 4560 {ctp 4562 〈cop 4564 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ℝcr 10801 0cc0 10802 1c1 10803 ℝ*cxr 10939 − cmin 11135 -cneg 11136 ℕ0cn0 12163 ℤ≥cuz 12511 ...cfz 13168 ..^cfzo 13311 ♯chash 13972 Word cword 14145 sgncsgn 14725 Σcsu 15325 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 Σg cgsu 17068 Mndcmnd 18300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-word 14146 df-sgn 14726 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 |
This theorem is referenced by: signstres 32454 signsvtp 32462 signsvtn 32463 |
Copyright terms: Public domain | W3C validator |