![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstf | Structured version Visualization version GIF version |
Description: The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signstf | ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) ∈ Word ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
2 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
3 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
4 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
5 | 1, 2, 3, 4 | signstfv 34185 | . . 3 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
6 | neg1rr 12351 | . . . . 5 ⊢ -1 ∈ ℝ | |
7 | 0re 11240 | . . . . 5 ⊢ 0 ∈ ℝ | |
8 | 1re 11238 | . . . . 5 ⊢ 1 ∈ ℝ | |
9 | tpssi 4835 | . . . . 5 ⊢ ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 0, 1} ⊆ ℝ) | |
10 | 6, 7, 8, 9 | mp3an 1458 | . . . 4 ⊢ {-1, 0, 1} ⊆ ℝ |
11 | 1, 2 | signswbase 34176 | . . . . 5 ⊢ {-1, 0, 1} = (Base‘𝑊) |
12 | 1, 2 | signswmnd 34179 | . . . . . 6 ⊢ 𝑊 ∈ Mnd |
13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑊 ∈ Mnd) |
14 | fzo0ssnn0 13739 | . . . . . . . 8 ⊢ (0..^(♯‘𝐹)) ⊆ ℕ0 | |
15 | nn0uz 12888 | . . . . . . . 8 ⊢ ℕ0 = (ℤ≥‘0) | |
16 | 14, 15 | sseqtri 4014 | . . . . . . 7 ⊢ (0..^(♯‘𝐹)) ⊆ (ℤ≥‘0) |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) ⊆ (ℤ≥‘0)) |
18 | 17 | sselda 3978 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑛 ∈ (ℤ≥‘0)) |
19 | wrdf 14495 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → 𝐹:(0..^(♯‘𝐹))⟶ℝ) | |
20 | 19 | ad2antrr 725 | . . . . . . . 8 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝐹:(0..^(♯‘𝐹))⟶ℝ) |
21 | fzssfzo 34161 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (0..^(♯‘𝐹)) → (0...𝑛) ⊆ (0..^(♯‘𝐹))) | |
22 | 21 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (0...𝑛) ⊆ (0..^(♯‘𝐹))) |
23 | 22 | sselda 3978 | . . . . . . . 8 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝑖 ∈ (0..^(♯‘𝐹))) |
24 | 20, 23 | ffvelcdmd 7089 | . . . . . . 7 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹‘𝑖) ∈ ℝ) |
25 | 24 | rexrd 11288 | . . . . . 6 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹‘𝑖) ∈ ℝ*) |
26 | sgncl 34148 | . . . . . 6 ⊢ ((𝐹‘𝑖) ∈ ℝ* → (sgn‘(𝐹‘𝑖)) ∈ {-1, 0, 1}) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (sgn‘(𝐹‘𝑖)) ∈ {-1, 0, 1}) |
28 | 11, 13, 18, 27 | gsumncl 34162 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) ∈ {-1, 0, 1}) |
29 | 10, 28 | sselid 3976 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) ∈ ℝ) |
30 | 5, 29 | fmpt3d 7120 | . 2 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹):(0..^(♯‘𝐹))⟶ℝ) |
31 | iswrdi 14494 | . 2 ⊢ ((𝑇‘𝐹):(0..^(♯‘𝐹))⟶ℝ → (𝑇‘𝐹) ∈ Word ℝ) | |
32 | 30, 31 | syl 17 | 1 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) ∈ Word ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ⊆ wss 3944 ifcif 4524 {cpr 4626 {ctp 4628 〈cop 4630 ↦ cmpt 5225 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 ℝcr 11131 0cc0 11132 1c1 11133 ℝ*cxr 11271 − cmin 11468 -cneg 11469 ℕ0cn0 12496 ℤ≥cuz 12846 ...cfz 13510 ..^cfzo 13653 ♯chash 14315 Word cword 14490 sgncsgn 15059 Σcsu 15658 ndxcnx 17155 Basecbs 17173 +gcplusg 17226 Σg cgsu 17415 Mndcmnd 18687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-word 14491 df-sgn 15060 df-struct 17109 df-slot 17144 df-ndx 17156 df-base 17174 df-plusg 17239 df-0g 17416 df-gsum 17417 df-mgm 18593 df-sgrp 18672 df-mnd 18688 |
This theorem is referenced by: signstres 34197 signsvtp 34205 signsvtn 34206 |
Copyright terms: Public domain | W3C validator |