Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstf Structured version   Visualization version   GIF version

Theorem signstf 34602
Description: The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstf (𝐹 ∈ Word ℝ → (𝑇𝐹) ∈ Word ℝ)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstf
StepHypRef Expression
1 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
3 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
4 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
51, 2, 3, 4signstfv 34599 . . 3 (𝐹 ∈ Word ℝ → (𝑇𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
6 neg1rr 12120 . . . . 5 -1 ∈ ℝ
7 0re 11123 . . . . 5 0 ∈ ℝ
8 1re 11121 . . . . 5 1 ∈ ℝ
9 tpssi 4791 . . . . 5 ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 0, 1} ⊆ ℝ)
106, 7, 8, 9mp3an 1463 . . . 4 {-1, 0, 1} ⊆ ℝ
111, 2signswbase 34590 . . . . 5 {-1, 0, 1} = (Base‘𝑊)
121, 2signswmnd 34593 . . . . . 6 𝑊 ∈ Mnd
1312a1i 11 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑊 ∈ Mnd)
14 fzo0ssnn0 13650 . . . . . . . 8 (0..^(♯‘𝐹)) ⊆ ℕ0
15 nn0uz 12778 . . . . . . . 8 0 = (ℤ‘0)
1614, 15sseqtri 3979 . . . . . . 7 (0..^(♯‘𝐹)) ⊆ (ℤ‘0)
1716a1i 11 . . . . . 6 (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) ⊆ (ℤ‘0))
1817sselda 3930 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑛 ∈ (ℤ‘0))
19 wrdf 14429 . . . . . . . . 9 (𝐹 ∈ Word ℝ → 𝐹:(0..^(♯‘𝐹))⟶ℝ)
2019ad2antrr 726 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝐹:(0..^(♯‘𝐹))⟶ℝ)
21 fzssfzo 34575 . . . . . . . . . 10 (𝑛 ∈ (0..^(♯‘𝐹)) → (0...𝑛) ⊆ (0..^(♯‘𝐹)))
2221adantl 481 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (0...𝑛) ⊆ (0..^(♯‘𝐹)))
2322sselda 3930 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝑖 ∈ (0..^(♯‘𝐹)))
2420, 23ffvelcdmd 7026 . . . . . . 7 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹𝑖) ∈ ℝ)
2524rexrd 11171 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹𝑖) ∈ ℝ*)
26 sgncl 32821 . . . . . 6 ((𝐹𝑖) ∈ ℝ* → (sgn‘(𝐹𝑖)) ∈ {-1, 0, 1})
2725, 26syl 17 . . . . 5 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (sgn‘(𝐹𝑖)) ∈ {-1, 0, 1})
2811, 13, 18, 27gsumncl 34576 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖)))) ∈ {-1, 0, 1})
2910, 28sselid 3928 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖)))) ∈ ℝ)
305, 29fmpt3d 7057 . 2 (𝐹 ∈ Word ℝ → (𝑇𝐹):(0..^(♯‘𝐹))⟶ℝ)
31 iswrdi 14428 . 2 ((𝑇𝐹):(0..^(♯‘𝐹))⟶ℝ → (𝑇𝐹) ∈ Word ℝ)
3230, 31syl 17 1 (𝐹 ∈ Word ℝ → (𝑇𝐹) ∈ Word ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wss 3898  ifcif 4476  {cpr 4579  {ctp 4581  cop 4583  cmpt 5176  wf 6484  cfv 6488  (class class class)co 7354  cmpo 7356  cr 11014  0cc0 11015  1c1 11016  *cxr 11154  cmin 11353  -cneg 11354  0cn0 12390  cuz 12740  ...cfz 13411  ..^cfzo 13558  chash 14241  Word cword 14424  sgncsgn 14997  Σcsu 15597  ndxcnx 17108  Basecbs 17124  +gcplusg 17165   Σg cgsu 17348  Mndcmnd 18646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-word 14425  df-sgn 14998  df-struct 17062  df-slot 17097  df-ndx 17109  df-base 17125  df-plusg 17178  df-0g 17349  df-gsum 17350  df-mgm 18552  df-sgrp 18631  df-mnd 18647
This theorem is referenced by:  signstres  34611  signsvtp  34619  signsvtn  34620
  Copyright terms: Public domain W3C validator