| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signstf | Structured version Visualization version GIF version | ||
| Description: The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| Ref | Expression |
|---|---|
| signstf | ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) ∈ Word ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 2 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
| 3 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
| 4 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
| 5 | 1, 2, 3, 4 | signstfv 34599 | . . 3 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
| 6 | neg1rr 12120 | . . . . 5 ⊢ -1 ∈ ℝ | |
| 7 | 0re 11123 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 8 | 1re 11121 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 9 | tpssi 4791 | . . . . 5 ⊢ ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 0, 1} ⊆ ℝ) | |
| 10 | 6, 7, 8, 9 | mp3an 1463 | . . . 4 ⊢ {-1, 0, 1} ⊆ ℝ |
| 11 | 1, 2 | signswbase 34590 | . . . . 5 ⊢ {-1, 0, 1} = (Base‘𝑊) |
| 12 | 1, 2 | signswmnd 34593 | . . . . . 6 ⊢ 𝑊 ∈ Mnd |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑊 ∈ Mnd) |
| 14 | fzo0ssnn0 13650 | . . . . . . . 8 ⊢ (0..^(♯‘𝐹)) ⊆ ℕ0 | |
| 15 | nn0uz 12778 | . . . . . . . 8 ⊢ ℕ0 = (ℤ≥‘0) | |
| 16 | 14, 15 | sseqtri 3979 | . . . . . . 7 ⊢ (0..^(♯‘𝐹)) ⊆ (ℤ≥‘0) |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) ⊆ (ℤ≥‘0)) |
| 18 | 17 | sselda 3930 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑛 ∈ (ℤ≥‘0)) |
| 19 | wrdf 14429 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → 𝐹:(0..^(♯‘𝐹))⟶ℝ) | |
| 20 | 19 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝐹:(0..^(♯‘𝐹))⟶ℝ) |
| 21 | fzssfzo 34575 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (0..^(♯‘𝐹)) → (0...𝑛) ⊆ (0..^(♯‘𝐹))) | |
| 22 | 21 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (0...𝑛) ⊆ (0..^(♯‘𝐹))) |
| 23 | 22 | sselda 3930 | . . . . . . . 8 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝑖 ∈ (0..^(♯‘𝐹))) |
| 24 | 20, 23 | ffvelcdmd 7026 | . . . . . . 7 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹‘𝑖) ∈ ℝ) |
| 25 | 24 | rexrd 11171 | . . . . . 6 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹‘𝑖) ∈ ℝ*) |
| 26 | sgncl 32821 | . . . . . 6 ⊢ ((𝐹‘𝑖) ∈ ℝ* → (sgn‘(𝐹‘𝑖)) ∈ {-1, 0, 1}) | |
| 27 | 25, 26 | syl 17 | . . . . 5 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (sgn‘(𝐹‘𝑖)) ∈ {-1, 0, 1}) |
| 28 | 11, 13, 18, 27 | gsumncl 34576 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) ∈ {-1, 0, 1}) |
| 29 | 10, 28 | sselid 3928 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) ∈ ℝ) |
| 30 | 5, 29 | fmpt3d 7057 | . 2 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹):(0..^(♯‘𝐹))⟶ℝ) |
| 31 | iswrdi 14428 | . 2 ⊢ ((𝑇‘𝐹):(0..^(♯‘𝐹))⟶ℝ → (𝑇‘𝐹) ∈ Word ℝ) | |
| 32 | 30, 31 | syl 17 | 1 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) ∈ Word ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 ifcif 4476 {cpr 4579 {ctp 4581 〈cop 4583 ↦ cmpt 5176 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 ℝcr 11014 0cc0 11015 1c1 11016 ℝ*cxr 11154 − cmin 11353 -cneg 11354 ℕ0cn0 12390 ℤ≥cuz 12740 ...cfz 13411 ..^cfzo 13558 ♯chash 14241 Word cword 14424 sgncsgn 14997 Σcsu 15597 ndxcnx 17108 Basecbs 17124 +gcplusg 17165 Σg cgsu 17348 Mndcmnd 18646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-word 14425 df-sgn 14998 df-struct 17062 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-0g 17349 df-gsum 17350 df-mgm 18552 df-sgrp 18631 df-mnd 18647 |
| This theorem is referenced by: signstres 34611 signsvtp 34619 signsvtn 34620 |
| Copyright terms: Public domain | W3C validator |