![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstf | Structured version Visualization version GIF version |
Description: The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) |
signsv.w | β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} |
signsv.t | β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) |
signsv.v | β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) |
Ref | Expression |
---|---|
signstf | β’ (πΉ β Word β β (πβπΉ) β Word β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . . 4 ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) | |
2 | signsv.w | . . . 4 β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} | |
3 | signsv.t | . . . 4 β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) | |
4 | signsv.v | . . . 4 β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) | |
5 | 1, 2, 3, 4 | signstfv 34103 | . . 3 β’ (πΉ β Word β β (πβπΉ) = (π β (0..^(β―βπΉ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))))) |
6 | neg1rr 12328 | . . . . 5 β’ -1 β β | |
7 | 0re 11217 | . . . . 5 β’ 0 β β | |
8 | 1re 11215 | . . . . 5 β’ 1 β β | |
9 | tpssi 4834 | . . . . 5 β’ ((-1 β β β§ 0 β β β§ 1 β β) β {-1, 0, 1} β β) | |
10 | 6, 7, 8, 9 | mp3an 1457 | . . . 4 β’ {-1, 0, 1} β β |
11 | 1, 2 | signswbase 34094 | . . . . 5 β’ {-1, 0, 1} = (Baseβπ) |
12 | 1, 2 | signswmnd 34097 | . . . . . 6 β’ π β Mnd |
13 | 12 | a1i 11 | . . . . 5 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β π β Mnd) |
14 | fzo0ssnn0 13716 | . . . . . . . 8 β’ (0..^(β―βπΉ)) β β0 | |
15 | nn0uz 12865 | . . . . . . . 8 β’ β0 = (β€β₯β0) | |
16 | 14, 15 | sseqtri 4013 | . . . . . . 7 β’ (0..^(β―βπΉ)) β (β€β₯β0) |
17 | 16 | a1i 11 | . . . . . 6 β’ (πΉ β Word β β (0..^(β―βπΉ)) β (β€β₯β0)) |
18 | 17 | sselda 3977 | . . . . 5 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β π β (β€β₯β0)) |
19 | wrdf 14472 | . . . . . . . . 9 β’ (πΉ β Word β β πΉ:(0..^(β―βπΉ))βΆβ) | |
20 | 19 | ad2antrr 723 | . . . . . . . 8 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π β (0...π)) β πΉ:(0..^(β―βπΉ))βΆβ) |
21 | fzssfzo 34079 | . . . . . . . . . 10 β’ (π β (0..^(β―βπΉ)) β (0...π) β (0..^(β―βπΉ))) | |
22 | 21 | adantl 481 | . . . . . . . . 9 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β (0...π) β (0..^(β―βπΉ))) |
23 | 22 | sselda 3977 | . . . . . . . 8 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π β (0...π)) β π β (0..^(β―βπΉ))) |
24 | 20, 23 | ffvelcdmd 7080 | . . . . . . 7 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π β (0...π)) β (πΉβπ) β β) |
25 | 24 | rexrd 11265 | . . . . . 6 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π β (0...π)) β (πΉβπ) β β*) |
26 | sgncl 34066 | . . . . . 6 β’ ((πΉβπ) β β* β (sgnβ(πΉβπ)) β {-1, 0, 1}) | |
27 | 25, 26 | syl 17 | . . . . 5 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π β (0...π)) β (sgnβ(πΉβπ)) β {-1, 0, 1}) |
28 | 11, 13, 18, 27 | gsumncl 34080 | . . . 4 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))) β {-1, 0, 1}) |
29 | 10, 28 | sselid 3975 | . . 3 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))) β β) |
30 | 5, 29 | fmpt3d 7110 | . 2 β’ (πΉ β Word β β (πβπΉ):(0..^(β―βπΉ))βΆβ) |
31 | iswrdi 14471 | . 2 β’ ((πβπΉ):(0..^(β―βπΉ))βΆβ β (πβπΉ) β Word β) | |
32 | 30, 31 | syl 17 | 1 β’ (πΉ β Word β β (πβπΉ) β Word β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 β wss 3943 ifcif 4523 {cpr 4625 {ctp 4627 β¨cop 4629 β¦ cmpt 5224 βΆwf 6532 βcfv 6536 (class class class)co 7404 β cmpo 7406 βcr 11108 0cc0 11109 1c1 11110 β*cxr 11248 β cmin 11445 -cneg 11446 β0cn0 12473 β€β₯cuz 12823 ...cfz 13487 ..^cfzo 13630 β―chash 14292 Word cword 14467 sgncsgn 15036 Ξ£csu 15635 ndxcnx 17132 Basecbs 17150 +gcplusg 17203 Ξ£g cgsu 17392 Mndcmnd 18664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-fzo 13631 df-seq 13970 df-hash 14293 df-word 14468 df-sgn 15037 df-struct 17086 df-slot 17121 df-ndx 17133 df-base 17151 df-plusg 17216 df-0g 17393 df-gsum 17394 df-mgm 18570 df-sgrp 18649 df-mnd 18665 |
This theorem is referenced by: signstres 34115 signsvtp 34123 signsvtn 34124 |
Copyright terms: Public domain | W3C validator |