| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signstf | Structured version Visualization version GIF version | ||
| Description: The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| Ref | Expression |
|---|---|
| signstf | ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) ∈ Word ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 2 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
| 3 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
| 4 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
| 5 | 1, 2, 3, 4 | signstfv 34533 | . . 3 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
| 6 | neg1rr 12132 | . . . . 5 ⊢ -1 ∈ ℝ | |
| 7 | 0re 11136 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 8 | 1re 11134 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 9 | tpssi 4792 | . . . . 5 ⊢ ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 0, 1} ⊆ ℝ) | |
| 10 | 6, 7, 8, 9 | mp3an 1463 | . . . 4 ⊢ {-1, 0, 1} ⊆ ℝ |
| 11 | 1, 2 | signswbase 34524 | . . . . 5 ⊢ {-1, 0, 1} = (Base‘𝑊) |
| 12 | 1, 2 | signswmnd 34527 | . . . . . 6 ⊢ 𝑊 ∈ Mnd |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑊 ∈ Mnd) |
| 14 | fzo0ssnn0 13667 | . . . . . . . 8 ⊢ (0..^(♯‘𝐹)) ⊆ ℕ0 | |
| 15 | nn0uz 12795 | . . . . . . . 8 ⊢ ℕ0 = (ℤ≥‘0) | |
| 16 | 14, 15 | sseqtri 3986 | . . . . . . 7 ⊢ (0..^(♯‘𝐹)) ⊆ (ℤ≥‘0) |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) ⊆ (ℤ≥‘0)) |
| 18 | 17 | sselda 3937 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑛 ∈ (ℤ≥‘0)) |
| 19 | wrdf 14443 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → 𝐹:(0..^(♯‘𝐹))⟶ℝ) | |
| 20 | 19 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝐹:(0..^(♯‘𝐹))⟶ℝ) |
| 21 | fzssfzo 34509 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (0..^(♯‘𝐹)) → (0...𝑛) ⊆ (0..^(♯‘𝐹))) | |
| 22 | 21 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (0...𝑛) ⊆ (0..^(♯‘𝐹))) |
| 23 | 22 | sselda 3937 | . . . . . . . 8 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝑖 ∈ (0..^(♯‘𝐹))) |
| 24 | 20, 23 | ffvelcdmd 7023 | . . . . . . 7 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹‘𝑖) ∈ ℝ) |
| 25 | 24 | rexrd 11184 | . . . . . 6 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹‘𝑖) ∈ ℝ*) |
| 26 | sgncl 32789 | . . . . . 6 ⊢ ((𝐹‘𝑖) ∈ ℝ* → (sgn‘(𝐹‘𝑖)) ∈ {-1, 0, 1}) | |
| 27 | 25, 26 | syl 17 | . . . . 5 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (sgn‘(𝐹‘𝑖)) ∈ {-1, 0, 1}) |
| 28 | 11, 13, 18, 27 | gsumncl 34510 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) ∈ {-1, 0, 1}) |
| 29 | 10, 28 | sselid 3935 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) ∈ ℝ) |
| 30 | 5, 29 | fmpt3d 7054 | . 2 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹):(0..^(♯‘𝐹))⟶ℝ) |
| 31 | iswrdi 14442 | . 2 ⊢ ((𝑇‘𝐹):(0..^(♯‘𝐹))⟶ℝ → (𝑇‘𝐹) ∈ Word ℝ) | |
| 32 | 30, 31 | syl 17 | 1 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) ∈ Word ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3905 ifcif 4478 {cpr 4581 {ctp 4583 〈cop 4585 ↦ cmpt 5176 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ℝcr 11027 0cc0 11028 1c1 11029 ℝ*cxr 11167 − cmin 11365 -cneg 11366 ℕ0cn0 12402 ℤ≥cuz 12753 ...cfz 13428 ..^cfzo 13575 ♯chash 14255 Word cword 14438 sgncsgn 15011 Σcsu 15611 ndxcnx 17122 Basecbs 17138 +gcplusg 17179 Σg cgsu 17362 Mndcmnd 18626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-word 14439 df-sgn 15012 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-0g 17363 df-gsum 17364 df-mgm 18532 df-sgrp 18611 df-mnd 18627 |
| This theorem is referenced by: signstres 34545 signsvtp 34553 signsvtn 34554 |
| Copyright terms: Public domain | W3C validator |