Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstf Structured version   Visualization version   GIF version

Theorem signstf 32524
Description: The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstf (𝐹 ∈ Word ℝ → (𝑇𝐹) ∈ Word ℝ)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstf
StepHypRef Expression
1 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
3 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
4 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
51, 2, 3, 4signstfv 32521 . . 3 (𝐹 ∈ Word ℝ → (𝑇𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
6 neg1rr 12071 . . . . 5 -1 ∈ ℝ
7 0re 10961 . . . . 5 0 ∈ ℝ
8 1re 10959 . . . . 5 1 ∈ ℝ
9 tpssi 4774 . . . . 5 ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 0, 1} ⊆ ℝ)
106, 7, 8, 9mp3an 1459 . . . 4 {-1, 0, 1} ⊆ ℝ
111, 2signswbase 32512 . . . . 5 {-1, 0, 1} = (Base‘𝑊)
121, 2signswmnd 32515 . . . . . 6 𝑊 ∈ Mnd
1312a1i 11 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑊 ∈ Mnd)
14 fzo0ssnn0 13449 . . . . . . . 8 (0..^(♯‘𝐹)) ⊆ ℕ0
15 nn0uz 12602 . . . . . . . 8 0 = (ℤ‘0)
1614, 15sseqtri 3961 . . . . . . 7 (0..^(♯‘𝐹)) ⊆ (ℤ‘0)
1716a1i 11 . . . . . 6 (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) ⊆ (ℤ‘0))
1817sselda 3925 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑛 ∈ (ℤ‘0))
19 wrdf 14203 . . . . . . . . 9 (𝐹 ∈ Word ℝ → 𝐹:(0..^(♯‘𝐹))⟶ℝ)
2019ad2antrr 722 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝐹:(0..^(♯‘𝐹))⟶ℝ)
21 fzssfzo 32497 . . . . . . . . . 10 (𝑛 ∈ (0..^(♯‘𝐹)) → (0...𝑛) ⊆ (0..^(♯‘𝐹)))
2221adantl 481 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (0...𝑛) ⊆ (0..^(♯‘𝐹)))
2322sselda 3925 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝑖 ∈ (0..^(♯‘𝐹)))
2420, 23ffvelrnd 6956 . . . . . . 7 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹𝑖) ∈ ℝ)
2524rexrd 11009 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹𝑖) ∈ ℝ*)
26 sgncl 32484 . . . . . 6 ((𝐹𝑖) ∈ ℝ* → (sgn‘(𝐹𝑖)) ∈ {-1, 0, 1})
2725, 26syl 17 . . . . 5 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (sgn‘(𝐹𝑖)) ∈ {-1, 0, 1})
2811, 13, 18, 27gsumncl 32498 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖)))) ∈ {-1, 0, 1})
2910, 28sselid 3923 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖)))) ∈ ℝ)
305, 29fmpt3d 6984 . 2 (𝐹 ∈ Word ℝ → (𝑇𝐹):(0..^(♯‘𝐹))⟶ℝ)
31 iswrdi 14202 . 2 ((𝑇𝐹):(0..^(♯‘𝐹))⟶ℝ → (𝑇𝐹) ∈ Word ℝ)
3230, 31syl 17 1 (𝐹 ∈ Word ℝ → (𝑇𝐹) ∈ Word ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wne 2944  wss 3891  ifcif 4464  {cpr 4568  {ctp 4570  cop 4572  cmpt 5161  wf 6426  cfv 6430  (class class class)co 7268  cmpo 7270  cr 10854  0cc0 10855  1c1 10856  *cxr 10992  cmin 11188  -cneg 11189  0cn0 12216  cuz 12564  ...cfz 13221  ..^cfzo 13364  chash 14025  Word cword 14198  sgncsgn 14778  Σcsu 15378  ndxcnx 16875  Basecbs 16893  +gcplusg 16943   Σg cgsu 17132  Mndcmnd 18366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-seq 13703  df-hash 14026  df-word 14199  df-sgn 14779  df-struct 16829  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-0g 17133  df-gsum 17134  df-mgm 18307  df-sgrp 18356  df-mnd 18367
This theorem is referenced by:  signstres  32533  signsvtp  32541  signsvtn  32542
  Copyright terms: Public domain W3C validator